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Undulations and Dynamic Structure Factor of Membranes
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We investigate the dynamic structure facy, ) of membrane phases at large wave numbhgers
which are sensitive to single membrane dynamics. Considering an ensemble of membrane plaquettes
at random orientations, the effect of membrane thermal undulations is calculated. Their statistics
is modeled by bending energy and standard hydrodynamic dispersion law. We predict a stretched
exponential relaxatior$(q, r) ~ e~ T with a relaxation ratd’, = x~'/2¢> where « is the bending
modulus. Our results are in good agreement with recent dynamic light scattering spectra from dilute
sponge phases obtained by Freyssingeas, Roux, and Nallet [(unpublished)]. [S0031-9007(96)01767-X]

PACS numbers: 68.10.—m, 68.35.Ja, 82.70.K]

Surfactants in solutions self-assemble in a number of On the other hand, the universal scaling &y ~ ¢°
basic structures, of which membrane bilayer is a veryhas been observed in both sponge and lamellar systems
common one [1,2]. Sponge and lamellar phases are twiw a good accuracy. General mode coupling theories for
well known packing arrangements of these bilayers irsystems where the hydrodynamic interaction dominates
the three-dimensional (3D) solvent. The spongeXer [9] predict I', = ’fg—f]q3, so long as the wavelength is
phase is isotropic with no long range order [3]. Theshorter than the characteristic correlation length. This
membrane forms a random surface on a scale largeesult is consistent with the observed scaling with
than a typical cell siz&, resulting with finite (random) but inconsistent with the observed dependence of (the
vesicles and one percolating membrane. In the lamellasrefactor in) I, on the specific system, sincE, is
phase [4], which has the symmetry of smediidiquid predicted by these theories to be independent of any free-
crystals, the membranes are arranged in a periodic stagergy parameters.
with repeat distance which we also dengte In practice The purpose of this Letter is to resolve these apparent
the lamellar phase may be either fully oriented (i.e., acontradictions, which could raise some doubts in our
single “crystal”) or powder (poly-“crystalline”), namely, current knowledge of membrane thermal undulations, and
composed of several lamellar grains, each having & explain the observed stretched exponential decay of the
different orientation. dynamic structure factor. We focus on one membrane

On a length scale much shorter tharthe membrane plaquette of linear siz& which is less than, or of the
does not interact with neighboring membranes, and iterder of, the persistence length, making an arbitrary angle
behavior is similar in both phases. Scattering at suclvith the scattering wave vectgr, and consider the effect
short wavelengths can thus probe the static and dynamisf thermal undulations on the resulting dynamic structure
behavior of a single membrane, regardless of its londactor. The calculation of the latter is almost exact within
range order. In typical sponges, the regime of large wavéne approximations made for calculating the statistics of
numbersq, g& > 1, has been explored in the past by thermal undulations. We daot assume, for instance,
x-ray and neutron scattering [5] and yielded a static struca linear relation between concentration fluctuations and
ture factorS(¢q) ~ ¢, typical for an ensemble of nearly membrane displacements, which is very common to
flat membrane pieces at random orientations. Recentlghe theory of smectic liquid crystals [10]. Nor do
this regime has been exposed to light scattering usingie assume that the average undulation amplitude, in a
very dilute samples, giving rise to largé [6]. The scattering blob of linear sizg ™', is small relative to
dynamic light scattering from the sponge and powdel;~! [11]. We then make proper angular averaging to
lamellar is found anomalous. First, the relaxation pro-account for an isotropic ensemble of such plaquettes.
file cannot be fitted by a single exponential. A fit to aThis averaging should be suitable to describe both sponge
stretched exponential lad(g, 1) ~ ¢~ 10" yields an ex- and powder lamellar, as well as vesicle phases (see
ponenta = 0.7. Second, in the sponge the relaxation ratepelow). The result is a stretched exponential decay profile
I’y is found to depend on the bilayer material, which mays(g, 1) ~ ¢=T9*" with T, ~ (ksT/x)"?ksTq*/7. The
be viewed as a dependenceldf on the bending modu- anomalous dependence enT’,, « k172 is explained as
lus k. However, this plausible interpretation implies that, 3 result of two competing effects. One is therease
for the systems studied experimentally, is decreasing of the undulations relaxation rate, and the other is the
with increasingx, which is opposite to the trend expected gecreaseof the average undulation amplitude, both with
from the dispersion relation for membrane undulationgncreasing stiffness. While a stiffer membrane, subject
[7.8] w(q) ~ 74° (Where is the viscosity). to a random (thermally activated) undulation, will relax
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faster to its flat state, it is less efficient in exploring

the second exponent in Eq. (2). We note that for the case

volume, so that one has to wait a longer time for an empty;, = 0, which has been studied in detail by Messager

solvent blob to be filled up by membrane material.

al. [7], the entire effect of undulations is buried in the de-

Other effects, such as the rotational and translationaliation of g, and g, from unity, and this approximation
motion of plaquettes, will be considered in detail else-is not adequate.

where [12]. Translational diffusion leads to an additional

relaxation in the form of a multiplying factar 4’2 with

a diffusion coefficientD) ~ k3T /né&. Comparing the two
rates we conclude that, so long @& > 1, the effect of
translational diffusion is negligible. More precisely, this
is true only for timest < n&3/k. However, for longer
timest = 7né&3/«k, S(g,t) has already decayed to vanish-

ingly small, essentially unmeasurable, values. A similar

Before we proceed to evaluate the average in Eq. (2),
let us discuss the equilibrium statistics of the thermal
undulations. These are assumed to follow the Helfrich
bending Hamiltonian [14], which, for small deformations
Vh < 1,is

1 . 1
H= 3K[ d*r[V2h(F) = 3K§k4h,;h_,;, (3)

conclusion is reached when we consider the effect of ro- ) . ]
tational diffusion. We note in passing that our results arevhere « is the bending modulus ank; are the Fourier
not sensitive to the model of membrane plaguettes whicRomponents ofa (7). With this free energy, standard
we are using. Similar results can be obtained for a spherflydrodynamic mode analysis [7,8] leads to the following

cal vesicle of radiu®, thereby significantly improving the

study of Milner and Safran [11] in the scattering regime

gR > 1.

We start with the general expression for the dynamic

structure factor [13]

S(g,1) =< >

Whereﬁ,-’s are the coordinates of individual surfactant
molecules building up the bilayer. The position of eac
molecule R;(z) can be decomposed into a lateral, two-
dimensional, coordinaté;(#) on a reference flat surface,
and a perpendicular positiop;(r). The latter can be
expressed by the function(7,:) which describes the
deviation from flatness;;(t) = h(7i(z),t). If membrane
undulations are not too largé;(r) is roughly constant,
with corrections being of orde¢(Vh)?). We therefore
replacer;(t) by its average’, assumed constant in time.
The double sum in Eq. (1) is then transformed to

S(,1) = <a—14fd2r\/gf d*r’

x\@elﬁr(?7/)eiqz[h(?,t)h(7ﬂ0)]>’ 2)

whereg) is the two-dimensional component §fparallel

to the membrane average plameis a molecular length,
andg, = 1 + [V,h(7,1)]>. We shall consider scattering
geometries in whicly, > (kzT/k)"/?¢. In an isotropic
ensemble of plaquettes—our model of the sponge o
short distances-¢ takes random values on different pla-
quettes. It can be shown, however, that the contributio

> 14 Ri()=R;(0)]

i,j

(1)

verse condition is negligible [12]. That is, density fluc-

tuations in the parallel direction, in the form of excess
area, can be neglected. Scattering from oriented IameI;

lae is also easily performed at large. When this is so,

relaxation rate of an amplitude;

wk) = — i, 4)
4n
where 7 is the viscosity. This result fow(k) can be
rationalized using the Oseen hydrodynamic interaction
[15] for the case of an almost flat membrane. Then
w(k) = A(k)oH /oh_; whereA(k) = 1/4nk is the two-
dimensional Fourier transform of the Oseen interaction
1/87nr, leading immediately to Eq. (4)). The® scal-
ing of w(k) is thus simply an outcome of the' scaling
of the energy and the long rangg/k, scaling of the hy-
drodynamic interaction. Using these, the time-dependent
correlation function ofi;(z) is written as
kgT _
(()h_ (0)) = =7 =M. (5)
The stochastic dynamics af;(r) can be described
by a Langevin equation in which the random force is
assumed to obey Gaussian statistics [16]. With this
assumption, and the Gaussian (harmonic) approximation
to the bending energy Eqg. (3), it follows that the stochastic
variable h(7,t) — h(#',0) also obeys Gaussian statistics
[16]. As aresult, the average in Eq. (2) can be performed
exactly to give

> 1 ian-(7—7 7£ K
S(g,t) = Efdzrfdzr/e’q” (F=F) o= 5 hEN=RGOF)

(6)

%quation (6) may be verified [12] by performing exact
averaging in time over the random (white noise) force

to scattering from plaquettes oriented according to the re%ppearlng the Langevin equation, and exact averaging

over the initial (equilibrium) conditions, using a partition
function with the Hamiltonian of Eq. (3).

Using Eq. (5), the real-space correlation function in
g. (6) can be decomposed into static and dynamic parts

the main contribution to the integrals due to undulations (((7 ¢) — h(7,0)]) = ®,(r — 7) + ®F — 7.,1)

comes from the exponential terms. Thus we maygset

andg, to unity and we are left to calculate the average of

(7)
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with the static membrane correlator order v, = 1 — 3In(qé)kgT /4mk.] Note the familiar
@, — 7) = (h(F) — hFP) scaling ', ~ ¢ and the anomalous dependence son
’ I, ~« 2. S(q) ~ ¢ % is the sponge typical static

1 kgT [ d%k G structure factor [5] (in the regimeé > 1), describing

Rl k—4(1 — ™) (8)  also the scattering from an isotropic phase of large disks
. or large vesicles.

and a dynamic correlator The result (13) can be justified using a simple handwav-
OF — F1) = _1 kT ing, scaling-type, argument. We focus on one membrane

27 K plaguette which is oriented perpendiculargpi.e., with

d’k e — o)t q. = q. To significantly relax density correlations in the
X [ 76 (I —e ). (9) z direction, the membrane has to move in this direction
(The lower and upper limits for these integrals are= & distance of ordet/q, implying an average ;ir}dﬂ'ft'on
7/& andk = /a, respectively.) The integral in Eq. (8) @mplituder ~ 1/4. Since, from Eq. (10); ~ (55)"/*r,

can be evaluated to give the lateral distance corresponding to this amplitude is
T ¢ r ~ (&)'?q7". As « increases, one has to go further
D, — 7') = 4B_|; _ ;/|2|n<|e */|>, (10) away along the membrane in order to obtain the desired
TK r —r

) ) ' ) amplitude. The Stokes-Einstein diffusion coefficient of a

showing the well known divergence with distance formembrane sheet of this sizelis ~ k3T /% r which leads

surfaces dominated by bending energy f],(r) ~ r2. to D(q) ~ /wz_T(/w_T)uzq_ The relaxation rate is, as usual,
Let us now turn to the time-dependent correlator which "

. ~K 2 . . .
determines the relaxation profile 6fg,r). The integral given byl'(g) ~ D(g)q”, which leads immediately to the
in Eqg. (9) is calculated forna®/k <t < né3/k to

same scaling as in Eq. (13).
. ) The predicted stretching exponeat= 2/3 is close
leading order [12] to give to the experimental fit valuee = 0.7. The trend ofl’,

OF — 1) ~ [0069(]%—T>%,€B—th to decrease with increasing is also consistent with
’ ' K experiment. The latter behavior has been observed
1 kgT [6] using three different systems: (i) S&ntanol

- Tl? - 7"|2|n< t) +¢,(7 — 7). (11)  water/dodecane, (i) GEs/hexanofwater, and (iii)
) i ., SDS/octanofbrine, for which k has been estimated
Here ¢, is a function only of|r — 7’| and thus con- jnqependently from dynamic light scattering spectra of

tributes only to the static structure factor. The secondoncentrated lamellar phases [6,18] (yielding the values
term has a logarithmic dependence on time which would, 5 and4kzT, respectively). Thesmall, nontrivial

be extremely hard to detect in experiment. The dominant,merical prefactor in Eq. (13) is remarkably close to the
time dependence is thus described by the first term Wh'CprerimentaI value (e.g., the agreement is within 20% for

increases with time as¢*3. This “anomalous diffusion” the system SD@ctanofbrine wherex = 4kzT). This
will subsequently give rise to the stretched exponential, merical factor is very different from the one predicted
relaxation. , , by the Kawasaki mode coupling theory/(6, with no

Using these results in Eq. (6), and performing the re4” jependence). The experimental accuracy does not
maining integrals, we obtain the dynamic structure fac6\y ys, however, to quantitatively verify our prediction
tor of plaquettesat a given orlentatlor(e.g(.,F ag/sorlented T, ~ «~1/2. Our theory predicts a similar stretched

i 2 ) = S(2)e— Tt ) , .

lamellar phase) |rg/t2he f?{;ﬂ(‘f’g) = S(g)e”" =" ~where  eyponential profile also for aoriented lamellar phase
Iy =0.025(ksT)"*/('/“m)q; and whereS(g) is the  \ith 4. > (kzT/x)"/?q). Experiments on sufficiently
static structure factor. Finally, in order to predict the re-gjjute systems [6] at largg, are not yet available.
laxation profile for sponge, powder lamellar, and vesicle |t js interesting to note that the static structure fac-
phases, waverageover the angle betweepand the sur- o (; = ) obtained from Egs. (6)—(10) is identical to
face normal. This average is dominated by the region neghe one derived by Ramaswamy, Prost, and Luben-
zero angle, i.e., wheg) = 0 andg. =~ ¢, but full inte-  gky [19] for the single membrane contribution to the
gration is still required for an accurate description. Thescattering from lamellar phases. However, Ramaswamy
result, forx/ksT = 1, can be well presented [17] by a gt ). [19] claim that, in order to discuss thdynamicsof

4na’

stretched exponential concentration fluctuations, the equations describing mem-
S(q,1) = S(q)ef(nt)”, (12)  brane undulations are not important since they have to be
Where coupled to a membrane mass conservation law. Hence

1 they conclude that the result of the mode coupling theory
r, = 0.0257k<1@_T>2’@_Tq3. @13 [© I~ (k,gT/n_)q3 is also orrect for the sponge and
K lamellar phases in the limit¢ > 1. Both our predictions
Here y, is aweak,monotonously increasing, function of and the experimental results [6] are at variance with this
x/kgT and approaches unity far/kgT > 1. [Tolowest conclusion. Although we do not conserve exactly mem-
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brane material in each plaquette, in conjunction with the We are very grateful to Frederic Nallet, Didier Roux,

approximate transformation from Eq. (1) to Eq. (2), theand Claude Coulon for many useful discussions and for

error made in this approximation can be shown negligisharing with us their experimental results prior to publica-

ble. The general mode coupling approatiouldapply to  tion, and to Tom Witten, Phyl Pincus, Fred Mackintosh,

the regimegé < 1 of the sponge where the wavelength and Sam Safran for useful discussions. This research has

is much longer than the individual cells building up the been supported by a grant from the Ministry of Science

sponge. This regime has been studied elsewhere [20]. and The Arts, Israel, and the French Ministry of Research
Another interesting point is that a similar stretched ex-and Technology.

ponential decay of the dynamic structure factor, with an Note Added—Some of our results are similar to those

exponente = 2/3, appears for botflexible1D [13] (lin-  obtained by Frey and Nelson [J. Phys. | Frargel715

ear) and 2D (membranelike) polymers [12] obeying the(1991)] using a renormalization group approach.

Zimm model. The counterpart of the undulations corre-

lator (h(7,t) — h(#',0)]*) appearing in our calculation is

the segment-segment correlator [XBR,.(r) — R,(0)]*)

(R, is the position of polymer segmen). The expres- . . .

sions for the dynamic correlators are very similar in these [1] Micelles, Membranes, Microemulsions and Monolayers,

three cases leading to the apparently universal decay law ¢dited by W.M. Gelbartet al. (Springer, New York,

,(th)2/3 . 3 1994)
¢ . In fact, the expected scaling, ~ ¢° can be [2] Statistical Mechanics of Membranes and Surfaeshted

reconci!ed with Eq. (6), or with th? analogou_s equations by D. Nelsonet al. (World Scientific, Singapore, 1989).
for flexible polymers [12,13], which are quite general [3] p. Rouxet al.,J. Phys. Chen96, 4174 (1992).

and assume only Gaussian fluctuation statistics, ondy if  [4] D. Sornette and N. Ostrowsky, iNicelles, Membranes,
takes the valug/3. Yet for flexible polymers the effec- Microemulsions and Monolaye(Ref. [1]), Chap. 5.
tive relaxation rate has the more familiar temperature de-[5] D. Gazeau et al., Europhys. Lett. 9, 447 (1989);
pendencd’, = kzT. This is because in the Zimm model J. Marignaret al., J. Phys. (Paris}0, 3553 (1989).
of polymers the segment spring constant is of entropic ori-[6] E. Freyssingeas, These, Universite Bordeaux-l, 1994;
g|n and is thus propor“ona' MT with no dependence on E. Fl‘eyssingeas, D. ROUX, andF Nallet (tO be publlshed)
any other free-energy parameters. [7] R. Messageket al.,J. Phys. (Parishl, 1329 (199_0).

A somewhat different relaxation is found for semiflexi- 1°) Fl.gl%ochard and J-F. Lennon, J. Phys. (Paii$) 1035
ble r_odIiI_<e polymers [21], which are the 1D analog qf the 9] }(< Ka\zx}asaki, Ann. Phys61, 1 (1970).
semiflexible membranes discussed here. The bending 0] F. Brochard and P.-G. de Gennes, Paam Suppl.l, 1
ergy is described in a similar way to Eq. (3), with a 1D (1975).
integral replacing the 2D integral and with a bending mod{11] S.T. Milner and S.A. Safran, Phys. Rev. 26, 4371
ulus k which has dimensions of energy length. Equa- (1987).
tion (5) still describes correctly the undulation correlation[12] A.G. Zilman and R. Granek (to be published).
function (h;(r)h_;(0)) using, howeverw (k) ~ %k“ in- [13] M. Doi and S.F. EdwardsThe Theory of Polymer
stead of Eq. (4). Following the same approach as for  Dynamics(Clarendon, Oxford, 1986), pp. 132-135.
membranes leads to [12,2¥(q,) ~ ef(rqz)my where [14] W.F. Helfrlch, Z. Naturforsch28C, 693 (1973).
I~ (k[;_T)%ktz_T 8/3 [15] M. D0|_ and S.F. Edwards,The Theory of Polymer

q A , _ Dynamics(Ref. [13]), pp. 88, 89. . .

To conclude, using the Helfrich bending free energy tq16] N.G. Van Kampen Stochastic Processes in Physics and
describe membrane undulations we have explained both ~ chemistry(North-Holland, Amsterdam, 1992).
the stretched exponential decay of the sponge and powdgr7] The angular averaging involves an integral of
lamellar dynamic structure factors, and the anomalous the form  [jdrx 2exd—wx®> — u/x2],  where
dependence of the effective relaxation rate on bending v = [0.025¢%1(ksT)*?/k'*9*?> and u = 27k/
stiffness. A similar behavior is predicted for scattering [ksT In(g¢)]. The integral cannot be performed analyt-
from large vesicles and from an oriented lamellar phase ically in the general case. Expansion in a power series
at largeg,. Our predictions provide a novel quantitative =~ ©f » and numerical analysis show that in the regime
method for measuring the bending stiffness of membranes » < # and u > 1, Egs. (12) and (13) provide an
in bulk phases. This can be extremely useful since \?v)i(:;emey igo_o%/azpproxmatlon to the relaxation profile,
knowledge of this quantity is often hampered by lack off g £~ Naliotet al. J. Phys. (Paris50, 3147 (1989).
accuracy and conflicting results from different technlque%

19] S. Ramaswamet al., Europhys. Lett27, 285 (1994).
[22]. The structure factor can be often detected evelpo] R. Graneket al., Europhys. Lett19, 499 (1992).

outside the range of light scattering, e.g., by neutron spip1] E. Farge and A.C. Maggs, Macromolecul@s, 5041
echo which widens up the possible applicability of this (1993).

method. [22] See, e.g., S. Leibler in Ref. [2], pp. 63, 64.
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