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Sustaining Chaos by Using Basin Boundary Saddles
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We present a general method for preserving chaos in nonchaotic parameter regions by using the
natural dynamics of the system, and apply it to a,d&er model. Chaos is preserved by redirecting
the flow towards the chaotic region along unstable manifolds of basin boundary saddles, with the use of
small infrequent parameter perturbations. [S0031-9007(96)01784-X]

PACS numbers: 05.45.+b

Although numerous areas in science are now known tgince chaos is a transient. However, there is still a stable
exhibit chaos as a natural occurrence, many areas woutdanifold which separates the chaotic transient from the
benefit from the inducement of chaos. In biology, theperiodic attractor [10].) Once the flow enters a neighbor-
disappearance of chaos may signal pathological phendiood of a basin saddle, we use small perturbations of an
mena [1,2]. In mechanics, chaos could be induced imccessible system parameter to redirect the flow towards
order to prevent resonance, as is the case for a systetime chaotic transient region. This is done by a targeting
of coupled pendulums presented in Ref. [3], where onéechnique which uses the linearization of the flow about
can excite chaotic motion of several modes spreadinghe saddle. A probability distribution of escape times is
the energy over a wide frequency range [4]. In opticsused to optimize chaos preservation by targeting regions
[5], material damage is caused by lasers having a pedkaving long chaotic transients, thus minimizing the num-
intensity at a given temporal frequency, so chaos ider of parameter fluctuations.
desirable since it has broadband spectra. It has also In what follows we understand by “escape region” a
been suggested that chaos occurs for normal machine toagion such that if an iterate enters the region, subsequent
cutting, making chaos preservation a desired control foiterates are rapidly drawn to an attractor. (The same
deeper than normal cutting [6]. notion is called “loss region” in [2] and [9].) Instead of

In Ref. [2] a method has been proposed to maintairpreventing escape to an attractor in advance, our approach
chaos in a regime where only chaotic transients exist. This to let the system enter a region containing a basin saddle
method was implemented based on accurate analyticahd then redirect the flow back into the chaotic region,
knowledge of the dynamical system, and requagsiori by using a targeting technique which uses the natural
phase-space knowledge of escape regions from chaos, dgnamics around the saddle. This makes the parameter
well as preiterates of these regions. Another analytichanges very infrequent and, in fact, minimal.
scheme for sustaining chaos was introduced in Ref. [7] The model—The targeting method for maintaining
that uses state variable control. In the spirit of the OGYchaos is applied to a periodically driven €@ser,

method of control [8], the technique presented here makes du

use of quantities which are measurable experimentally and 7 = —ulécodQr + ¢) — z],

thus can be applied to real data taken directly by time dz

series. In particular, we show how to sustain chaos by @ = €z T u— e tl, (1)

using the dynamics of a governing saddle. An alternativavherex andz denote (scaled) intensity and population in-
method which also maintains chaos using time seriesersion. The original model was introduced in Ref. [11],
[9] requires monitoring and adjusting the system priorand control and tracking of unstable orbits are done in
to entering an escape region of the attractor by severd&ef. [12]. The control paramet& represents the ampli-
iterates. In contrast our method requires only examiningude of the drive, and, €,, and¢ are fixed.
behavior near a saddle. At 6. = 1.84 a crisis occurs between a period-two
The situation we address occurs when there are chaotgaddle and a chaotic attractor. Just prior8q there
transients in the presence of another nonchaotic attractoexist two attractors, one periodic and one chaotic. The
The method maintains chaos by using the natural dynanstable manifold of a period-two saddle lying on the basin
ics of unstable states lying on the basin boundary separaboundary splits the local phase space about the saddle
ing a periodic attractor from chaotic transients, which wein the following manner: orbits having initial conditions
call basin saddles. (Technically, there is only one attractolying to the right, say, and near one saddle converge

4740 0031-900796/77(23)/4740(4)$10.00 © 1996 The American Physical Society



VOLUME 77, NUMBER 23 PHYSICAL REVIEW LETTERS 2 BCeEMBER 1996

to the chaotic attractor [10]. Orbits starting to the left starting neasS,, close to the unstable manifold 6f and
converge to the period-two attractor. Fdrslightly past  to the right (i.e., the side with chaotic transients). These
é., a horseshoe is created from the right; i.e., the unstablpoints lie on a line segment,, nears,,.

manifold to the right of the stable manifold crosses the In Fig. 2, the horizontal axis represents equally spaced
stable manifold. [See Fig. 1(a) nedf.] Almost all intervals onL,, nearS,. Forthe points in such an interval
points in the region near the saddle now converge to &e calculate the fraction of points having escape times in
period-four orbit which has period doubled off the period-time intervals represented on the vertical axis. In other
two branch. Figure 1(a) shows the manifolds of phasevords, given a time interval on the vertical axis and a
space of the defining period-two basin saddle, labeled bgpace interval on the horizontal axis, the intensity of the
S, andS,. Figure 1(b) shows a chaotic transient settlinggrey scale indicates the fraction of points in that space
into a period-four attractor after the iterate enters thenterval having escape times in the chosen time interval.
escape region to the left of the upper saddle. (Every othefrom this figure we see that there is a wide distribution
iterate is shown.) of points near the saddle which escape very quickly to the

For our method of maintaining and optimizing the lengthattractor as well as points with very long escape times.
of chaotic transients, we need to identify regions nealf one computes the fraction of points having a given
the basin saddles which contain points of long chaotianean escape time, one finds an exponential distribution,
transients. The method will redirect the flow towards thesén agreement with results reported in [13]. Moreover,
regions once it crosses the basin boundary of the attractasince preimages of points in the escape regions essentially
We consider a distribution of escape times for trajectoriesover the chaotic transient region, applying perturbations
to prevent the flow from entering the escape regions, as
done in [2] and in [9], may kick the dynamics into faster
escaping regions.

In what follows we write (1) in generic form ag’ =
F(t,¢). A Poincare map of this flow is obtained by
sampling the system with the frequency of the drive,
giving

Xn+1 = T(an 5) = ¢(130;Xn» 5), (2)

where 6 is the parameter we adjust to maintain chaos.
The Jacobian of the map, calculated at the unstable
orbit, is given byA = (3¢ /0x,) (1,0, Xy, 6)lx,=s
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FIG. 1. (a) Stable (grey) and unstable (white) manifolds as-
sociated with basin boundary period-two sadd,S,) at

6 = 1.88. The crosses represent the period-four attractor. Th&lG. 2. Probability distribution of escape times as a function
chaotic transients lie near the unstable manifold. (b) Time seef distance from the saddl§, for points inside the chaotic
ries for In(ux) at § = 1.88 illustrating a chaotic transient landing region to the right ofS, near the unstable manifold (see text
on a period-four attractor (every other iterate is shown). for details).
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The algorithm-—The algorithm we propose perturbs  slightly, implying that the method is robust with respect
once an iterate of'? enters a neighborhood of the period to perturbations.
two basin boundary basin saddl&,, S,), where S, = Numerical examples—In the first example, the sus-
T%(S,), andS, = T(S,). For our technique, we linearize tained chaotic time series for inis shown in Fig. 3 along
T? about bothS, andS,. Based on this linearization we with the corresponding parameter perturbations. Notice
derive a formula for the parameter perturbation that can béhat only five perturbations t6 were performed to main-
used to regenerate chaos. The same procedure has toth@ 500 iterates off?, i.e., chaos is sustained for 1000
applied for bothS, andS, due to the fact that the chaotic iterates of7T. The noise level wa3%, and the parame-
transients visit neighborhoods of baff) and S, (which  ter perturbations occurring in this case are befogv We
contain escape regions), even when the map we consid&rgeted certain regions near the unstable manifold which
is T2. generate long chaotic transients. This is efficient since

In order to make use of basin saddle information, wefour of the five perturbations necessary to maintain chaos
restrict ourselves to a local regioP®,,., of phase space were larger than the mean chaotic transient time, which
near a saddle, say,. We call the region to the left of was found to be approximately 27 iterates.
S, contained inDy, the basin escape region. (A similar One of the main assumptions in our method is that
description holds for a local region nesy.) just before entering the basin escape region the iterates

The stable manifold of the period-two saddles separatesiust pass near either saddig or S;,. We show that
the region with transient chaos from the period-fouriterates contained in a region not local to the saddles, but
attractor. We wish to send the iterates, once they enter theevertheless an escape region, can be directed tawgard
basin escape region, back to the opposite side of the stabléhich contains a basin saddle. We pick a region inside
manifold, preferably close to the unstable manifold of thethe chaotic transients which lies in the basin of the period-
saddle where the natural dynamics will send the iteratefour attracting orbit, and label this region, region E, in
farther into the chaotic region. By restricting the action ofFig. 1(a).
the dynamics tdD,,., we may examine the perturbations The idea is to redirect the iterates from such a region

acting on a linearized system. by targeting a certain region or point inside the chaotic
To derive the formula for the parameter perturbations letegime by using, for example, the algorithm introduced in
&, = x, — S, and consider the ma§,+; = P(&,,6) =  [14]. For our flow we have found that the region near

T?(x,, 8) — S.(8), which has fixed poingr = 0. We the upper saddle to the right (let us call it region F) is
linearize this map about its fixed point, and using the samaccessible from region E, in only one iterate by small
notation as in [8], we obtain amplitude perturbations of the parameter. The reason is
that the image under the flow of a point in E lies inside F.
+ + . - .
Sue18n8 + [Aveutl Asesff] (&0 = 8n). (3)_ If this was not the case we would have to target several
where A has been expressed in terms of left and rightntermediate points, as shown in [14], before reaching

eigenvectors, and g =[S.(6)/98]5-5, = 1/(8 =  region F. The phase-space sustained chaotic time series
80)ér(8), for some & close to the operational is shown in Fig. 4. The changes in the parameter used
parameteny. for targeting from region E to region F are 1 order of

We target a desired region near the saddle on the sid@agnitude smaller than the other parameter changes and
with chaos, based on the distribution in Fig. 2, where weare not seen clearly in Fig. 4(b).
know there is a high probability of obtaining long chaotic
transients. In (3), we require thét, = xu — S., where

xw €L, N Djgc is a chosen target point. We choose 59 1.000
Xx@r SUCh that it is contained in a region where long ‘ ‘ ‘ -
chaotic transients emerge before the flow escapes again. 2 _““ N LN ‘ |-0675 o
Equation (3) becomes i i Nl T F
i ‘ i uh {iy ‘ 3
Slar = Xpar — Xp = [/\ueufu + )\sesfs] : (fn - Bng)- 5 -9 | \‘ | ‘ 0.350 %
= 3 | i m
(4) " .6 L0025 §
Multiplying through in (4) byf,, ] l | ' g
5 = ()\an — §tar) : fs -23 - -0.300 (%
" ()\Y - l)g : fs 1
-30 —_— -0.625
=C; - (A& — &ur)- (5) 0 125 250 375 500
We remark that applying small changes in parameters period 2 iterates

given by (5) may lead to large changeg in prgimage@g_ 3, Sustained chaotic time series forulmnd parameter
of escape regions, but the saddle location varies onlftuctuations used to sustain chaos.
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