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Breather Mobility in Discrete f4 Nonlinear Lattices
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We introduce a systematic approach to investigate movability properties of localized excitatio
discrete nonlinear lattice systems and apply it tof4 lattices. Starting from the anticontinuous limit
we construct localized breather solutions that are shown to be linearly stable and to possess a
mode in the double well case. We demonstrate that an appropriate perturbation of the pinning
yields a systematic method for constructing moving breathers with a minimum shape alteration
find that the breather mobility improves with lower mode frequency. We analyze properties o
breather motion and determine its effective mass. [S0031-9007(96)01790-5]

PACS numbers: 63.20.Ry, 63.20.Pw
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The presence of localized modes in translationally
variant extended nonlinear systems has been under in
tigation for some time. Spatially localized time period
modes, or breathers, have been found for a number of
tinuous [1], as well as discrete, systems [2–4]. A syste
atic way to find breather solutions in discrete systems
analyze their properties can be done from the anticont
ous limit, i.e., starting from the limit where the couplin
between the nonlinear oscillators is zero [5]. It is kno
rigorously that, under some very general conditions,
calized solutions in that limit can be analytically conti
ued to finite couplings [6]. Consequently, finite coupli
localized modes can be found and their stability prop
ties investigated [7,8]. Although the existence of mo
ing breathers as mathematically exact solutions is stil
open question, very long lifetime moving breathers can
found in some conditions [3,9,10]. The aim of this Let
is to provide a systematic method for constructing m
bile localized oscillatory modes and to investigate so
of their dynamical properties.

We consider a set of nonlinear oscillators coupled
harmonic springs with a Hamiltonian in one dimension
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X
n

∑
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Ùu2
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k

2
su

n11 2 u
n
d2 1 V su

n
d
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where we consider two distinct potentials: (i) the dou
well with V su

n
d ­

1
4 s1 2 u

2
n

d2 and (ii) the “hard” f4

potentialV su
n
d ­

1
2 u

2
n

s1 1
1
2 u

2
n

d. In Eq. (1),u
n
std ; u

n

is the displacement of thenth unit mass oscillator from
its equilibrium position at timet, Ùu

n
is the corresponding

velocity, andk determines the nearest neighbor coupli
To find a breather mode characterized by a freque
v

b
, we use the procedure described in Ref. [8] which

briefly describe here: At the anticontinuous limitk ­ 0,
we excite a trivial single-site breather of frequencyv

b
at

sitei by finding the necessary initial energyE
I

that satisfies
the equationT

b
­

R
T

b

0
du

ip
E

I
2V su

i
d

with T
b

­ 2pyv
b
. This

trivial breather is extended analytically to finite couplin
k through the incremental increase of the coupling va
k in steps ofdk. In this incremental coupling procedur
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the initial breather state at couplingk 1 dk is the final
breather state at couplingk. At each stepdk, the breather
solution is a fixed point of a mapT

T
b

that is obtained from
the lattice equations of motion, viz,

ü
n

2 ksu
n11 2 2u

n
1 u

n21d 1 V

0su
n
d ­ 0 . (2)

If we define a solution vectorXstd such thatX
n

­ s u
n

Ùu
n

d,
we can view the set of Eq. (2) as the mapY ­ T X that
propagates the initial conditionXs0d to the solution at time
t, viz, Xstd ­ T Xs0d. In this notation, the breather o
periodT

b
is a fixed point of the mapT after one breather

period, viz, XsT
b
d ­ T

T
b

fXs0dg ­ Xs0d. In order to find
a fixed point ofT evaluated at the breather periodT

b
,

i.e., T
T

b

, we perform an iteration procedure. IfX is
an initial state close to the desired fixed point of t
map, then a small variationD results inT sX 1 Dd ø
T sXd 1 ≠T sXd ? D. A minimization with respect toD
will yield the optimal approximant to the fixed point a
finite k. The variational matrixM ; ≠T is a square
2N 3 2N matrix that forms the tangent map to the origin
mappingT while N is the number of sites considere
Since the solution we are seeking is periodic with per
T

b
, the matrixM is a Floquet matrix. It is associated wit

the stability of the periodic breather solutionshu
n
, Ùu

n
j of

Eq. (2) when we make the changeu
n

! u
n

1 e
n

away
from the same periodic breather solutionu

n
, with je

n
j

small. The equations for the perturbationse
n
std are

ë
n

2 kse
n11 2 2e

n
1 e

n11d 1 V

00su
n
de

n
­ 0 , (3)

where V

00su
n
d is a periodic function with periodT

b
.

As a result, through the use of the eigenfunctions a
eigenvalues of the Floquet matrixM , we can accomplish
two things at the same time, viz, finding the best variatio
breather solution at finite couplings and studying its line
stability. The symplectic matrixM has the form

M ­

µ
A B

C D

∂
, (4)

whereA, B, C, D areN 3 N matrices.
We consider first the problem of the construction

the optimal variational breather solution at finite coupli
© 1996 The American Physical Society
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k. For a given approximate breather solutionX and a
variation D, we need to minimize the distance betwe
the vectorsX 1 D and T sX 1 Dd, viz, minimize the
norm jjsM 2 1d ? D 1 fT sXd 2 Xgjj2. The vector of
variations D has dimension2N since it containsN

position and N velocity variables. We perform th
variation only with respect to the position coordinat
since, because of time reversibility, the breather solu
can be taken initially as the static breather soluti
Therefore, we takeD ­ s d

0 d, whered is the vector of the
position variations only. Minimization with respect tod
leads to

d ­ 2sAp
A 1 C

p
Cd21sAp

C

pd fT sXd 2 Xg , (5)

giving the breather solution asX0 ­ X 1 s d
0 d. In the ex-

pression of Eq. (5),T sXd 2 X is a vector of dimension
2N , sAp

C

pd is a N 3 2N matrix formed by placing ma
trices A

p and C

p adjacently in a new nonsquare matr
sAp

A 1 C

p
Cd21 is anN 3 N matrix, and the asterisk de

notes conjugation. Repeated application of this proced
and the knowledge of the matrixM (see below) give the
optimal static breather solution at finite couplingsk, such
as the one shown in Fig. 1(a) for a nonlinear lattice
the double well potentials of case (i). The accuracy u
for obtaining the breather was of the order of the stand
computer accuracy, viz,10213.

The general solution of the breather stability equati
of Eq. (3) is

e
n
std ­

X
m

fA
n,me

m
s0d 1 B

n,m Ùe
m

s0dg , (6)
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The initial conditionse
n
s0d ­ d

n,k and Ùe
n
s0d ­ 0 yield,

through Eqs. (6) and (7) after timet ­ T
b
, e

n
sT

b
d ­ A

n,k
and Ùe

n
sT

b
d ­ C

n,k and similarly for matricesB and D.
Diagonalization of the thus obtained Floquet matrixM
leads to the breather linear stability spectrum portra
in Fig. 1(b). The Floquet eigenvalues are distributed
complex conjugate pairs on the unit circle, indicati
stability of the corresponding eigenfrequency. The r
doubly degenerate eigenvalue at unity indicates that
breather time-reversible velocity vector is also a solut
of the stability equation of Eq. (4) while possible isolat
eigenvalues correspond to localized internal modes of
breathers.

Whereas in the hardf4 potential no such mod
exists, in the double well case the eigenvalue clos
to the real unit eigenvalue marks an isolated odd pa
internal breather mode. We found that this latter mod
responsible forpinning the breather in a specific cryst
site, and thus it is by overcoming this mode that breat
motion is possible. For the hardf4 potential of case (ii)
with no pinning mode, breather mobility is not expecte

In order to test for breather mobility we must therefo
perturb the breather using the real and imaginary p
en
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FIG. 1. Spatial breather configuration and stability. (a) Sp
tiotemporal display of a breather of periodT

b
­ 6.0 for the

double well lattice withk ­ 0.5650. (b) Distribution of the
Floquet eigenvalues of the stability matrix of the breath
The distributed modes on the unit circle correspond to phon
modes that for the infinite system form two symmetric ban
The isolated eigenvalue closest to the real unity eigenvalue
noted through the radial line) is an antisymmetric pinning mo
In the inset we show the parity of the mode. (c) Depende
of the pinning mode location in the unit circle on the couplin
k. We plot the angle of the mode with respect to the posit
real axis as a function of the coupling. Larger proximity to t
real axis results in higher mobility.
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of the Floquet eigenvector that correspond to the pinn
mode found previously. Breather mobility is possib
when a pinning mode is overcome by a perturbati
To find an optimal way to perturb the breather and re
der it mobile, the intuitive analogy with the pendulu
is helpful: In order for the latter to reach the rota
ing solutions above the separatrix, akinetic perturbation
must be exerted. Thus perturbing the breather in
direction determined by theN velocity components of
the 2N-dimensional pinning mode eigenvector favors
depinning while well preserving its shape. The perturb
tion takes the formµ

u

0

Ùu0

∂
­

µ
u

0

∂
1 l

µ
0

dp

∂
, (8)

wherel is the variable perturbation strength,u is the ex-
act static breather vector (with velocity vectorÙu ­ 0),
while the prime denotes the new values after the ap
cation of the perturbation. The perturbation vectordp

corresponds to the (normalized) velocity part of the p
ning mode eigenvector. We now apply this perturbat
on a breather obtained through the previously descri
method, and follow its time evolution, integrating nume
cally the general equations of motion of Eq. (2). T
resulting breather evolution in the lattice is portrayed
Fig. 2. In Fig. 2(a) we plot the local energy in each la
tice site and observe its coherent movement in time.
Fig. 2(b) we plot the firstsn1d and secondsn2d moments
of the energy distribution as a function of time. We o
serve that the breather moves with constant velocity in
lattice, while its shape, determined primarily through t
second moment, remains intact.

A critical parameter that induces breather motion is
perturbation parameterl. We note that the mobility of
the breather depends on the proximity of the pinn
mode to the real unit eigenvalue of the Floquet matr
This, in turn, depends on the value ofl. We have
found that the critical value for having a mobile breath
of period T

b
­ 6.0 at k ­ 0.5888 is l

c
ø 0.0015. For

l , l
c

the breather remains pinned, while forl $ l
c

it moves with a velocity that depends on the value
the perturbation. We have also tested perturbation fo
that are more general than the one of Eq. (7) and
involve alterations of both the position and velocity pa
of the pinning eigenvector. We found that, in som
cases, when the spatial perturbation is very large
breather still moves while emitting a substantial amoun
radiation.

A useful concept for describing the breather dyna
ics is that of the dynamical breather mass that co
sponds to the inertia of the breather to external forc
A direct way to measure the mass is by comparing
breather kinetic energy, considering the breather a
particle of massm

b
, with the perturbation kinetic en

ergy. For the perturbation of Eq. (7) we havem
b

­
slyyd2, wherey is the breather velocity. We find tha
m

b
ø 4.0 for l $ l

c
[Fig. 2(c)]. We can thus form
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FIG. 2. Breather mobility in the double well chain. (a) Tim
evolution of the perturbed breather as a function of time in
periodic lattice withN ­ 16, k ­ 0.5888, andT

b
­ 6.0. The

ordinate corresponds to local lattice energy at each site and
abscissa in propagation time in units of the breather per
Dark regions denote energy maxima. (b) Firstsn1d and second
sn2d moments of the breather energy distribution as a funct
of time. (c) Linear dependence of the breather velocity on
perturbationl for l $ l

c
. The inverse slope determines th

constant inertial mass of the breather.
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FIG. 3. Discrete breather collisions as a function of tim
(a) Two identical breathers withT

b
­ 6.0 and k ­ 0.5650

are perturbed with the same (opposite in sign) perturbat
with d ­ 0.15. After the collision they form a new localized
breather mode. (b) The same breathers are given diffe
initial perturbations with d ­ 0.15 (left) and 0.12 (right).
Traveling breathers emerge after the collision with sligh
altered velocities.
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the picture of the breather being a pinned localized
bration that in the presence of an appropriate pertu
tion becomes mobile and moves as a classical par
of mass m

b
. In this picture, it is useful to conside

also interactions between mobile breathers. In Fi
we show an energy density diagram with the collis
of two identical breathers perturbed initially through
same [Fig. 3(a)] or different [Fig. 3(b)] velocity perturb
tions. At the collision site a new complex is tempor
ily formed that, depending on the perturbation, rema
localized or emerges as two moving breathers.

The systematic method for mobile breather construc
through perturbation in a pinning mode eigendirect
that was demonstrated for thef4 cases applies in gener
and also for small amplitude breathers [11]. Furtherm
only external forces that have nonzero overlap wit
pinning mode eigenvector can induce breather mob
In particular, spatially uniform fields do not lead
breather mobility.
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