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Theory of Branching and Annihilating Random Walks
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A systematic theory for the diffusion-limited reaction procesées A — 0 andA — (m + 1)A is
developed. Fluctuations are taken into account via the field-theoretic dynamical renormalization group.
For evenm, the mean field rate equation, which predicts only an active phase, remains qualitatively
correct neard, = 2 dimensions; but below!. =~ 4/3 a nontrivial transition to an inactive phase
governed by power law behavior appears. For @ddthere is a dynamic phase transition for any
d = 2 which is described by the directed percolation universality class. [S0031-9007(96)01800-5]

PACS numbers: 64.60.Ak, 05.40.+j, 64.60.Ht

Nonequilibrium models with an extensive number ofwhen the number of particles is locally conserved modulo
degrees of freedom whose dynamics violates detailed. Whenm is odd,the DP values of the exponents appear
balance occur in studies of many biological, chemicalto be realized. (It should be remarked that several of the
and physical systems. Like equilibrium systems, theirmodels which have been studied do not contain three in-
stationary states may exhibit phase transitions which inlependent parameters correspondingtor, and o, S0
many cases appear to fall into distinct classes charactethat it may occur that the actual transition is inaccessible.
ized by universal quantities such as critical exponentsThis appears to be so for the simplest lattice BARW model
One of the most common such classes is that exemplifiedith m = 2, which is always in the inactive phase [10].)
by directed percolatio{DP) [1]. This represents a transi-  Besides the appearance of a new universality class, an-
tion from a nontrivial “active” steady state to an absorbingother issue which clearly requires theoretical explanation
“inactive” state with no fluctuations. Many nonequilib- is the occurrenceof a transition at a finite value af,.
rium phase transitions appear to belong to this universalor the mean field rate equation for the average density
ity class, e.g., the contact process [2], the dimer poisoning w(t) = —2an(t)* + ma,n(7) (1)
problem in the Ziff-Gulari-Barshad model [3], and auto-
catalytic reaction models [4]. The universal properties o
the DP transition are theoretically well understood in the
context of a renormalization group (RG) analysis base(ﬁl]
on an expansion around mean field theory below the up;
per critical dimensionl. = 4 [5]. .

More recently a class of models has been studied whic
in certain cases, appear as exceptions to the general r

that such transitions should fall into the DP universality T C;'rt]'.ca:_vilue Oy, dawaybfrotr;: z«fe_ro'.[ ¢ tic th
class. These include a probabilistic cellular automaton n this Letier, we describe the Tirst systematic theory

model [6], certain kinetic Ising models [7,8], and an inter—mc these'phenomena (dgtails will be. presented glsewhere
acting monomer-dimer model [9]. In one dimension thel14]). Itis based on the field-theoretic RG analysis which
dynamics of these is equivalent to a class of models calle2S Proven successtul for the DP problem [S]; however,
branching and annihilating random walkBARWSs) [10— W€ correct an important error which was made in an
12], which also have a natural generalization to higheﬁ‘ar“er investigation along the same lines [6]. A summary
dimensions. In the language of reaction-diffusion sysOf our main resulits follows. _ o
tems, BARWs describe the stochastic dynamics of a single (&) Evenm.—For d > 2 the mean field description
species of particled undergoing three basic processes:(l) is qualitatively correct in that_the transition occurs
diffusion, often modeled by a random walk on a lattice@t o = 0. The density in the active phase vanishes as
and characterized by a diffusion coefficiebt an an- 7 % Om, with calculable logarithmic corrections in two
nihilation reactionA + A — 0 when particles are close dimensions. Asd is lowered below 2, the transition
(or on the same site), at rate and a branching process first continues to occur at,, = 0, with modified critical

A — (m + 1)A (wherem is a positive integer), atrate,,.  €xponents, until @econd critical dimensiod, ~ 4/3 is

The above-mentioned one-dimensional models all correeached. Below this, and in particular fdr= 1, there
spond to the case = 2. For the kinetic Ising model, the appears a nontrivial transition at. > 0 from the active
particlesA are to be identified with the domain walls, and phase to an inactive phase in which the density decays
the transition to the inactive state corresponds to the ordeasymptotically as: « r~%/2. Because of the existence
ing of the Ising spins [7,8]. In general, this new universal-of two critical dimensionalities, this new universality
ity class has been observeddn= 1 for evenvalues ofm,  class apparently has no simple mean field limit, close

redicts a nonzero steady state density,,/2A, so that

his state should bactive for all o,, > 0, in contrast to

hat is in fact observed fat = 1. Itis, however, known

at fluctuation effects render the mean field description

f the pure annihilation problemu{, = 0) qualitatively

ncorrect ford = 2 [13]. Therefore, a detailed theory has
demonstrate how these are also responsible for moving
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to which the fluctuations can be controlled. We arestate path integral formalism, the “quantum many
therefore unable to generate a systematéxpansion for particle” HamiltonianH can be cast into a field theory
the critical exponents. The truncated loop expansion iwhich describes BARW processascluding fluctuation
fixed dimension seems to provide at least a qualitativeeffects. Note that no additional assumptions, specifically
description of the transition; however, as there existsegarding the form of the noise correlations in an exten-
no small expansion parameter, the actual values for thsion of Eqg. (1) to an effective Langevin equation, had to
critical exponents to one-loop order are rather inaccurateébe invoked in this derivation.

The RG analysis also shows that higher valuesrof When m is even,there is a formal symmetry off
inevitably generate an effective: = 2 reaction under under changing the signs of all the and a,-T simulta-
renormalization, and this is always the most relevant termpeously: this corresponds to the conservation of particle
Therefore all such processes with evenfall into the  number modulo 2. However, in this formalism, expec-
same universality class. We have also considered agtion values of operators such as the local density-

N species generalization of the = 2 model. The RG a;-raj, for example, are given by matrix elements of the

analysis shows that fa¥ > 1 the critical behavior is that S a —m ; )
of the N — < limit, which is exactly solvable but always fOrm (Ole<“n;e™"|¥(0)), and in order to use the time-
in the active phase foro, > 0, with critical exponents dependent perturbation theory and Wick’s theorem it is

being described by yet another universality class. conventional to commute the facte?-“ through. This

(b) Oddm.—The casen = 1 here is typical. Under is equivalent to applying the formal sh'rtir -1+ a;r in
renormalization, a spontaneous decay process 0 is  H. Yet this obscures the above symmetry, and if, in ac-
generated for arbitrarily small branching rates, by thecordance with the usual naive power counting arguments
combined reactiond — 24, 2A — 0, so that the density near the upper critical dimension, higher order quartic
decaysexponentiallyas in the inactive phase of DP. We terms inH are then ignored, it becomes completely lost.
find this to occur ford < 2, when the pure annihilation This led the authors of Ref. [6] to the erroneous conclu-
process is relevant. Faef = 2, however, the situation is sion that, neae/ = 4, the transition should be in the DP
more subtle. The RG analysis in this case predicts thainiversality classrrespectiveof the parity ofm.
there is in fact a nontrivial transition evendt = 2, with However, it is imperative in any RG analysis to pre-
o. ~ De *"P/} while it is absent fod > 2. Analysis  serve all known symmetries of the system. In the present
of the effective theory ford = 2 then shows that the case, this may be done by observing that the RG equations
subsequent transition at larger valuesogfis in the DP  themselves (as opposed to the calculations of observables
universality class, as is observed in simulations [10,11]. such as the density) should be independent of which basis

The field-theoretic analysis of these problems beginss used, and it is therefore possible, and, indeed, neces-
from the “second-quantized” approach to classical stosary, to perform the computations in the representation
chastic particle systems which is well known and has beenf the model in which the symmetry is manifest. The
described in detail elsewhere [13,15]. Annihilation andmethods for doing this are standard, and will be described
creation operators; and a;, satisfying the usual boson in detail elsewhere [14]. The case, = 7 = 0, corre-
commutation relations, are introduced at each sigf  sponding to a pure annihilation process, has already been
the lattice, and the time-dependent state vefdofr)) =  analyzed in [13]. The RG equation for the flow of the
Sy Uik 0 TT; al.’f"'|0> is constructed from the proba- dlm.ens.lonless coupling = C4A/Dk¢, WhereK_ls a nor-
bilities p({n;}; 7). The (classical) master equation satisfiedMalization wave numbeC, = I'2 — d/2)/2¢" 7/ a
by these may then be recast as a Schrodinger-like equati@@ometric factor, and = 2 — d, under a rescaling factor
with a time evolution operator which, in this example, hase', iS given byd¢/dl = et — ¢*, which is exact at one

the formH = H, + H, + H, + Hy, where loop. Ford < 2 the late time behavior is controlled by
the nontrivial fixed point at* = e, leading to an asymp-
Hy = DZ(GJ — aj’.f)(ai - a)), (2) totic particle density decay according ) = 142,
@) The first question to be addressed is whether the
branching rates,, is relevant at the pure annihilation
H,=—2A Z(ai2 - a;fzal.z) , (3) fixed point, i.e., whether its RG eigenvalug is positive.

If so, the late time behavior must differ from that of
the pure annihilation process, indicating that the active
H, = —op, Z(a;rmﬂai - a;rai), (4) phaseisreached immediately. kb 2 we findy, = 2
i from simple power counting, so indeefl, is relevant.
The density in the active phase vanishes according to
Hr = —7 Z(aj2 - 1). (5) the mean field result « o,. Ford < 2, to one-loop
i order, y, =2 — [m(m + 1)/2}¢ + 0(£?), so thato,,
The last term corresponds to a constant creation of pairs sgémains relevant at the annihilation fixed poifit= e
particles, simulating the effects of finite temperature in thgust belowd = 2, with the lower values ofz being the
kinetic Ising model [8]. Finally, utilizing the coherent- most relevant. Since these lower allowed valuesnof
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inevitably become generated whenever the annihilatiowanish, and the flow approaches a Gaussian fixed point
rate is nonzero, we conclude that the cases witbven describing the active phase. For largethe effective
will always fall into the universality class o = 2, while  coupling in Egs. (6) and (7) becomes = ¢/s> %/2
m odd will generaten = 1 andm = —1. The latter is (see Sec. lll of Ref.[16]), whose flow is given by
always relevant, and, as we shall see below, is responsiblt /dl = 2g — [(10 — 3d)/2]g*> = —B(g). In addi-
for the crossover to the DP universality class. For thetion to the stable Gaussian fixed point at= 0 there
time being we therefore restrict our attention to the casés a nontrivial unstableone atg* = 4/(10 — 3d) de-
of evenm. Ford = 2 the marginality off is responsible scribing the phase transition. At this order there is
for logarithmic corrections to mean field theory, which for neither field nor diffusion constant renormalization,
m = 2 take the formn « o /[In(1/0)]>. giving a dynamic exponentz = 2. However, be-

The above result fop,, is valid only close tod = 2.  cause the mean field density~ o/A and the spatial
Fortunately it is possible to computeekactlyin one di-  correlation length &, ~ o~/2 depend not just on
mension, at the pure annihilation fixed point. The latterg but also on the dangerous irrelevant variable!,
corresponds to the limit of infinite bare coupling[13].  the critical exponents describing the approach to the
The multiparticle states then effectively propagate a<ritical point in the active phase depend not only on
hard-core bosons in between the annihilation and branch~, = B/(g*), describing the distance from the critical
ing processes, and so, in one dimension, behave like frgmint ¢ = (g — g)/g*, but also ony, =2 —d — g*
fermions. On the lattice, this limit makes sense only if weand y, = 2 — 3g*. As a result we find that ~ &#,
define the branching process as placingrtheffspringon  with 8 = (d + yy» — yo)/ye = 4/(10 — 3d), andé, ~
different but neighboring sites. The branching contribu-e =%+, with », = (1 — y,)/y. = 3/(10 — 3d). The
tion to H, in terms of these fermionic operators and truncated one-loop approximation thus seems to provide
C;f, thus acquires the forml, = o, > ; ]‘[;."z/imﬂ CL;C;’- a qualitatively correct picture of the transition, alth_ough
The continuum limit of this expression, found by perform-the actual numerical values of these exponents in one
ing a Taylor expansion in powers of the lattice spacingdimension are rather poor as compared to simulation
ao, will be different from the bosonic case because theesults [8]; this is not very surprising, however, as there is
anticommuting nature of the| allows each derivative to N0 small expansion parameter present here. In addition,
appear onlyonce The lowest order term has the form We cannot really.e}ccess_those exponents thgt describe the
G(T(mﬂ)/ch(acf) (@2ct)---(amch)e, with the result that behaviorat the critical pomlt, as the density might depend

i i m(m+1)/2 nonanalytically ono there; this also precludes a sound

the effective expansion parametey, = ag on has  qerivation of scaling relations [8] connecting these with

a modified scaling dimension. This leads to the result,. Jpove exponents describing the active phase.
(which may be confirmed by other less formal methods) A petter result is obtained for the exponent= 1/y,

thaty, =2 — m(m + 1)/2 exactlyin d = 1. Thus, for describing the divergence of the correlation length as the
reasons we do not understand, tée) Tesu't appears to pair creation rate- — 0 at the critical pointe = 0. The
be exact ind = 1, andy, changes sign at a value of one-loop flow equation for reads

d = d. = 4/3 for m = 2, if the higher order terms con- S ah
tinue to be small. Inl = 1, y, < 0 for all the even val- dr/dl = 1[d + 2 — €/(1 + s)* /7], (8)
ues ofm. This establishes the result that the late time;ny hence in the inactive phase, or at the critical point
behavior for small values af,, is controlled by the anni-

hilation fixed boi h S12 in the inact o =0 for d > d!, one hasv, = 1/2d, while at the
ilation fixed point, so thab(r) = r~'/%. In the inactive  qqqvial phase transition fo < ! the result isv, ~

phase, the system is composed of a set'of higinltycor- (10 — 3d)/(16 + 4d — 3d?). In one dimensiony, ~
related bunches of odd numbers of particles, the spatlag/”, which is in fair agreement with simulations [8].
distribution of which, upon coarse graining, looks like that " \y/a have also investigated an species generalization

of single particles in the pure annihilation process. of them = 2 problem, defined by the processes® — 0
Clearly, the above scenario cannot be obtained in any; (ote A/N, A% — 3’A“ at rate o. and A¢ — A® +

fir?iteforder ?f an dexpansion gelafc =2. We hav?_ AB, B # «a, at ratec’/(N — 1). To one-loop order
g'ere ore periorme ahtru?cl?tg oog expanS|onh§1th X€Gt the annihilation fixed point the RG eigenvalue of
Imension, retaining the Tull dependence on whic the additional branching process becomgs= 2 — ¢,

apgl)eari bc;;g ?IS avertex andfas 2 mass temlw_. -'(;0 one 1o@Ric is thereforenore relevanthan the original reaction
order, the ow equations for the renormalized reaction i "rate . We have chosen the abowe component

— 2—d — 2 —
rates¢ = CyA/D«k™" ¢ ands = o /D« read fn = 2) version, because foN — =, the ensuing theory (with

de/dl = €2 —d — €/(1 + s>~ 4], (6) o =0) can be solved exactly; physically this limit
1-d)2 corresponds to the situation where each particle may
ds/dl = s[2 = 3€/(1 + ) 1. (7)  annihilate only with its sibling. The resulting critical

For s — 0, the annihilation fixed point{* =2 —d  point remains ato. = 0 for all d, and its universality
of the inactive phase is recovered, while for— «  class, distinct from the previously discussed ones, is
the loop contributions to the anomalous dimensiongharacterized by the mean field exponents 2, 8 = 1,
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and as a consequence of the newact result y,, =  are also responsible for shifting the critical value of the
2 — ¢, we findv, =1/y, = 1/d, using{* =2 —d  branching rate away from zero. Fer odd this occurs
ford = 2. for all d = 2, with the subsequent transition being in

We now return to the case of odad. As argued the DP universality class, while for even this effect
above, fluctuations generate a spontaneous single-partide postponed to lower dimensions< d. =~ 4/3. Our
decay process, and tleffectiveinteractions at a given site theory correctly takes account of the symmetry in this
acquire the form case, but is so far unable to yield accurate estimates of the

2 2 critical exponents ind = 1. However, a truncated loop
wla' = Da = o(a’ = Dala + Ma™ = Da’. (9) expansion appears to provide at least a qualitative picture
When the single-particle decay rate # 0, it is conve-  of the transition. It would of course be desirable to find
nient to remove the linear term im by the shifta® —  some other controlled approximation scheme in which to
1 + a' mentioned earlier. This results in the interactionapproach this problem. Our investigation of srspecies
Hamiltonian generalization of then = 2 reaction failed to provide
A — (4 — o)ata — gata + 20atd® + ral?a?. us with additional insight in the single _specie_s case, but
instead uncovered yet another new universality class for
(10) N > 1, with o, =0 and governed by the exponents
If we now neglect the quartic term (justifiable in this of the exactly solvablev — o« limit. This underlines
case since there is no “parity” symmetry that must bethe importance of fluctuations and correlation effects in
preserved), we find precisely the interaction Hamil-reaction-diffusion systems at low dimensions, which may
tonian used to characterize DP [5]. The transitionlead to remarkably rich nonequilibrium phase diagrams.
occurs when the renormalized version of the mass We benefited from discussions with M. Droz, G. Grin-
term wgr — or vanishes. The question of whether stein, N. Menyhard, K. Oerding, Z. Racz, and G.M.
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