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Quantum Reservoir Engineering with Laser Cooled Trapped Ions
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We show how to design different couplings between a single ion trapped in a harmonic potentia
an environment. The coupling is due to the absorption of a laser photon and subsequent spon
emission. The variation of the laser frequencies and intensities allows one to “engineer” the co
and select the master equation describing the motion of the ion. [S0031-9007(96)01762-0]

PACS numbers: 32.80.Pj, 03.65.Bz
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According to quantum mechanics [1], a system can e
in a superposition of distinct states, whereas these supe
sitions seem not to appear in the macroscopic world. O
possible explanation of this paradox [2] is based on the
that systems are never completely isolated but interact w
the surrounding environment, which contains a large nu
ber of degrees of freedom. The environment influences
system evolution which continuously decoheres and tra
forms system superpositions into statistical mixtures wh
behave classically [2,3]. This subject is directly relat
to the problem of measurement in quantum theory [4
where the system to be measured is described by q
tum mechanics and the measurement apparatus is ass
to behave classically. Apart from this fundamental po
of view a more practical aspect is the question to what
tent one can preserve quantum superpositions, which is
basis of potential applications of quantum mechanics, s
as quantum cryptography and computation [6,7].

In this Letter we will show how to “engineer” the
system-environment coupling in a situation that is expe
mentally accessible with existing technology. The syst
of interest will be an ion confined in a electromagne
trap, and the environment will be the vacuum modes
the electromagnetic field. This corresponds to an exp
mental realization of a harmonic oscillator coupled to
reservoir of oscillators. The coupling between our syst
and the environment takes place through the recoil ex
rienced by the ion when it interchanges photons with
electromagnetic field. As we will show below, this co
pling can be manipulated by laser radiation. Variatio
of the laser frequency and intensity allow one to engin
such a coupling.

Laser cooled trapped ions [8] are a unique experime
system: unwanted dissipation can be made negligible
very long times, much longer than typical times in whi
an experiment takes place. Furthermore, arbitrary qu
tum states of the ion’s motion can be synthesized and
herently manipulated using laser radiation [9]. In additio
the state of motion can be completely determined in
sense of tomographic measurements [10]. In a serie
remarkable experiments, Wineland and collaborators h
generated a variety of nonclassical states of ion mo
[11,12]. In particular, they have been able to produce [
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a so-called “Schrödinger cat state” [13] corresponding

jCl ~ jal 1 j 2 al , (1)

with jal ­ e2jaj2y2
P`

n­0 any
p

n! jnl a coherent (quasi-
classical) state. In Fig. 1(a) we have plotted the de
sity operator for such a state in the position represen
tion, i.e. (the real part of)rsx, x0d ­ kxjrjx0l. The peaks
near the diagonal correspond to two possible localizati
of the particle, whereas the other two peaks are rela
to the coherences that are responsible from the quan
behavior [2].

The interaction of a Schrödinger cat state with t
environment has been the paradigm of decoherence
superposition states. As first argued by Zurek [2] (s
also Refs. [2,3,14–16]), for a coupling which is linear
the system coordinates, a macroscopic superposition
the form (1) decays to a statistical mixturer ~ jal kaj 1

j 2 al k2aj, on a short time scale (decoherence tim
which is related to the size of the cat (jaj2) and is
much faster than the energy dissipation time: this provid
an explanation for the absence of superpositions
the macroscopic world [2]. We emphasize that t
decoherence process of (1) is sensitive to the form
the reservoir coupling. For some quadratic couplings,
example, the decoherence and energy dissipation time
become identical [15]; moreover, there exist interactio
which allow Schrödinger cat states to be stable, and, w
is more surprising, dissipation can drive a system in
a steady state of the form (1) [15]. For example,
Figs. 1(b) and 1(c) the decay of a Schrödinger cat un
linear and quadratic coupling is illustrated: for a line
coupling [Fig. 1(b)] the nondiagonal peaks (coherenc
of the density matrix decay much faster than for t
quadratic couplings [Fig. 1(c). We will show that a
these theoretical predictions can be tested experimen
for the case of a trapped ion.

The process of decoherence can be analyzed in d
under very general assumptions invoking the so-cal
Markov approximation, which considers the correlati
time for the environment to be much shorter than t
evolution time of the system due to the coupling [17].
this case the interaction of a system with an environm
is described in terms of a master equation. For a sin
© 1996 The American Physical Society
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FIG. 1. (a) rsx, x0d for the state (1) (a ­ 3). (b),(c) Nu-
merical simulation of the interaction with a laser for a tim
t ­ 0.06g21 and h ­ 0.03: (b) vL ­ v0 2 n, ( f ­ a); (c)
vL ­ v0 2 2n, ( f ­ a2).

decay channel this equation has the form (h̄ ­ 1)

Ùr ­ gs2frfy 2 fyfr 2 rfyfd . (2)

Here r is the reduced density operator for the syst
in the interaction picture after tracing over the reservo
The operatorf and the parameterg reflect the system-
environment coupling. For a harmonic oscillatorf will be
a function of the creation and annihilation operatorsa and
ay, which are defined as usualX ­ 1ys2Mnd1y2say 1

ad, P ­ isMny2d1y2say 2 ad, where X and P are the
position and momentum operators andM the particle’s
mass. According to Zurek [2], the coupling with th
environment singles out in a quantum system a prefe
set of states, sometimes called “the pointer basis.” T
basis depends on the form of the couplingf. For
example, for f ­ X the pointer basis is the positio
eigenstates. The density operator describing the sys
evolves in such a way that it rapidly becomes diago
m
r.

ed
is

em
al

in this preferred basis, which is usually connected to
disappearance of quantum interferences. Our goal is n
to find an experimental realization of the master equat
(2) for different system-reservoir couplingsf ; fsa, ayd.

Let us consider a single ion moving in a on
dimensional harmonic potential. The ion interacts with
laser in a standing wave configuration of frequencyvL,
close to the transition frequencyv0 of two internal levels
jgl and jel. Using standard methods in quantum opti
based on the the dipole, Born-Markov, and rotating wa
approximations, the master equation that describes
situation can be written in the general form

Ùr ­ 2iHeffr 1 irH
y
eff 1 J r , (3)

whereHeff ­ naya 1
1
2 v0sz 1 Hcou 2 i

G

2 jel kej, with

Hcou ­
V

2
sinfhsa 1 ayd 1 fg

3 ss1e2ivLt 1 s2eivLtd , (4)

and

J r ­ G
Z 1

21
du Nsude2ihusa1ayd

3 s2rs1eihusa1ayd. (5)

Here, s1 ­ jel kgj ­ ss2dy and sz ­ jel kej 2 jgl kgj

are the usual spin-1
2 operators describing the internal tran

sition,n is the trap frequency,G the spontaneous emissio
rate,h ­ sk2

Ly2Mnds1y2d the Lamb-Dicke parameter, an
Nsud the normalized dipole pattern. In the Hamiltonia
describing the coupling with the lasers,V is the Rabi fre-
quency, andf characterizes the relative position of th
trap center with respect to the node of the laser stand
wave. Here we will assume that eitherf ­ 0 (excitation
at the node of the standing wave) orf ­ py2 (excitation
at the antinode).

We will proceed now by simplifying the master equ
tion for the ion in a regime defined by three limits whic
are typically fulfilled in experiments [11,12]: (i) Lamb
Dicke, (ii) strong confinement, and (iii) low intensity. Th
first one allows us to expand the above master equa
in terms of the Lamb-Dicke parameterh ø 1, retain-
ing only the orders that contribute to the dynamics. T
second one assumesG ø n and together with the third
one allows us to include in the coupling Hamiltonian on
on-resonance terms (secular approximation). Finally,
third one assumes a sufficiently low laser intensity (t
specific form of this limit will be given later), and will
serve us to eliminate the internal excited leveljel.

Let us start by simplifying the coupling Hamilton
ian under the above limits. To do that, we move
a rotating frame defined by the unitary operatorU ­
e2isnaya1 1

2
v0szdt . Following Ref. [9] we assume the fol

lowing: (i) For excitation at the node (f ­ 0), d ­ vL 2
4729
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v0 ­ s2k 1 1dn (k ­ 0, 61, . . .). (ii) For excitation at
the antinode (f ­ py2), d ­ 2kn (k ­ 0, 61, . . .). In
this rotating frame, after performing the rotating wa
approximation and the Lamb-Dicke expansion, we
tain Hcou ­

V 0

2 ss1f 1 fys2d, where bothV0 and the
form of the operatorf depend on the frequency of th
laser. For example, ford ­ 2n, we havef ­ a, and
V0 ­ Vh, whereas ford ­ 22n, f ­ a2, and V0 ­
2Vh2y2. Apart from the strong confinement, in th
first case, the secular approximation can be perform
for V0y2 ø n, whereas in the second case it is need
V2y8n ø V0. These two conditions can always be fu
filled for low enough laser intensity, and together w
V0 ø G define the low intensity limit.

In the next step we eliminate the internal excited st
using standard procedures of quantum optics [17].
resulting master equation is of the form (3), withHeff ­
2igfyf, and

J r ­ 2g
Z 1

21
du Nsude2ihusa1ayd

3 frfyeihusa1ayd , (6)

whereg ­ V02y2G. Finally, expanding in powers ofh
we find the desired master equation (2), with correcti
of the order h2. The master equation will be vali
for times such that these corrections are not import
that is, for timest ø sgh2n̄d21, where n̄ is the typical
phonon number of the state of the ion. Neverthel
in the Lamb-Dicke limit this time can be much long
than the time required to reach the steady state u
the approximated master equation. Note that the m
important relaxation parameter is the effective rateg.
For attainable experimental parameters [G ­ 40 kHz (see
Ref. [18]), n ­ 30 MHz, h ­ 0.15, V ­ 1 MHz [12] ]
4730
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we have that forf ­ a2 all the conditions are fulfilled
andg ­ 2 KHz. Obviously, forf ­ a higher values of
g can be more easily reached.

According to our analysis, by varying the laser fr
quency we obtain the master equation (2) with differe
coupling operatorsf. In Fig. 2 we have illustrated the
laser configurations which produce severalf operators. In
Fig. 2(a), for example, the laser is tuned to the so-ca
“lower motional sideband,”d ­ 2n, and the ion is lo-
cated at the node of the standing wave field which le
to a coupling operatorf ­ a. This can be easily under
stood by noting that in each absorption and spontane
emission cycle one phonon is annihilated on a time sc
given by the optical pumping time. Mathematically, th
phonon annihilation is represented by the action of the
eratorf ­ a, which therefore defines the coupling. Sim
larly, in Fig. 2(b) the laser is tuned to the “second low
sideband”d ­ 22n at the antinode of the laser stan
ing wave which gives the two-phonon couplingf ­ a2.
These two cases of linear and quadratic coupling co
spond to the two examples discussed in Figs. 1(b)
1(c). In fact, these figures were obtained by a num
cal solution of the full master equation (3) with quantu
Monte Carlo wave function simulations [19]. As note
before, the decoherence acts in a different way depe
ing on the coupling operator, according to our previo
discussion.

It is simple to generalize the above derivation to find s
uations with other interesting (and perhaps unusual) c
pling operatorsf. For example, consider the case
which two lasers of frequencyv0 1 n and v0 2 n in-
teract with the ion [Fig. 2(c)]. This corresponds to a c
herent excitation of the lower and upper motional sid
bands [9]. In this case, following the same argumen
one can easily show that the operator isf ­ ma 1 nay,
FIG. 2. Laser configurations for several coupling operatorsf. (a) Laser tuned tojn, gl ! jn 2 1, el, which rapidly decays into
the statejn 2 1, gl leading tof ­ a; (b) f ­ a2; (c) f ­ ma 1 nay; (d) f ­ sa 2 ad sa 2 bd.
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wherem2 2 n2 ­ 1 andmyn is the quotient of the Rabi
frequencies. This operator corresponds to a squeezed
uum coupling which has been the basis for numerous th
oretical predictions in quantum optics [17]. In particula
choosing equal Rabi frequencies, the coupling isf ­ a 1

ay ~ X. This corresponds to the case analyzed theore
cally by Unruh and Zurek, Caldeira and Leggett, and oth
authors [2,3] to describe the decoherence process in te
of the projection of the state of the system onto the poin
basis given, in this case, by the position eigenstates. A
other interesting combination of lasers [Fig. 2(d)] yield
f ­ sa 2 ad sa 2 bd, where a and b are given com-
plex numbers. Fora ­ 2b the Schrödinger cat state (1
is an eigenstate of this operator with zero eigenvalue, a
thus this state does not decohere under this form of co
pling. We note that, as pointed out by de Matos Filho an
Vogel [20], one can employ this particular form of system
reservoir coupling to generate a cat state (1) by choos
as the initial state the ground levelj0l. Tuning a laser on
resonance at the antinode of a standing light wave one
design the coupling in the form of a quantum nondemo
tion measurement of the phonon number,f ­ aya, with
the Fock states as the pointer basis. Using more com
cated laser configurations involving tuning the laser to u
per motional sidebands (cf.d ­ 2n0n) one can readily
show that otherf operators containing higher powers ofa
anday can be engineered. If the maximum power off in
a anday is n0, thenV0 scales asVhn0 . Thus, in order to
satisfy the low intensity limit, smaller Rabi frequencies ar
required (i.e., the evolution will become slow). From th
practical point of view, this can be a serious restriction f
largen0, since other technical sources of noise can beco
important.

Obviously, there are numerous possibilities to gener
ize the concept of reservoir engineering in ion traps. Fi
of all, decoherence of a two- or three-mode system c
be studied by considering the two- or three-dimension
motion of a trapped ion, respectively. Furthermore,
master equation with more than one decoherence ch
nel, i.e., an equation containing sums of damping term
of the form (2) with different operatorsfi (i ­ 1, . . . , N)
[17], can also be easily implemented. This can be a
complished by exciting transitions with several incohe
ent lasers. Another important generalization concerns
possibility of coupling a two-level system to a harmoni
oscillator (Jaynes-Cummings model) which in turn is co
pled to an environment. In particular, this will allow us
to test experimentally one of the outstanding predictio
of quantum optics [21], namely, the damping of a two
level system interacting with a squeezed reservoir. F
nally, these ideas can be extended to linear ion traps [
in order to study collective effects in anN-atom1 har-
monic oscillator system.
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