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Suppression of Chaotic Diffusion by Quenched Disorder
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It is shown that normal and anomalous chaotic diffusion can be totally suppressed by the pr
of quenched disorder in the equations of motion. In special cases the problem can be map
random walks in random environments, where this effect is known as the Golosov phenom
[S0031-9007(96)01770-X]
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Chaos in dynamical systems is nowadays a well
tablished mechanism for the generation of normal a
anomalous diffusion processes. This holds for b
Hamiltonian systems, such as the kicked rotator or
periodic Lorentz gas, and also for dissipative syste
[1,2]. The study of normal and anomalous chaotic d
fusion in the latter was initiated in [3–7] for various on
dimensional maps. Recently, within the advancemen
periodic orbit theory, the thermodynamic formalism, a
Levy flight statistics, these simple systems found renew
interest [8]. All these examples have in common the f
that their equations of motion are periodic in at least o
variable. For the dissipative maps this was motivated
assuming that they capture essential aspects of the dr
damped motion of particles in periodic potentials [3–
Of course, periodicity of the static part of the underlyi
time-dependent potential is only one limiting case of t
general situation. The other extreme of disordered
tentials is much less studied in dynamical systems the
[9]. From many fields of physics, especially from sol
state problems, it is known that static or quenched r
domness may drastically alter macroscopic quantities s
as transport coefficients. In the following we will repo
on such an effect for dynamical systems, namely, the t
suppression of normal or anomalous chaotic diffusion
quenched randomness in the equations of motion. T
is a nontrivial effect, since the mean-square displacem
will remain finite, although chaotic transport isnot inhibi-
ted locally.

We will concentrate on one-dimensional maps of t
type studied in [3–8]. They have the general fo
xt11 ­ fsxtd ­ xt 1 Fsxtd, with Fsxd periodic inx. The
periodicity interval, which we set equal to one, i.e
Fsxd ­ Fsx 1 1d, defines cells or half-open interva
Ai ­ fi, i 1 1d, i [ Z, on the real axis. We will modify
these dynamical systems by randomly changingFsxd in
each cellAi to a functionFsidsxd resulting in

xt11 ­ xt 1 Fsidsxtd (1)
for xt [ Ai . This corresponds to a spatially rando
variation of the driving force felt by the particle. A
natural choice forFsidsxd consists of random shifts ofF,

Fsidsxd ­ Fsxd 1 ´sid . (2)
0031-9007y96y77(23)y4748(4)$10.00
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In order to avoid complications connected with a glob
bias we assume, as usual, the symmetryFs2xd ­ 2Fsxd,
and further that thé sid are independent, identicall
distributed random variables with a symmetric distributi
function ps´d ­ ps2´d, implying ´sid´s jd ~ dij and
´sid ­ 0. Through the cell indexi, defined asi ­
fxg, the largest integer smaller thanx, the term ´sid
is recognized as a piecewise constant random func
of x. In contrast to previous studies [3], where tim
dependent noise was added to the deterministic dynam
the random terḿ sid remains constant in time; Eq. (1) i
still deterministic, it describes a dynamical system w
quenchedrandomness.

Let us now investigate the effect of this static ra
domness first for the simplest maps which, in the a
sence of disorderf´sid ­ 0g, exhibit chaotic diffusion.
These are systems whereFsxd varies linearly in each
cell, i.e.,Fsxd ­ ahxj 2 ay2 with hxj ­ x 2 fxg. Since
the slope of fsxd is a 1 1, these maps are chaot
for a . 0 and show chaotic diffusion fora . 1. The
dashed graph in Fig. 1(a) is an example witha ­ 3.
The diffusive motion for this ordered case is verifie
by the linear increase of the mean-square displacem
s2std ­ kx2

t l 2 kxtl2 ­ 2Dt with the correct diffusion
constantD ­ 1y4 [4] [dashed line in Fig. 1(b)]. This
and the following results fors2std were obtained nu-
merically by iterating ensembles of2 3 104 points (ini-
tially distributed homogeneously or inhomogeneously
one cell) for106 (occasionally,107) time steps. An ex-
ample of a map with binary disorder,́sid ­ 61y2 in
Eq. (2), is shown as a full line in Fig. 1(a). Now, wit
disorder´sid fi 0, a very different behavior is observe
s2std saturates and remains bounded for large times.
is seen from Fig. 1(b) this is true for discrete rando
variations as well as for continuously distributed rando
variables´sid. We emphasize that for both cases the
exists no obvious reason why the spreading of the
tribution rtsxd should be limited, because thea priori
probability for reaching one of the neighboring cells
always finite. More explicitly,independentof the cho-
sen sequencé sid, a fraction p ­ 1y4 of a homoge-
neous distribution in some cellAi is always transferred
to the right neighboring cellAi11, the same fraction to
© 1996 The American Physical Society
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FIG. 1. (a) Simple piecewise linear maps corresponding
a periodic (dashed) and a random driving force (bold). T
mean-square displacement (b) increases linearly for the fo
(dashed line) and saturates in the latter case as shown
several disorder realizations [full lines:s2std for ´sid ­ 61y2;
dot-dashed graphs:́sid equally distributed ins21y2, 11y2d].
There exist environments where a first constant level
observed only after more thant ­ 106 iterations [s0.5 1.0d 3
107 for the second graph from the top].

the left cellAi21, and one quarter remains within the c
Ai . From this point of view there is no difference b
tween the homogeneous situationf´sid ­ 0g and in the
inhomogeneous casef´sid fi 0g. The randomness affec
only the last quarter, which is mapped into one or b
of the next-nearest cellsAi62. Note also that the de
gree of chaoticity as measured by the Lyapunov expon
(Fig. 1: l ­ ln 4) is not altered by the random shifts.

The explanation of this localization effect in the ca
of quenched randomness follows from the followi
connection. For the mapfsxd with discrete random
shifts as in Fig. 1, the cellsAi define a (generating
Markov partition [10]. This implies that the evolutio
of piecewise constant distributionsrtsxd (constant in the
cells Ai) is fully equivalent to a Markov process, i.e
the contentpistd ­

Ri11
i rtsxddx of cell Ai at time t is

iterated according to

pjst 1 1d ­
X

i

pistdpij . (3)

For the above piecewise linear map with́sid ­ 61y2
(Fig. 1) the only nonzero transition probabilitiespij

are given bypii ­ pi,i61 ­ 1y4 and pi,i62 ­ f1y2 6
to
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´sidgy4 [11]. Such a model defines a discrete rando
walk in a locally asymmetric random environment. Th
above localization effect, i.e.,s2std remaining finite for
t ! `, is known as theGolosov phenomenonin the
random walk literature [2]. Inspired by Sinai’s wor
[12], it was proven rigorously for systems with onl
nearest-neighbor transitions by Golosov [13]. Revers
the above arguments which led us from iterated ma
to random walks, it is obvious that also for the latt
systems there exist realizations in terms of dynami
systems. These consist of piecewise linear chaotic m
of the form of Eq. (1), with a typical example shown i
Fig. 2. Again, the cellsAi provide a Markov partition
for this system. The segments of lengthpii andpi,i61 in
each unit cell, where the mapfsxd is linear, correspond
to the nonzero transition probabilitiespii and pi,i61 of
the associated Markov chain [14]. So far we have se
that the dynamical systems defined in Figs. 1 and 2
both be mapped to random walk models with (locall
asymmetric random transition probabilities to next-near
and nearest neighbors, respectively. Because of the s
ranged correlations in the quenched disorder, they bel
to the same universality class [2].

An intuitive picture for the relevant physical process
is obtained from the continuum limit of these discre
random walk models, which is the Brownian motion
a spatially random force field̃Fsxd [2]. In this limit the
dynamics is governed by the Langevin equation

Ùxstd ­ 2
≠Ṽ
≠x

fxstdg 1 jstd (4)

FIG. 2. An example from the class of iterated maps for whi
the asymptotically finite mean-square displacement follo
rigorously from the work of Sinai and Golosov [12–14]. Als
shown by dashed lines are the unit squares of the integer
[see Fig. 1(a)] along the bisectrix. The indicated intervalspii
andpi,i61 mediate the transitions from theith cell to itself and
its neighbors, respectively.
4749
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with Gaussian white noisejstd. The important point
is that the associated potentialṼ sxd ­ 2

Rx F̃sx0ddx0

itself can be thought of as a spatial realization of
Brownian path. The resulting statistical self-similarity o
the potentialṼ sLxd . L1y2Ṽ sxd implies the occurrence of
deeper and deeper potential wells as the particle proce
The work of Sinai and Golosov shows that an ensem
of initially close particles moves in a coherent fashio
from one deep minimum to the next deeper potent
well [15]. In this stepwise process it is typically on
minimum which dominates and therefore determines t
(finite) width s2std of the ensemble. Since the random
environment in the neighborhood of these minima
the same only in a statistical sense, one still observ
for a fixed environment, fluctuations ins2std. These
fluctuations become extremely rare for large timest as
follows from an Arrhenius argument [2] which states th
the typical time to overcome the ever increasing releva
potential barriers increases exponentially with the barr
height.

Applying this picture of a thermally activated proces
in a random Brownian landscape to dynamical syste
presupposes the existence of a Markov partition. T
results of Fig. 1 for continuous distributions of shifts´sid,
however, show that the observed localization phenomen
is not bound to the existence of a Markov partition. A
alternative, direct connection to random walk landscap
is obtained by rewriting the evolution equation (1) as

xt11 2 xt ­ 2
≠V
≠x

sxtd , (5)

which can be regarded as a discrete version of a grad
descent algorithm (operating in an unstable regime if t
system is chaotic). The associated “potential”V sxd, al-
though different fromṼ of Eq. (4), varies again like a ran-
dom walk trajectory. This follows, for maps of the form
(1) with continuous or discrete shifts as in Eq. (2), fro
the fact that the incrementsDV snd ­ V sn 1 1d 2 V snd,
n [ Z, are independent random variables which are si
ply given by DV snd ­ 2´snd, because

R1
0 Fsxd dx ­ 0

due to the symmetry ofF. Similarly, for the system
of Fig. 2, V sxd is piecewise parabolic with random incre
mentsDV snd ­ pn,n21 2 pn,n11 [16]. We observed in
all our numerical simulations that the distributionrtsxd
was concentrated near a local minimum of the associa
V sxd during the quasistationary episodes of the evoluti
(where mean value and variance remain approximat
constant). Thus the potentialV sxd of Eq. (5), together
with the intrinsic stochasticity of the initial conditions (de
terministic chaos), appears to play the same role asṼ sxd
of Eq. (4) in connection with the external noisejstd.

Obviously, the random walk behavior ofV sxd is not
connected to a piecewise linear variation of the map
and one also expects the localization phenomenon
more general nonlinear maps. In order to test th
conjecture let us consider cases which, in the abse
4750
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of disorderf´sid ­ 0g, lead not only to diffusive but to
superdiffusive motion. Such a behavior is obtained, e
for the choiceFsxd ­ 2 cossphxjd in Eqs. (1) and (2).
For ´sid ­ 0 this map belongs to the classes studied
[7]: The reduced mapfrsxd ­ h fsxdj exhibits marginally
stable fixed points at the cell boundaries which le
to intermittent enhanced diffusion withs2std ~ t2 [case
z ­ 2 in [7]]. Naively, one would expect that disorder
i.e., ´sid fi 0, results in normal diffusion withs2std ~

t because the marginally stable fixed points offrsxd
become unstable or vanish as a result of the perturbat
´sid. The numerical investigations, however, show aga
that the quenched disorder results in a strong localizat
of the trajectories (Fig. 3).

Obviously, there are many modifications of the period
caseFsxd ­ Fsx 1 1d where the localization effect can
be expected to occur. The mechanism responsible
the trapping of the trajectories consists of the divergi
fluctuations of the random walk potentialṼ sxd in Eq. (4) or
V sxd in Eq. (5) [17]. In Eq. (1), with (2), it is the random
bias in the “force”Fsidsxd which leads to the random walk
in V sxd. The same effect is obtained for random pha
shifts ofFsxd in each cell, since the increments

V sn 1 1d 2 V snd ­ 2
Z n11

n
Fsssx 1 wsxdddddx

are also random for a random functionwsxd. The example
in Fig. 2 can be regarded as a combination of a random b
with a random phase in the force field.

We have restricted ourselves to everywhere expa
ing maps (Figs. 1 and 2) and systems with nonhyperbo
behavior at isolated points (Fig. 3), respectively. An i
teresting and well studied class in the context of chao

FIG. 3. Plots of the mean-square displacement on a d
bly logarithmic scale for maps of the formxt11 ­ xt 2
cossphxtjd 1 ´sfxtgd. The asymptotically linear behavior of the
dashed graphf´sid ­ 0dg reproduces the results2std ~ t2 [7].
The remaining graphs are obtained for several realizations
random sequenceśsid with the ´sid independently and equally
distributed in the intervals21y2, 11y2d: After 103 104 itera-
tions, all2 3 104 initial points are effectively trapped in a loca
minimum of the potentialV sxd of Eq. (5).
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diffusion are continuous maps such as the climbi
sine map withFsxd ~ sins2pxd [3–5]. Because of their
massively nonhyperbolic behavior, these systems alre
exhibit a complex dependence on their parameters in
absence of disorder. One finds various transition s
narios between chaotic diffusion, localized chaotic
periodic motion (attractors), etc. [4,5]. Modifying suc
maps into random functions leads again to the s
pression of chaotic diffusion. Since, however, the no
hyperbolic regions typically survive the introduction o
disorder, the other above mentioned localization mec
nisms persist locally. As a result, one gets dynami
systems where the different localization mechanisms
teract or compete in a nontrivial manner. In this co
text it is worth discussing the effect of thermal nois
on the localization phenomenon. The addition of tim
dependent noise in the deterministic equation (5) will o
viously result in a system intermediate between that
Eq. (5) and the system described by the stochastic
ferential equation (4). In any case, it does not dest
the random walk structure of the potential. Consequen
the presented generalization of the Golosov phenome
to deterministic dynamical systems appears to be v
robust against noise, and is probably the dominant
calization mechanism in noisy disordered, nonhyperbo
systems. A similar discussion holds ifFsxd is chosen as
a continuous random function at the outset without ref
ence to any periodic behavior. In any case, such dis
dered maps deserve further investigations.

In summary we have shown that disorder in dynami
systems can lead to a total suppression of normal
anomalous chaotic diffusion. This effect can be regard
as a generalization of the Golosov phenomenon kno
from random walks in random environments to a lar
class of dynamical systems. We introduced models wh
show that this localization effect can occur without chan
of the chaotic properties of the system. We presen
numerical results and identified dynamical systems wh
rigorous results apply.

The numerical computations were performed on t
Cray Y-MP computers of the Rechenzentrum der Univ
sität Kiel. Support from the latter is gratefully acknow
edged.
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