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Quantum Optical Effects and Nonlinear Dynamics in Interacting Electron Systems
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We present a theory of the nonlinear optical response of cavity embedded interacting electron systems
which does not rely on semiclassical factorization. The theory provides a unified basis for understanding
nonlinear quantum dynamics in cavity embedded quantum wells. Nonclassical behavior of transmitted
light is found. [S0031-9007(96)01797-8]

PACS numbers: 42.50.—p, 42.65.—k, 71.35.-y, 71.36.+c

The atom-cavity system has been used to investigateegime, has been given in [16]. Here we present a theory
quantum dynamical processes for open quantum systena$ the nonlinear optical response of an interacting electron
in a regime of strong coupling and to explore quantumsystem which does not rely on the semiclassical factor-
behaviors that have no classical counterparts [1]. Withzation. This opens a promising connection between the
the development of crystal growth technologies, it has bephysics of collective excitations and quantum optics. The
come possible to investigate cavity embedded interactintheory provides both information on quantum correlations
electron systems [2—6]. Cavity qguantum electrodynamic®f emitted photons, predicting quantum optical effects,
(cavity QED) effects have been observed by placing quanand a first principle description of those well-known non-
tum wells (QW’s) in a semiconductor planar microcavity linear phenomena in exciton physics as four-wave mixing
[2,7]. The QW exciton-cavity system has some fundamenand hyper-Raman scattering. The system which we in-
tal differences with respect to the much simpler two levelvestigate consists of a quantum well (QW) grown inside a
atom-single mode cavity system; however, coherent linsemiconductor planar Fabry-Perot resonator. We treat the
ear dynamics of the two systems is very similar despiteavity field within the quasimode approximation, the cav-
the complexity of the electronic states of the semiconducity field is quantized as though the mirrors where perfect,
tor. In fact, a weak light beam of given wave vector canand the resulting discrete modes are coupled phenomeno-
excite only one-exciton states, and, owing to the consenogically to the external continuum of modes [17]. The
vation of the in-plane momentuky only the exciton state eigenstates of the Hamiltonia,, of the cavity modes
with the same wave vector of incident light interacts. Aare written agn, A), wheren indicates the total number
situation similar to linear dynamics of two level atoms in of photons in the state andil= (ky,01;...;k,,0,) is a
a single mode microcavity is thus reproduced. Nonlineatabel specifying wave vectdt and polarizatiorr of each
dynamics does not maintain the simple picture of two couof the n photons. The statd#y ,) with energywy , of
pled fields. Furthermore the source of nonlinearities in twahe HamiltonianH . of the usual semiconductor model can
level atoms comes from saturation, while excitonic nonlin-be labeled according to the numb¥rof eh pairs [9,18].
earity comes also from Coulomb interaction between elecThe statgd Ey—o) is the semiconductor ground state. The
trons. As aconsequence a more complex situation and nedWw = 1 subspace is the exciton subspace with the addi-
phenomena are expected exploring nonlinear dynamics @fonal quantum numbes = (n, o,k). The set of states
interacting electron systems in the strong coupling regimewith N = 2 eh pairs determines the biexciton subspace.
Recently a first principle semiclassical theory of nonlinearThe interaction of the electron system with cavity modes
response for a two band semiconductor model has beeés given in the usual rotating wave approximation by
given in [8,9]. The theory, applied to four-wave mixing
in quantum wells, provides a unified basis for understand- H; = ili Z V,f,kaZBn,k + Hc., (1)
ing a wide range of observed phenomena. Quantum op- ™
tical effects and manifestation of nonclassical dynamics + _
have been predicted [10,11] and observed [12,13] experihere the operator; creates a photon state with=
mentally in atom-cavity systems also for a large numbefk, o) and energyo; = (wj + v2k?)"/2, v being the ve-
of atoms. The nonlinear behavior of the strongly coupledocity of light inside the cavityBI,k creates an exciton
exciton-cavity system [14] opens a new and versatile wagtate with the same wave vector and polarizattoand
of exploring quantum dynamics in mesoscopic systemsenergyw; ,x. V. iS the photon-exciton coupling coef-
Time resolved photon statistics during normal mode couficient enhanced by the presence of the cavity [19]. The
pling in a semiconductor microcavity has been recentlydephasing of the semiconductor excitations is introduced
measured [15]. phenomenologically, by assuming a reservoir at zero tem-

A full guantum mechanical description of light in inter- perature, while the linear coupling of cavity modes with
action with a confined polarizable medium, in the linearthe external modes provides both the damping and the
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input optical pumping of the cavity modes [17]. For a[21]. The state of the quantum system is defined by a
coherent input beam, the driving of cavity modes is de-density operator and a master equation describing its time

scribed by the following Hamiltonian term evolution. The full analytic solution of such an equation
is not known even for the much simpler two level atoms-

H, = Z Ik(a,:r - ar), (2) single mode cavity system [11]. Instead of solving the
k master equation, we consider the equation of motion for

the expectation values of system operators of interest, up

where E, are the amplitudes of the coherent driving oo i
to a given order. We start by considering the polariton

fields. The dynamical evolution of the coupled systemI . . .
is govemned by the expectation values of the follow- inear dynamics writing the coupled equation of motion

M = (X 0V (1 () = (X Va1
ing product Hubbard operator&y 4. s Vi rm ., Where {/(\)/re%l];zain (XooYo;16)" and (B (XounYo0)'™.
XNon,B |ENa><EM,B| Yn/\m,u |l’l )\><m ILLl Hub-
bard operators can be used to express the exciton [9] and 9 _ , (1) (1)
photon operators. From the form of the interaction and of ; o7 @) = —yidan)V + ; VarlBui) " + Ei, (43)
the pump Hamiltonian, the expectation values of these op-

1('j(rjl(';lors can be expressed as a power series in the externél (B )V = _F;ll,k<Bn,k>(l) — Vila)W. (4b)
® v - iZOO? v M e 20 In these _equations/,’{ =y + iw, Wherey is the cav-
N.asM.B L, Asm, N.asM.B L n A, ity damping, assumed for simplicity independent on the

;_OO(fMMﬂﬁmHiUH). (3) m0(_je, and a_lnalogously,’z,k =T +ioue In the fol-
lowing we will show as a unified description of the low-
Equation (3) is of great relevance for the following cal- est order nonlinear quantum dynamics of the system can
culations, since it provides a truncation scheme basebe obtained in terms of the solutions of linear equations
on powers of excitation strength. A similar truncation (4) and of the two particle correlation functiofis.a;)®,
scheme, in the semiclassical framework, was first ex¢B,  a;)®, and(B; i B,)*, obeying the following set of
ploited by Axt and Stahl [20], and Victor, Axt, and Stahl coupled equations

d #
5<akal§>(2) = —(y; + vp){aap)? + Z( k<aank>(2) + Vi laiBu)®) + Ela)V + Elap)V, (5a)
d *
E<aan,k>(2) = —(T)y + vp)(aiBu)? + Fe(Bui)V = Varlarap)® + > Vi (BiiBui)®. (5b)
71
d )
o BaiBn)? = —(T + T30 (BaiBui)® = VarlaiBni)? = ViilaeBin)® + Ry (5¢)

)
whereR, ", . ; is given by

szz,li;fz,lz = %Q,S/)c;ﬁ,iz;k/;g@k’BB)(z) - i%C,il,;){;ﬁ,;;;B@o;z,B)(z), (6)

with
Cizl;c;ﬁ,lz;ﬁ = (w28 = @1ak — WLk (ErailBuilErp), (7a)
Qf,l,k,n,k,krlg = - ZVn/,k'<E1,ﬁ,12| [Bn,k’BI’,k’] = S(uk)y(nk)|E1,8) - (7b)

n'

The equation of motion fofXo. g)® reads

I . .
E <X0;2”3>(2) == _(ZF + lwz’ﬁ) <X0;2”3>(2) - Z Vn”,k"<E2,,8|Bn’,k’|E1,n”,k"><‘1k’Bn”,k”>(2)- (8)

n/’k/;n//’k//

We stress that all deviations from semiclassical results in the two particle correlation functions are determined by

RQl P if it would be zero only trivial linear and semiclassical results would be obtained, (ug,a;)? =
n

(arai)® — (ap)Nap) = 0. Rff;{ zcan be considered a two exciton correlation force. The coefficients (7) coincide
with those obtained in the semiciassical theory of nonlinear response in interacting electron systems IM) and

differs from the factor in the source term for the third order nonlinear response in [9] by semiclassical tactorization:
if we make the replacememk/Bn”,kN}( {ap)V (B ) M in Egs. (6) and (8), coincidence is achieved. So we can
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conclude that the same interaction processes and sourcerrelations; as a consequence, deviations from semiclas-
of nonlinearities determines both semiclassical nonlineasical results and renormalization effects [22] are expected.
response and quantum correlations. In particular, the first Hyper-Raman scattering=The hyper-Raman process
term in Eq. (6) is the phase space filling term, whilecan be schematically described as follows: two incident
the second term describes exciton-exciton interaction anghotons of given wave vectdk;, k, drive the cavity
biexciton effects [9]. The difference outlined above modes via the Hamiltonian term (2) which, interacting
between the correlation force (6) in the quantum theorywith the electron system, create a two electron-hole pair
and in the semiclassical approach is important. In fact, irstate which annihilates to create a one electron-hole pair
the semiclassical theory the correlation force is a knowrstate and one photon of different wave vecté&rsand
driving term, since it can be expressed in terms of thek such thatk + k = k; + k, [23]. In contrast to the
coefficients (7) and of the linear response solutions. Irfour-wave mixing, this process can be described only by
the quantum theory the correlation force depends om full quantum mechanical approach, since the last step
the two particle correlation functiongy B, ;) that it  in the above description, i.e., the spontaneous breaking
affects. As a consequence a self consistent calculatioof the two electron-hole pair state is not allowed in
is required in order to solve Eq. (5). Equation (5) canthe semiclassical theory. The correlation force drives
be interpreted as the extension to interacting electrothe process, generating two particle correlations, with
systems of Eq. (4) of Carmichaet al.[11], describing wave vectorsk, k such thatk + k = k; + ks, which
quantum dynamics oV two level atoms in a single determine light emission in thke andk directions. The
mode cavity. We stress the importance of the excitonhyper-Raman spectrum is given by the inelastic part of the
exciton correlation force and of two particle correlationsspectrum of the fluorescent light,
for the nonlinear quantum dynamics of the system. In the
following we consider some examples which show how 7, (w) = 270ut[ dr e al (1), ap(t + 7)), (1)
nonlinear quantum dynamics can be described in terms of
two particle correlation functions. where the subscripts indicates steady state ang, is the
Four-wave mixing—If the system evolves as a pure |oss coefficient of the output mirror, for a symmetric cavity
state, the expectation values of Hubbard operators can bﬁ)ut — y/2. According to the quantum regression theo-
written as rem, two time correlation functions daz(t),ak(t + 7))
obey the same equations@g (7)), with initial conditions
given by the equal time correlation functiom:{,aw and
<a,1,3n,k>. By expanding equal time correlation functions
in terms of Hubbard operators and using Egs. (3) and (9),
we obtain

<XN,(1;M,,B ?n,/\;m,,u) = OA(O;N,Q ?O;n,)x>*
X <XO;M,B ?O;m,,u,>/<5(0;0 ?0;0> . (9)

By using this expression and Eq. (3) we obtain the de
pendence of third order polarization on two particle cor-
relations in a simple form. Third order polarization is " 4 M2 212
proportional to(B,,x)®. Polariton dynamics implies that (g, ay? = Z Kag, ay®P + Z Kax, Bs )1,
the exciton field generated by a nonlinear source term v i (12a)
propagates exchanging energy with the cavity field. The

coupled propagation up to the third order is described by <a11-an,k>(4) = Z<ag’ag>(2)<ak’3”,k>(2)

the following equations: E:
t gt g, - (6)
d + <ak7B‘ ~> <B~,ksB ,k> > (12b)
E<ak> = —ylap) + Zvn,k<Bn,k> + £, (10a) nzzr o e
5 ! wherek = k; + k, — k. The integrated hyper-Raman
— (Buxy = — T (Bux) — Vaslar) emission is proportional to expression (12a). We notice
at that, to calculate the spectrum at fourth order (second
(1 p@ orderin thg |r_1C|dent_|r_1tenS|t|es) by_the quantum regression
+ Z<Bﬁ,k> R, k- (10b) theorem, it is sufficient to consider the equations for
ik

(ar(7)) and (B, «(7)) up to the third order [Eg. (10)].
The nonlinear source term in Eq. (10b) depends on the coResonances and quantitative evaluations of such spectra
relation force and hence on two particle correlations. Thigvill be given in a forthcoming paper; here we have
coupled propagation of the nonlinear excitation leads to thehown the relation between hyper-Raman emission and
coherent oscillations in four-wave mixing observed experitwo particle correlation functions, solution of Eq. (5).
mentally [14]. The nonlinear source term in Eq. (10b) co- Squeezing—The exciton-exciton correlation force can
incides with the corresponding term in the semiclassicainduce quantum correlations between photons, leading to
theory [9] if quantum correlations are neglected. Howevernonclassical effects. Let us consider, as an example,
we can notice that four-wave mixing is generated by thahe output spectrum of squeezing for an incident beam
same correlation force determining two particle quantumat normal incidencek = 0 and of given polarization
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(i.e., +), with energy w, = wx=9. We also consider at w, = w;; = wy, is out of the Rabi splitted reso-
light emission along the same direction and with thenances, hence, no real population is generated and ther-
same polarization of incident light. The output spectrummalization effects can be strongly lowered; in addition,
of squeezing is proportional to the Fourier transformsqueezing increases by increasing (y + TI') if the den-

of the time-ordered and normally ordered correlationsity of excitonsN is maintained constant by adjusting the
function [24]T(: A(7), A, :),s, WwhereA, is a quadrature intensity of the incident beam [see Eq. (13)].
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