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Suppression of Chaotic Diffusion by Quenched Disorder
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It is shown that normal and anomalous chaotic diffusion can be totally suppressed by the presence
of quenched disorder in the equations of motion. In special cases the problem can be mapped to
random walks in random environments, where this effect is known as the Golosov phenomenon.
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Chaos in dynamical systems is nowadays a well esh order to avoid complications connected with a global
tablished mechanism for the generation of normal andbias we assume, as usual, the symmetryx) = —F(x),
anomalous diffusion processes. This holds for bothand further that thes(i) are independent, identically
Hamiltonian systems, such as the kicked rotator or thelistributed random variables with a symmetric distribution
periodic Lorentz gas, and also for dissipative systemsunction p(e) = p(—¢), implying e(i)e(j) < §;; and
[1,2]. The study of normal and anomalous chaotic dif-m = 0. Through the cell indexi, defined asi =
fusion in the latter was initiated in [3—7] for various one- [x], the largest integer smaller than the term &(i)
dimensional maps. Recently, within the advancement ofs recognized as a piecewise constant random function
periodic orbit theory, the thermodynamic formalism, andof x. In contrast to previous studies [3], where time-
Levy flight statistics, these simple systems found renewedependent noise was added to the deterministic dynamics,
interest [8]. All these examples have in common the facthe random ternz(i) remains constant in time; Eq. (1) is
that their equations of motion are periodic in at least onestjll deterministic, it describes a dynamical system with
variable. For the dissipative maps this was motivated byjuenchedandomness.
assuming that they capture essential aspects of the driven,Let us now investigate the effect of this static ran-
damped motion of particles in periodic potentials [3—5].domness first for the simplest maps which, in the ab-
Of course, periodicity of the static part of the underlyingsence of disordefe(i) = 0], exhibit chaotic diffusion.
time-dependent potential is only one limiting case of theThese are systems whet&(x) varies linearly in each
general situation. The other extreme of disordered pocell, i.e., F(x) = afx} — a/2 with {x} = x — [x]. Since
tentials is much less studied in dynamical systems theorthe slope of f(x) is a + 1, these maps are chaotic
[9]. From many fields of physics, especially from solid for ¢ > 0 and show chaotic diffusion for > 1. The
state problems, it is known that static or quenched randashed graph in Fig. 1(a) is an example with= 3.
domness may drastically alter macroscopic quantities sucthe diffusive motion for this ordered case is verified
as transport coefficients. In the following we will report by the linear increase of the mean-square displacement
on such an effect for dynamical systems, namely, the totad-2(r) = (x?) — (x,)> = 2Dt with the correct diffusion
suppression of normal or anomalous chaotic diffusion bytonstantD = 1/4 [4] [dashed line in Fig. 1(b)]. This
quenched randomness in the equations of motion. Thignd the following results forr?(r) were obtained nu-
is a nontrivial effect, since the mean-square displacementerically by iterating ensembles af X 10* points (ini-
will remain finite, although chaotic transportnstinhibi-  tially distributed homogeneously or inhomogeneously in
ted locally. one cell) for10° (occasionally,107) time steps. An ex-

We will concentrate on one-dimensional maps of theample of a map with binary disordeg(i) = +1/2 in
type studied in [3-8]. They have the general formgq. (2), is shown as a full line in Fig. 1(a). Now, with
xi+1 = f(x)) = x; + F(x;), with F(x) periodic inx. The  disordere(i) # 0, a very different behavior is observed:
periodicity interval, which we set equal to one, i.e., o(¢) saturates and remains bounded for large times. As
F(x) = F(x + 1), defines cells or half-open intervals js seen from Fig. 1(b) this is true for discrete random
A; =[i,i +1),i € Z, on the real axis. We will modify variations as well as for continuously distributed random
these dynamical systems by randomly changfi{g) in  variablese(i). We emphasize that for both cases there
each cell4; to a functionF)(x) resulting in exists no obvious reason why the spreading of the dis-

Xie1 = x; + FO(x,) (1) tribution p,(x) should be limited, because the priori

for x, € A;. This corresponds to a spatially random Probability for reaching one of the neighboring cells is
variation of the driving force felt by the particle. A always finite. More explicitlyindependenbf the cho-

natural choice fo”(x) consists of random shifts g, ~ sen sequence(i), a fraction p = 1/4 of a homoge-
_ neous distribution in some cel; is always transferred
FO(x) = F(x) + &(i). (2)  to the right neighboring cell;, the same fraction to
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; e(i)]/4 [11]. Such a model defines a discrete random
4 /; walk in a locally asymmetric random environment. The
] / 1 above localization effect, i.eq?(¢) remaining finite for

~
-]
~

i i ' t — o, is known as theGolosov phenomenoin the
gL random walk literature [2]. Inspired by Sinai's work
,’/ [12], it was proven rigorously for systems with only
nearest-neighbor transitions by Golosov [13]. Reversing
the above arguments which led us from iterated maps
i to random walks, it is obvious that also for the latter
,'/ ',/ ' systems there exist realizations in terms of dynamical
5 1 2 3 4 5 6 17 systems. These conS|st_of piecewise linear chaotic maps
zy of the form of Eq. (1), with a typical example shown in
(b) Fig. 2. Again, the cellsA; provide a Markov partition
for this system. The segments of length and p, ;+; in
each unit cell, where the mafi(x) is linear, correspond
to the nonzero transition probabilitigs; and p;;+; of
the associated Markov chain [14]. So far we have seen
that the dynamical systems defined in Figs. 1 and 2 can
both be mapped to random walk models with (locally)
asymmetric random transition probabilities to next-nearest
and nearest neighbors, respectively. Because of the short
ranged correlations in the quenched disorder, they belong
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FIG. 1. (a) Simple piecewise linear maps corresponding td© the_sam_e uniyersality class [2]. _
a periodic (dashed) and a random driving force (bold). The An intuitive picture for the relevant physical processes

mean-square displacement (b) increases linearly for the formédg obtained from the continuum limit of these discrete
(dasheld dlmer and lsaturates[flrlll lthe 'fétt)e][ ca?e) as Sh/OW” feAndom walk models, which is the Brownian motion in
several disorder realizations [full lines?(¢) for (i) = =1/2; . ’ i .
dot-dashed graphs:(i) equally distributed in(—1,/2, +1/2)]. a spatl_ally_ random force field'(x) [2].. In thls_llmlt the
There exist environments where a first constant level isdynamics is governed by the Langevin equation
observed only after more than= 10° iterations [0.5—1.0) X ) ov

107 for the second graph from the top]. x(t) = e [x()] + £(@r) 4)

X+l
the left cellA;—,, and one quarter remains within the cell
A;. From this point of view there is no difference be-
tween the homogeneous situatipg(i) = 0] and in the X

inhomogeneous casge(i) # 0]. The randomness affects
only the last quarter, which is mapped into one or both
of the next-nearest celld;~,. Note also that the de-
gree of chaoticity as measured by the Lyapunov exponent
(Fig. 1: A = In4) is not altered by the random shifts.
The explanation of this localization effect in the case
of quenched randomness follows from the following
connection. For the mag(x) with discrete random
shifts as in Fig. 1, the cellst; define a (generating)
Markov partition [10]. This implies that the evolution
of piecewise constant distributions(x) (constant in the
cells A;) is fully equivalent to a Markov process, i.e.,

the contentr;(1) = fﬁ“ p:(x)dx of cell A; at time¢ is

iterated according to

Pii-1 Pig  Dig+l

) _ ) N FIG. 2. An example from the class of iterated maps for which
mi(t + 1) Z mi(O)pij (3) the asymptotically finite mean-square displacement follows
rigorously from the work of Sinai and Golosov [12—14]. Also
shown by dashed lines are the unit squares of the integer grid
[see Fig. 1(a)] along the bisectrix. The indicated intervals
and p; ;- mediate the transitions from thiéh cell to itself and

its neighbors, respectively.

i

For the above piecewise linear map wiglfi) = =1/2
(Fig. 1) the only nonzero transition probabilities;;
are given byp;; = p;i+1 = 1/4 and p;;+, = [1/2 =
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with Gaussian white nois&(r). The important point of disorder[e(i) = 0], lead not only to diffusive but to
is that the associated potenti#(x) = — [* F(x')dx’  superdiffusive motion. Such a behavior is obtained, e.g.,
itself can be thought of as a spatial realization of afor the choiceF(x) = — cogw{x}) in Egs. (1) and (2).
Brownian path. The resulting statistical self-similarity of For (i) = 0 this map belongs to the classes studied in
the potential’ (Lx) = L'/2V(x) implies the occurrence of [7]: The reduced mayp,(x) = { f(x)} exhibits marginally
deeper and deeper potential wells as the particle proceedstable fixed points at the cell boundaries which lead
The work of Sinai and Golosov shows that an ensembléo intermittent enhanced diffusion with?(¢) « > [case
of initially close particles moves in a coherent fashionz = 2 in [7]]. Naively, one would expect that disorder,
from one deep minimum to the next deeper potential.e., (i) # 0, results in normal diffusion withr2(z) =
well [15]. In this stepwise process it is typically one r because the marginally stable fixed points ff(x)
minimum which dominates and therefore determines théecome unstable or vanish as a result of the perturbations
(finite) width o%(r) of the ensemble. Since the random £(i). The numerical investigations, however, show again
environment in the neighborhood of these minima isthat the quenched disorder results in a strong localization
the same only in a statistical sense, one still observesf the trajectories (Fig. 3).
for a fixed environment, fluctuations ie>(r). These Obviously, there are many modifications of the periodic
fluctuations become extremely rare for large timeas caseF(x) = F(x + 1) where the localization effect can
follows from an Arrhenius argument [2] which states thatbe expected to occur. The mechanism responsible for
the typical time to overcome the ever increasing relevanthe trapping of the trajectories consists of the diverging
potential barriers increases exponentially with the barriefluctuations of the random walk potentia(x) in Eq. (4) or
height. V(x)in Eq. (5) [17]. In Eq. (1), with (2), itis the random
Applying this picture of a thermally activated processbias in the “force”F¥)(x) which leads to the random walk
in a random Brownian landscape to dynamical systemi V(x). The same effect is obtained for random phase
presupposes the existence of a Markov partition. Thehifts of F(x) in each cell, since the increments
results of Fig. 1 for continuous distributions of shié§), ntl
however, show that the observed localization phenomenon vy + 1) — V(n) = _] F(x + ¢(x))dx
is not bound to the existence of a Markov partition. An

alternative, direct connection to random walk Iandscapeare also random for a random functipiir). The example
is obtained by rewriting the evolution equation (1) as o). P

in Fig. 2 can be regarded as a combination of a random bias
ot — oy, = _av (x,) 5) with a random phase in the force field.

AR ox We have restricted ourselves to everywhere expand-
e. g maps (Figs. 1 and 2) and systems with nonhyperbolic
heehavior at isolated points (Fig. 3), respectively. An in-

teresting and well studied class in the context of chaotic

n

which can be regarded as a discrete version of a gradi
descent algorithm (operating in an unstable regime if t
system is chaotic). The associated “potenti@l’x), al-
though different from¥ of Eq. (4), varies again like a ran-
dom walk trajectory. This follows, for maps of the form
(1) with continuous or discrete shifts as in Eq. (2), from
the fact that the incrementsV(n) = V(n + 1) — V(n),

n € Z, are independent random variables which are sim-
ply given by AV(n) = —&(n), becausef(l) F(x)dx =0

due to the symmetry of’. Similarly, for the system

of Fig. 2, V(x) is piecewise parabolic with random incre-
mentsAV(n) = ppn—1 — Pun+1 [16]. We observed in

all our numerical simulations that the distributign(x)

was concentrated near a local minimum of the associated
V(x) during the quasistationary episodes of the evolution
(where mean value and variance remain approximately
constant). Thus the potentidi(x) of Eq. (5), together loguo(t)

with th i_ntrinsic stochasticity of the initial conditions (de- £y 3 plots of the mean-square displacement on a dou-
terministic chaos), appears to play the same rol&@s  ply logarithmic scale for maps of the formy,.; = x, —

of Eq. (4) in connection with the external noi§&). cod7{x,;}) + £(x,]). The asymptotically linear behavior of the

Obviously, the random walk behavior af(x) is not  dashed graplie(i) = 0)] reproduces the result?(r) « * [7].

connected to a piecewise linear variation of the mapsThe remaining graphs are obtaingad for several realizations of
L fandom sequencesi) with the (i) independently and equally
and one also expects the localization phenomenon fQ{isiinuted in the interval—1/2, +1/2): After 10°~10* itera-

more general nonlineqr maps. In .orde.r to test thigjons, all2 x 10* initial points are effectively trapped in a local
conjecture let us consider cases which, in the absencaeinimum of the potentiaV (x) of Eq. (5).

log10(<xf> — (zt)z)
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from random walks in random environments to a large
class of dynamical systems. We introduced models which
show that this localization effect can occur without change
of the chaotic properties of the system. We presented
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rigorous results apply.
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fective” discrete potentiatb(n) with random increments
AD(n) = IN(pyy—1/Ppan+1)- In the continuum limit this
becomes the potential of Eq. (4). For p,., = po =
const the incrementsAV(n) and A®(n) are related by
AV(n) = (1 — po)tanjAD(n)/2], implying [AD (n)]? =«
[AV(n)]? for |AD(n)| < 1. From the rigorous treat-
ments of this system we know that(r > 1) scales as
{{A®(n)]2}~! in the small disorder limit [2,13]. By simple
scaling arguments this should hold more generally with
A® replaced byAV.

An unboundedV(x) in Eq. (5) can also occur for the
damped motion ofdriven particles in bounded static
potentiaIsV(x), because, via stroboscopic map4x) is
rather related to the typically unbounded time-dependent
potential [e.g..V(x,1) = V(x) + axcodwr)].
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