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Breather Mobility in Discrete ¢+ Nonlinear Lattices
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We introduce a systematic approach to investigate movability properties of localized excitations in
discrete nonlinear lattice systems and apply it¢tb lattices. Starting from the anticontinuous limit,
we construct localized breather solutions that are shown to be linearly stable and to possess a pinning
mode in the double well case. We demonstrate that an appropriate perturbation of the pinning mode
yields a systematic method for constructing moving breathers with a minimum shape alteration. We
find that the breather mobility improves with lower mode frequency. We analyze properties of the
breather motion and determine its effective mass. [S0031-9007(96)01790-5]

PACS numbers: 63.20.Ry, 63.20.Pw

The presence of localized modes in translationally inthe initial breather state at coupliig+ 6k is the final
variant extended nonlinear systems has been under invelsreather state at couplirig At each ste@k, the breather
tigation for some time. Spatially localized time periodic solution is a fixed point of a mafr, that is obtained from
modes, or breathers, have been found for a number of cotke lattice equations of motion, viz,
tinuous [1], as well as discrete, systems [2—4]. A system- _— _ / _
atic way to find breather solutions in discrete systems and fty = K = 2+ ttg—) + Vi) = 0. (2)
analyze their properties can be done from the anticontinuf we define a solution vectoK(s) such thatx, = ("),
ous limit, i.e., starting from the limit where the coupling we can view the set of Eq. (2) as the mép= 7 X that
between the nonlinear oscillators is zero [5]. It is knownpropagates the initial conditioXi (0) to the solution at time
rigorously that, under some very general conditions, lo+, viz, X(r) = 7 X(0). In this notation, the breather of
calized solutions in that limit can be analytically contin- periodT), is a fixed point of the maf after one breather
ued to finite couplings [6]. Consequently, finite coupling period, viz, X(7},) = T7,[X(0)] = X(0). In order to find
localized modes can be found and their stability propera fixed point of 7 evaluated at the breather peri@y,
ties investigated [7,8]. Although the existence of mov-i.e., T7,, we perform an iteration procedure. X is
ing breathers as mathematically exact solutions is still amn initial state close to the desired fixed point of the
open question, very long lifetime moving breathers can benap, then a small variatiod results in7 (X + A) =
found in some conditions [3,9,10]. The aim of this Letter7(X) + 97 (X) - A. A minimization with respect ta
is to provide a systematic method for constructing mo-will yield the optimal approximant to the fixed point at
bile localized oscillatory modes and to investigate somdinite k. The variational matrixM = o7 is a square
of their dynamical properties. 2N X 2N matrix that forms the tangent map to the original

We consider a set of nonlinear oscillators coupled vianappingZ while N is the number of sites considered.
harmonic springs with a Hamiltonian in one dimension:; Since the solution we are seeking is periodic with period

1 r T, the matrix’M is a Floquet matrix. It is associated with
H = Z[—uﬁ + =(upy1 — up)? + V(un)] (1) the stability of the periodic breather solutiofis,, u,} of
n L2 2 Eqg. (2) when we make the changg — u, + €, away
where we consider two distinct potentials: (i) the doublefrom the same periodic breather solutiap, with |e,|
well with V(u,) = %(1 — u2)? and (i) the “hard” ¢* small. The equations for the perturbatiangr) are
potentialV (u,) = 3u(1 + su?). InEq. (1),u,(t) = u, én — k(€ns1 — 264 + €ns1) + V'(un)en = 0, (3)
is the displacement of theth unit mass oscillator from where V" (u,) is a periodic function with periodry.

its eq_uilibrium pOSi“OF‘ at time, i, is the c_:orrespondin_g As a result, through the use of the eigenfunctions and
velocity, andk determines the nearest neighbor COUp“ng'eigenvaIues of the Floguet matrid , we can accomplish
¥wo things at the same time, viz, finding the best variational
%reather solution at finite couplings and studying its linear
stability. The symplectic matri¥M has the form

wyp, We use the procedure described in Ref. [8] which w
briefly describe here: At the anticontinuous linit= 0,
we excite a trivial single-site breather of frequenay at
sitei by finding the necessary initial energy that satisfies M = <A B) 4)

the equatiorTb = f(];h ﬁ with T, = 27T/a)b. This C D

trivial breather is extended énalytically to finite couplingswhereA, B, C,D areN X N matrices.
k through the incremental increase of the coupling value We consider first the problem of the construction of
k in steps of6k. In this incremental coupling procedure, the optimal variational breather solution at finite coupling
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k. For a given approximate breather solutiXnand a la)
variation A, we need to minimize the distance between
the vectorsX + A and 7 (X + A), viz, minimize the
norm||[(M — 1) - A + [T (X) — X]||>. The vector of
variations A has dimension2N since it containsN
position and N velocity variables. We perform the
variation only with respect to the position coordinates,
since, because of time reversibility, the breather solution
can be taken initially as the static breather solution.
Therefore, we takd = (g), whereé is the vector of the
position variations only. Minimization with respect &
leads to

b=—-AA+COACHITX) —X], (B

giving the breather solution &' = X + (g). In the ex-
pression of Eq. (5)7 (X) — X is a vector of dimension
2N, (A*C*) is aN X 2N matrix formed by placing ma-
trices A* and C* adjacently in a new nonsquare matrix,
(A*A + Cc*C)"lisanN X N matrix, and the asterisk de-
notes conjugation. Repeated application of this procedure
and the knowledge of the matri# (see below) give the
optimal static breather solution at finite couplingssuch
as the one shown in Fig. 1(a) for a nonlinear lattice of
the double well potentials of case (i). The accuracy used
for obtaining the breather was of the order of the standard
computer accuracy, via0~ 3.

The general solution of the breather stability equations
of Eq. (3) is

Gn(t) = Z[An,mem(o) + Bn,mém(o)]’ (6)

én([) = Z[Cn,mem(o) + Dn,mém(o)]- (7) 9

(c)

The initial conditionse, (0) = 8, and &,(0) = 0 yield, 9-25

through Egs. (6) and (7) after time= T}, €,(Ty) = A, x
and €,(T,) = C,x and similarly for matrices3 and D. 0.2
Diagonalization of the thus obtained Floquet matf
leads to the breather linear stability spectrum portrayed 0.15
in Fig. 1(b). The Floquet eigenvalues are distributed in
complex conjugate pairs on the unit circle, indicating 0.1
stability of the corresponding eigenfrequency. The real
doubly degenerate eigenvalue at unity indicates that the 0.05
breather time-reversible velocity vector is also a solution
of the stability equation of Eq. (4) while possible isolated
eigenvalues correspond to localized internal modes of the
breathers. FIG. 1. Spatial breather configuration and stability. (a) Spa-
Whereas in the hardp* potential no such mode tiotemporal display of a breather of peridd = 6.0 for the
exists, in the double well case the eigenvalue close%OUbIe well lattice withk = 0.5650. (b) Distribution of the
to the real unit eigenvalue marks an isolated odd parityrlr(])gl(f-"t eigenvalues of the stability matrix of the breather.
; ) X istributed modes on the unit circle correspond to phonon
internal breather mode. We found that this latter mode isnodes that for the infinite system form two symmetric bands.
responsible fompinning the breather in a specific crystal The isolated eigenvalue closest to the real unity eigenvalue (de-
site, and thus it is by overcoming this mode that breathenoted through the radial line) is an antisymmetric pinning mode.
motion is possible. For the haw* potential of case (ji) N the inset we show the parity of the mode. (c) Dependence
. e e of the pinning mode location in the unit circle on the coupling
with no pinning mode, breather mo_t?"'ty is not expected. k. We plot the angle of the mode with respect to the positive
In order to test for breather mobility we must thereforereal axis as a function of the coupling. Larger proximity to the
perturb the breather using the real and imaginary parteeal axis results in higher mobility.

0.565 0.575 0.58 0.585 k
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of the Floquet eigenvector that correspond to the pinning ial
mode found previously. Breather mobility is possible 4
when a pinning mode is overcome by a perturbation.
To find an optimal way to perturb the breather and ren-
der it mobile, the intuitive analogy with the pendulum
is helpful: In order for the latter to reach the rotat-
ing solutions above the separatrix kimetic perturbation
must be exerted. Thus perturbing the breather in the
direction determined by th&v velocity components of
the 2N-dimensional pinning mode eigenvector favors its
depinning while well preserving its shape. The perturba-
tion takes the form

D-Gls) @

where A is the variable perturbation strengthjs the ex-

act static breather vector (with velocity vector= 0), g
while the prime denotes the new values after the appli-

cation of the perturbation. The perturbation vectys
corresponds to the (normalized) velocity part of the pin- {b)
ning mode eigenvector. We now apply this perturbation <nl>

on a breather obtained through the previously described 3
method, and follow its time evolution, integrating numeri-

cally the general equations of motion of Eq. (2). The 2
resulting breather evolution in the lattice is portrayed in

Fig. 2. In Fig. 2(a) we plot the local energy in each lat- 1
tice site and observe its coherent movement in time. In

Fig. 2(b) we plot the firstn;) and secondn,) moments - = = =t
of the energy distribution as a function of time. We ob-

serve that the breather moves with constant velocity in the
lattice, while its shape, determined primarily through the 1s
second moment, remains intact. MM

i

20

Ei{j.c]

A critical parameter that induces breather motion is the
perturbation parameter. We note that the mobility of
the breather depends on the proximity of the pinning WW“ w
mode to the real unit eigenvalue of the Floquet matrix.
This, in turn, depends on the value af We have
found that the critical value for having a mobile breather
of period T, = 6.0 at k = 0.5888 is A, = 0.0015. For
A < A, the breather remains pinned, while far= A,
it moves with a velocity that depends on the value of
the perturbation. We have also tested perturbation forms 4
that are more general than the one of Eq. (7) and that
involve alterations of both the position and velocity part 0. 02
of the pinning eigenvector. We found that, in some
cases, when the spatial perturbation is very large the .01
breather still moves while emitting a substantial amount of
radiation. N 502 004 0.06 0,08 o1
. A'useful concept for dgscrlblng the breather dynam-FIG- 2. Breather mobility in the double well chain. (a) Time
ics is that of t,he d_ynamlcal breather mass that COIM€a0lution of the perturbed breather as a function of time in a
sponds to the inertia of the breather to external forcesperiodic lattice withhV = 16, k = 0.5888, andT, = 6.0. The
A direct way to measure the mass is by comparing therdinate corresponds to local lattice energy at each site and the
breather kinetic energy, considering the breather as @bscissa in propagation time in units of the breather period.

particle of massm,, with the perturbation kinetic en- Dark regions denote energy maxima. (b) Fies{) and second
For th turbati f Eq. (7 h _ (n,) moments of the breather energy distribution as a function

el’gy.z or the perturbation of Eq. (_) we have, = of time. (c) Linear dependence of the breather velocity on the

(A/v)?, wherewv is the breather velocity. We find that perturbationa for A = A.. The inverse slope determines the

my = 4.0 for A = A, [Fig. 2(c)]. We can thus form constant inertial mass of the breather.
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FIG. 3. Discrete breather collisions as a function of time.
(@) Two identical breathers witlf, = 6.0 and k = 0.5650
are perturbed with the same (opposite in sign) perturbatio
with 6 = 0.15. After the collision they form a new localized
breather mode.
initial perturbations withé = 0.15 (left) and 0.12 (right).
Traveling breathers emerge after the collision with slightly
altered velocities.

(b) The same breathers are given different

the picture of the breather being a pinned localized vi-
bration that in the presence of an appropriate perturba-
tion becomes mobile and moves as a classical particle
of massm,. In this picture, it is useful to consider
also interactions between mobile breathers. In Fig. 3
we show an energy density diagram with the collision
of two identical breathers perturbed initially through the
same [Fig. 3(a)] or different [Fig. 3(b)] velocity perturba-
tions. At the collision site a new complex is temporar-
ily formed that, depending on the perturbation, remains
localized or emerges as two moving breathers.

The systematic method for mobile breather construction
through perturbation in a pinning mode eigendirection
that was demonstrated for tig* cases applies in general
and also for small amplitude breathers [11]. Furthermore,
only external forces that have nonzero overlap with a
pinning mode eigenvector can induce breather mobility.
In particular, spatially uniform fields do not lead to
breather mobility.
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