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We present a general method for preserving chaos in nonchaotic parameter regions by using
natural dynamics of the system, and apply it to a CO2-laser model. Chaos is preserved by redirecting
the flow towards the chaotic region along unstable manifolds of basin boundary saddles, with the use
small infrequent parameter perturbations. [S0031-9007(96)01784-X]
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Although numerous areas in science are now know
exhibit chaos as a natural occurrence, many areas w
benefit from the inducement of chaos. In biology,
disappearance of chaos may signal pathological ph
mena [1,2]. In mechanics, chaos could be induced
order to prevent resonance, as is the case for a sy
of coupled pendulums presented in Ref. [3], where
can excite chaotic motion of several modes spread
the energy over a wide frequency range [4]. In op
[5], material damage is caused by lasers having a p
intensity at a given temporal frequency, so chaos
desirable since it has broadband spectra. It has
been suggested that chaos occurs for normal machine
cutting, making chaos preservation a desired control
deeper than normal cutting [6].

In Ref. [2] a method has been proposed to main
chaos in a regime where only chaotic transients exist.
method was implemented based on accurate analy
knowledge of the dynamical system, and requiresa priori
phase-space knowledge of escape regions from chao
well as preiterates of these regions. Another anal
scheme for sustaining chaos was introduced in Ref
that uses state variable control. In the spirit of the O
method of control [8], the technique presented here ma
use of quantities which are measurable experimentally
thus can be applied to real data taken directly by t
series. In particular, we show how to sustain chaos
using the dynamics of a governing saddle. An alterna
method which also maintains chaos using time se
[9] requires monitoring and adjusting the system pr
to entering an escape region of the attractor by sev
iterates. In contrast our method requires only examin
behavior near a saddle.

The situation we address occurs when there are ch
transients in the presence of another nonchaotic attra
The method maintains chaos by using the natural dyn
ics of unstable states lying on the basin boundary sep
ing a periodic attractor from chaotic transients, which
call basin saddles. (Technically, there is only one attra
0031-9007y96y77(23)y4740(4)$10.00
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since chaos is a transient. However, there is still a sta
manifold which separates the chaotic transient from
periodic attractor [10].) Once the flow enters a neighb
hood of a basin saddle, we use small perturbations o
accessible system parameter to redirect the flow towa
the chaotic transient region. This is done by a target
technique which uses the linearization of the flow ab
the saddle. A probability distribution of escape times
used to optimize chaos preservation by targeting regi
having long chaotic transients, thus minimizing the nu
ber of parameter fluctuations.

In what follows we understand by “escape region”
region such that if an iterate enters the region, subseq
iterates are rapidly drawn to an attractor. (The sa
notion is called “loss region” in [2] and [9].) Instead o
preventing escape to an attractor in advance, our appr
is to let the system enter a region containing a basin sa
and then redirect the flow back into the chaotic regi
by using a targeting technique which uses the natu
dynamics around the saddle. This makes the param
changes very infrequent and, in fact, minimal.

The model.—The targeting method for maintainin
chaos is applied to a periodically driven CO2 laser,

du
dt ­ 2ufd cossVt 1 fd 2 zg,

dz
dt ­ 2e1z 2 u 2 e2zu 1 1 , (1)

whereu andz denote (scaled) intensity and population i
version. The original model was introduced in Ref. [1
and control and tracking of unstable orbits are done
Ref. [12]. The control parameterd represents the ampli
tude of the drive, ande1, e2, andf are fixed.

At dc > 1.84 a crisis occurs between a period-tw
saddle and a chaotic attractor. Just prior todc, there
exist two attractors, one periodic and one chaotic. T
stable manifold of a period-two saddle lying on the ba
boundary splits the local phase space about the sa
in the following manner: orbits having initial condition
lying to the right, say, and near one saddle conve
© 1996 The American Physical Society
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to the chaotic attractor [10]. Orbits starting to the le
converge to the period-two attractor. Ford slightly past
dc, a horseshoe is created from the right; i.e., the unsta
manifold to the right of the stable manifold crosses t
stable manifold. [See Fig. 1(a) nearSa.] Almost all
points in the region near the saddle now converge t
period-four orbit which has period doubled off the perio
two branch. Figure 1(a) shows the manifolds of pha
space of the defining period-two basin saddle, labeled
Sa andSb . Figure 1(b) shows a chaotic transient settli
into a period-four attractor after the iterate enters
escape region to the left of the upper saddle. (Every o
iterate is shown.)

For our method of maintaining and optimizing the leng
of chaotic transients, we need to identify regions n
the basin saddles which contain points of long chao
transients. The method will redirect the flow towards the
regions once it crosses the basin boundary of the attra
We consider a distribution of escape times for trajector

FIG. 1. (a) Stable (grey) and unstable (white) manifolds
sociated with basin boundary period-two saddlesSa , Sbd at
d ­ 1.88. The crosses represent the period-four attractor.
chaotic transients lie near the unstable manifold. (b) Time
ries for lnsud at d ­ 1.88 illustrating a chaotic transient landin
on a period-four attractor (every other iterate is shown).
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starting nearSa, close to the unstable manifold ofSa and
to the right (i.e., the side with chaotic transients). The
points lie on a line segment,La nearSa.

In Fig. 2, the horizontal axis represents equally spac
intervals onLa, nearSa. For the points in such an interva
we calculate the fraction of points having escape times
time intervals represented on the vertical axis. In oth
words, given a time interval on the vertical axis and
space interval on the horizontal axis, the intensity of t
grey scale indicates the fraction of points in that spa
interval having escape times in the chosen time interv
From this figure we see that there is a wide distributi
of points near the saddle which escape very quickly to
attractor as well as points with very long escape tim
If one computes the fraction of points having a give
mean escape time, one finds an exponential distribut
in agreement with results reported in [13]. Moreove
since preimages of points in the escape regions essent
cover the chaotic transient region, applying perturbatio
to prevent the flow from entering the escape regions,
done in [2] and in [9], may kick the dynamics into fast
escaping regions.

In what follows we write (1) in generic form asf0 ­
Fst, fd. A Poincare map of this flow is obtained b
sampling the system with the frequency of the driv
giving

xn11 ­ Tsxn, dd ­ fs1, 0; xn, dd, (2)

where d is the parameter we adjust to maintain cha
The Jacobian of the mapT , calculated at the unstabl
orbit, is given byA ­ s≠fy≠xnd s1, 0, xn, ddjxn­Sa .

FIG. 2. Probability distribution of escape times as a functi
of distance from the saddleSa for points inside the chaotic
region to the right ofSa near the unstable manifold (see te
for details).
4741
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The algorithm.—The algorithm we propose perturbsd

once an iterate ofT2 enters a neighborhood of the perio
two basin boundary basin saddlesSa, Sbd, where Sa ­
T 2sSad, andSb ­ TsSad. For our technique, we lineariz
T 2 about bothSa andSb . Based on this linearization w
derive a formula for the parameter perturbation that can
used to regenerate chaos. The same procedure has
applied for bothSa andSb due to the fact that the chaot
transients visit neighborhoods of bothSa and Sb (which
contain escape regions), even when the map we con
is T 2.

In order to make use of basin saddle information,
restrict ourselves to a local region,Dloc, of phase space
near a saddle, saySa. We call the region to the left o
Sa contained inDloc, the basin escape region. (A simil
description holds for a local region nearSb.)

The stable manifold of the period-two saddles separ
the region with transient chaos from the period-fo
attractor. We wish to send the iterates, once they ente
basin escape region, back to the opposite side of the s
manifold, preferably close to the unstable manifold of
saddle where the natural dynamics will send the itera
farther into the chaotic region. By restricting the action
the dynamics toDloc, we may examine the perturbation
acting on a linearized system.

To derive the formula for the parameter perturbations
jn ­ xn 2 Sa and consider the mapjn11 ­ Psjn, dd ­
T2sxn, dd 2 Sasdd, which has fixed pointjF ­ 0. We
linearize this map about its fixed point, and using the sa
notation as in [8], we obtain

jn11dng 1 flueufu 1 lsesfsg ? sjn 2 dngd, (3)

where A has been expressed in terms of left and ri
eigenvectors, and g ; f≠Sasddy≠dgd­d0 > 1ysd 2

d0djFsdd, for some d close to the operationa
parameterd0.

We target a desired region near the saddle on the
with chaos, based on the distribution in Fig. 2, where
know there is a high probability of obtaining long chao
transients. In (3), we require thatjtar ­ xtar 2 Sa, where
xtareLa > Dloc is a chosen target point. We choo
xtar such that it is contained in a region where lo
chaotic transients emerge before the flow escapes a
Equation (3) becomes

jtar ­ xtar 2 xF > flueufu 1 lsesfsg ? sjn 2 dngd.

(4)

Multiplying through in (4) byfs,

dn ;
slsjn 2 jtard ? fs

sls 2 1dg ? fs

; C1 ? slsjn 2 jtar d. (5)

We remark that applying small changes in parame
given by (5) may lead to large changes in preima
of escape regions, but the saddle location varies o
4742
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slightly, implying that the method is robust with respe
to perturbations.

Numerical examples.—In the first example, the sus
tained chaotic time series for lnu is shown in Fig. 3 along
with the corresponding parameter perturbations. Not
that only five perturbations tod were performed to main-
tain 500 iterates ofT 2, i.e., chaos is sustained for 100
iterates ofT . The noise level was1%, and the parame-
ter perturbations occurring in this case are below0.6. We
targeted certain regions near the unstable manifold wh
generate long chaotic transients. This is efficient sin
four of the five perturbations necessary to maintain cha
were larger than the mean chaotic transient time, wh
was found to be approximately 27 iterates.

One of the main assumptions in our method is th
just before entering the basin escape region the itera
must pass near either saddleSa or Sb . We show that
iterates contained in a region not local to the saddles,
nevertheless an escape region, can be directed towardDloc

which contains a basin saddle. We pick a region ins
the chaotic transients which lies in the basin of the perio
four attracting orbit, and label this region, region E,
Fig. 1(a).

The idea is to redirect the iterates from such a reg
by targeting a certain region or point inside the chao
regime by using, for example, the algorithm introduced
[14]. For our flow we have found that the region ne
the upper saddle to the right (let us call it region F)
accessible from region E, in only one iterate by sm
amplitude perturbations of the parameter. The reason
that the image under the flow of a point in E lies inside
If this was not the case we would have to target seve
intermediate points, as shown in [14], before reachi
region F. The phase-space sustained chaotic time se
is shown in Fig. 4. The changes in the parameter u
for targeting from region E to region F are 1 order
magnitude smaller than the other parameter changes
are not seen clearly in Fig. 4(b).

FIG. 3, Sustained chaotic time series for lnu and parameter
fluctuations used to sustain chaos.
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FIG. 4. Time series for lnu and corresponding paramete
fluctuations used to sustain chaos based on monitoring regio
in Fig. 1(a).

Finally, we have investigated several other escape
gions such as region E, and we have noticed that they
mapped by the flow into one of the regions near the perio
two saddle, so it is enough to apply parameter perturbatio
near the saddle.
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