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The probability distribution of electronic excitations of HeT1 following the b decay of the T2
molecule has been calculated for the first time in the beyond sudden impulse approximation, rem
the uncertainty related to the reliability of this approximation in connection with the neutrino m
experiments. Final state interactions are introduced to infinite order with respect to the dec
nucleus, and to first order with respect to all other particles, within the relativistic framework.
presented distribution features, in addition, corrections due to the nuclear motion, resonant struct
long tail (up to 800 eV) in the ionization continuum of HeT1. [S0031-9007(96)01723-1]

PACS numbers: 31.15.–p, 14.60.Pq, 23.40.Bw
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Six decades have elapsed since the time when W. P
suggested the existence of a hypothetical particle,
neutrino. Although the hypothesis has materialized,
particle itself has not—in the sense that its mass is
not determined. The experimental studies ofb decay
from molecular tritium have narrowed the upper bou
for the mass of the electronic neutrino, which has b
recently set to 4.3 eV [1]. However, the shadow of do
has been cast on the interpretation of recent experim
whichunisonoreveal an unphysical trend towards negat
values of the square of the neutrino mass:m2

n , 0 [1–
3]. The interpretation is very sensitive to the chemi
effects disturbing the pure nuclearb-decay spectrum, an
of major importance is the precise determination of
probability density for excitation of HeT1 [4]. So far,
this probability density has been available in the so-ca
sudden impulse approximation (SIA), which neglects
interaction of theb electron with the remaining molecul
except for the decaying nucleus. In this Letter, we pres
the first calculation which goes beyond SIA for the case
molecular tritium. Our treatment includes the bound sta
but emphasizes the excitations to the molecular continu
as there are indications that this part of the spectrum
of particular importance regarding the “negative ma
issue [5].

The process under consideration is theb decay of one
of the nuclei of molecular tritium (here assumed to be
the ground state) according to

T2 ! HeT1 1 e 1 n , (1)

where the resulting daughter ion HeT1 can be left in
any of its rovibrational and electronic states, includ
the continua. Invoking charge-parity-time symmetr
we concentrate on the transition matrix element for
collision problem with only two bodies in each chann
T2 1 n ! HeT1 1 e. Using the Born expansion, th
transition matrix element is
0031-9007y96y77(23)y4724(4)$10.00
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Tfi ­ kFf jWi jFil 1 kFf jUf sE 2 Hfd21WijFil 1 · · ·

. T
s0d

fi 1 T
s1d

fi , (2)

where we have left out the second order term in we
interaction Wi (because of the smallness of the we
coupling constantg) and higher order Born terms.Fi is
the channel eigenfunction describing the free motion of
initial molecule (T2) and the neutrino,Ff is the channel
eigenfunction in the final channel describing the molecu
system HeT1 and the ejected electron, andUf describes
the final channel (Coulombic) interaction given by

Uf ­ 2
ZAe2

rbA
2

ZBe2

rbB
1

e2

rb1
1

e2

rb2
, (3)

with ZB ­ ZA ­ 1. In the spirit of the two-potential
formalism [6] we have excluded fromUf (part of) the
Coulombic interaction between theb electron and the de-
caying nucleus labeledA. This particular choice of the
interaction operator facilitates handling of the divergenc
appearing in thetruncatedperturbation expansion of the
transition amplitude (2) [7].

The transition probability considered here isjTfij
2 .

jT
s0d
fi 1 T

s1d
fi j2 . jT

s0d
fi j2 1 2 ResT s0d

fi T
s1dp

fi d as the term

jT
s1d
fi j2 is partly canceled [8] by the interference term

involving the second order amplitude,2 ResT s2d
fi T

s0d
fi d. A

more complete treatment includingjT s1d
fi j2 is presented in

Ref. [9]. The differential decay rate to the molecular sta
f can be obtained using the standard relation

wfi ­ s2pyh̄d jTfispb , pndj2dsEf 2 Eid , (4)

which means that the probability of the decay into t
molecular channel with an electron energy withinEb 1

dEb (provided the neutrino has a momentum withinpn 1

dpn and all quantum numbers defining the molecular fin
statef are specified) is

dwfi ­ wfidEbdpnc22pbEbdVb , (5)
© 1996 The American Physical Society
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whereE2
b ­ p2

bc2 1 m2
ec4 is the total relativistic energ

of theb electron. The indicesf andi stand for the triple
quantum numbersf ; hn, J, yj and i ; h0, 0, 0j charac-
terizing the electronic, rotational, and vibrational quant
numbers of the final and initial states, respectively. (S
larly, j0 ; hn0, J 0, y0j will in the following characterize
the intermediate states.)

To obtain the rate relevant for the experiment, the ab
expression has to be summed over the unobserved qua
-

a

y
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th

n

e
e

r

m
i-
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tum

numbers and other characteristics of the final state. In
case this entails the summation over quantum numbern,
J, andy, integration over the momentum of the neutrin
pn, integration over thedirectionsVb of the b electron,
and summation over the spins (s) of these particles.
Generalizing the developments of Ref. [8] to the molecu
case allows us to write the energy-differential decay r
as [9]
dwsEbd
dEb

­
X
n

1
2p3c5

jTnucj2jT lepj2pbEbfs´ 2 E
HeT1

n0 d2 2 m2
nc4g1y2s´ 2 E

HeT1

n0 dQs´ 2 E
HeT1

n0 d

3 Qfs´ 2 EHeT1

n0 d2 2 m2
nc4g

X
J,y

fjTfij
2 1 2 RehT s0d

fi T
s1dp

fi jg ;
X
n

Nns´dIn , (6)
where

T
s0d
fi sKd ­ kcHeT1

nJy jeiK?rCA jc
T2
000l , (7)
T
s1d
fi sK, Ebd ­

X
j0­hn0J 0y0j

Z dVb

4p

Z
q

dq
s2pd3

4pe2

q2 Fnn0spb , qdMfisqdT s0d
j0i sK 1 qd , (8)
with

Fnn0spb , qd ­
1

EHeT1

nn0 1 Eb 2 E0
b 1 ie

µ
Eb 1 E0

b

2E0
b

2
pb ? qc2

2EbE0
b

∂
(9)
and

Mfisqd ­ kcHeT1

nJy j

2X
k­1

e2iq?rCk 2

BX
K­A

ZK e2iq?rCK jcHeT1

n0J 0y0 l . (10)
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In the above equations,c
T2
000 ­ w0j

0
00, c

HeT1

nJy ­ fnx
n
yJ

are the initial (T2) and final (HeT1) molecular states within
the Born-Oppenheimer approximation, being products
the electronic wave functionsw0, fn, and the correspond
ing rovibrational wave functionsj0

00, x
n
yJ . q ­ pb 2 p0

b

is the momentum transfer between the intermediate
final states of theb electron. K ­ 2spb 1 pnd is the
nuclear recoil,rCA is the vector connecting the deca
ing nuclei with the molecular mass center, andZK is the
charge of nucleusK . Finally, K 1 q ­ 2sp0

b 1 pnd is
the (virtual) nuclear momentum recoil corresponding to
creation of theb electron in the intermediate state wi
momentump0

b and energyE0
b.

In Eq. (6),Enn0 ­
R`

0 fEnsRd 2 En0sRdg jj
0
00sRdj2dR is

an average energy difference between statesn andn0, while
´ ­ Emax 2 Eb , with Emax ­ Tmax 1 mec2 andTmax be-
ing the maximum kinetic energy of theb electron for
mn ­ 0. The factor 1

s2pd3 arises from the normalizatio
of the plane waves, whereas the factor4pe2

q2 stems from
the Bethe integration over theb-electron coordinaterb

in Uf-dependent matrix elements, resulting in thee2iq?rCk

andZKe2iq?rCL terms of Eq. (10). The free wave chann
functions were approximated by plane waves while p
forming the Bethe integration.

The leptonic matrix elementT lep with respect to the
weak interactionWi reduces to the so-called Fermi facto
of

nd

-

e

l
r-

,

equal to the product of the leptonic wave functio
evaluated at the origin of the weak interaction, i.e.,
rAb ­ rAn ­ 0.

To simplify presentation, we can outfactor from Eq. (
the probabilityIn for target excitation to the electronic sta
n, and structure it as

In ­
X
J,y

fjT s0d
fi j2 1 2 ResT s0dp

fi T
s1d
fi dg

­ I s0dsEnd 1 I s1dsEn, Ebd . (11)

Performing the summation over the rovibrational sta
belonging to the electronic final staten, and using the
closure relation, the zeroth order contribution becomes

I s0dsEnd ­
X
J,y

jT
s0d
fi sKdj2 ­

Z `

0
jt

s0d
n0 sRdj2jj0j

2 dR , (12)

which can be further approximated by the purely electro
overlap matrix elementt

s0d
n0 sReffd ­ kfnsReffd j w0sReffdl

evaluated at the effectiveReff ­
R`

0 Rjj0j2 dR [10]. We
have chosen to evaluate the electronic matrix element
the effective distanceReff optimized as to get the bes
match to the rovibrationally broadened bound state ex
tation probabilities of Ref. [11]. In this approximation
the total zeroth order transition probability still adds
100%, while being independent of the recoil momentu
4725
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We have shown [9] that after summation overJ , y; J 0, y0 also the first order correction reduces to theK-independent
electronic matrix element

I s1dsEn, Ebd ­ 2 Re
Z dVb

4p

Z
q

dq
s2pd3

4pe2

q2

XZ
n0

Fnn0spb , qd kfn j w0lp

3

(
kfnj

2X
k­1

e2iq?rAk jfn0 l 2 dnn0kj0
00j

BX
K­A

ZK e2iq?rAK jj0
00l

)
kfn0 j w0l . (13)
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We are therefore able to concentrate on the effects
final state interactions, contained in electronic transitio
The effects of the recoil and the rovibrational broaden
can then be studied separately by methods presente
Ref. [11].

While integrating over the virtual momentum transferq,
only largest terms with respect to the Sommerfeld para
ter h ­ 2

e2me

pb
are retained (down toh2), and we keep

only theL ­ 0 component of the partial wave expansion
eiq?r . The latter restriction is correct as long as only the
th

le

u

f
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d
m
s
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terference term [2 ResT s0dp

fi T s1d
fi d] is considered, because th

following (4p) integration over the unresolved directio
Vb of the b electron implies that all other contribution
disappear independently of the exact nature (or symme
of the involved wave functions. Thus, for experiments n
resolving the direction of theb electron, and when only
the interference term is considered, the relevant excitati
of HeT1 are restricted to states ofS symmetry [9].

After integration overq and Vb , and after taking
the nonrelativistic limit, the first order correction (13
becomes [9]
I s1dsEn, Ebd ­ 2 Re
XZ

n0

kfn j w0lpkfn0 j w0l

(
kfnj

2X
k­1

"
2h2

√
1

2rAk
1

rAkEHeT1

nn0

2

!
2 hi ln rAk

#
jfn0l

1 dnn0kj0
00jZB

"
h2 1

2rAB

#
1 ZA

"
4
p

h 1
4

3p

pb

Eb

#
jj0

00l

)
, (14)
thod
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h-

i-

M,
f a
where we have omitted imaginary components of
nuclear contribution, since they do not contribute, ifj

0
00 is

a real function. Let us concentrate first on the nuc
contribution. It survives only whenn0 ­ n and turns
out to contain the contribution from the decaying nucle
(of order h) and the (previously unavailable for T2)
contribution from the spectator nucleus (of orderh2), both
proportional to the sudden amplitude

I s1d
nucsEn, Ebd ­

µ
ZA

8
p

∑
h 1

1
3

pb

Eb

∏
1 h2ZBkj0

00j
1

rAB
jj0

00l
∂

jkfn j w0lj2.

(15)

The first term [whereZA ­ 1 because of the splitting o
Uf adopted in Eq. (3)] recovers the loss of zeroth or
probability caused by evaluation of the Fermi factor
ZA ­ 1 instead ofZA ­ 2.

In the electronic contribution, the sum over interme
ate states runs over the multiply degenerated continuu
ionized states of HeT1, with different continuum branche
e

ar

s

r
r

i-
of

starting at the excited states of HeT11. To handle this
situation, we use the complex coordinate based me
(CCM) applied by us previously to the sudden impu
contribution (12) in Ref. [12]. To calculate the first ord
correction [Eq. (14)], we follow the development outlin
in Ref. [13]. For excitations above the ionization thres
old of HeT1 the discrete index ofIn is changed toE. The
electronic contribution can be structured as

I
s1d
el sE, Ebd ­ 2 Re

XZ
n0

kw0 j fnl kfnjDjfn0l kfn0 j w0l

­ hts0dp

n0 t
s1d
n0 1 c.c.j

­
1
p

Im
XZ

n

t
s0dp

n0 t
s1d
n0 1 c.c.

E 2 En 1 ie
, (16)

whereDsEnn0 , Ebd stands for the operator whose defin
tion is apparent from Eq. (14) andts1d

n0 is given byts1d
n0 ­P

n0kw0 j fnl kfnjDjfn0l kfn0 j w0l. The imaginary com-
ponent of Eq. (16) is evaluated by means of the CC
applied here for the first time to interference terms o
scattering amplitude
n

ion of the
nal
I
s1d
el sE, Ebd ­

1
p

Im
X
n,n0

kwup

0 j fu
n l kfup

n jDsud jf
u
n0 l kfup

n0 j w
u
0 l 1 kwup

0 j f
u
n0l kfup

n0 j Dpsupd jfu
n l kfup

n j w
u
0 l

E 2 E u
n

, (17)

where E u
n are the complex eigenvalues of the dilated molecular Hamiltonian for HeT1. The calculation has bee

performed in prolate spheroidal coordinates, in the clamped nuclei approximation at the nuclear separationReff discussed
above, generalizing the numerical apparatus presented in Ref. [12] and doubling the basis sets. The calculat
matrix elements with respect to the operatorD [containingr, 1

r , and lnsrd terms] has been reduced to two-dimensio
integrations which are performed numerically.
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FIG. 1. The final distribution of the probability density i
eV21 [renormalized toI0sEd] as a function of the excitation
energyE of HeT1, starting from the ionization threshold (i.e
at about 45 eV below the end point). In the insert, the fi
order correctionI s1d

el sEd (lower curve) is compared to the zero
order probability densityI s0dsEd (upper curve), the logarithmic
scale of energy covers 45 to 800 eV.

Analyzing the results, we first confirm the accura
of the zeroth order treatment presented in Ref. [12] a
extended here to an excitation range of 800 eV (see
insert in Fig. 1). Regarding the first order correcti
we note that both components ofI s1d

nuc are only weakly
dependent on the energy of theb electron (viah andh2,
respectively) and, as apparent from Eq. (15), depend
the excitation of HeT1 only via the sudden amplitude
They will therefore not contribute significantly to th
redistribution of probability in the renormalized spectru
Such redistribution could still be induced by the electro
contribution I s1d

el . This contribution isa priori of order
h, considering complexity of themolecular scattering
wave functions for HeT1. However, our numerical result
show surprisingly that also the electronic contribution tu
out to be proportional to the sudden amplitude. This
visualized in the insert of Fig. 1 whereI s1d

el is seen to be
parallel toI s0d on a logarithmic scale.

This result, obtained here for the first time for the m
lecular decay of T2, is therefore similar to the atomic cas
[14]. After renormalization of the corrected spectra, t
redistribution of the excitation probability becomes neg
gible and does not influence the sudden impulse pro
bility contained in the asymptotic tail, which accordin
to our calculation is 0.25% in the range 165 to 800 e
The precise determination of the asymptotic probabi
is important in view of recent suggestions that it co
siderably affects the neutrino mass extracted through
comparison of the experimental data with the theoret
distribution [5].
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TABLE I. The three momentsSsnd (n ­ 0, 1, 2) in feVg2n of
the first order corrected probability distribution compared to t
corresponding values obtained within the sudden approximat
(given in brackets).

Bound states 44.8 to 164.2 eV 164.2 to 800 e

Ss0d 0.8565 (0.8565) 0.1382 (0.1382) 0.0027 (0.002
Ss1d 8.5083 (8.5098) 9.5388 (9.5405) 0.7070 (0.706
Ss2d 262.83 (262.88) 696.72 (696.89) 225.11 (224.9

The final spectrum is presented in Fig. 1, and is al
available in tabular form. To give the feel for the negl
gible size of the first order correction, in Table I we com
pare the first three moments of the sudden amplitude w
their first order corrected (and renormalized) counterpa

The particular advantage of the present approach
above the ionization threshold of HeT1 and thus our
new distribution is especially recommendable, if the ma
extracting fitting procedure extends far away from the e
point of theb spectrum. To assess the accuracy of o
method, we have performed a calculation for the atom
case [9] reproducing the analytically available (sudd
impulse) result with a relative accuracy better than 0.002
in the range up to 800 eV.

The authors gratefully acknowledge the bilater
support from the Swedish Institute and the Deutsch
Akademischer Austauschdienst, and from the Swed
Natural Science Research Council. We also thank
organizers and participants of the ITAMP workshop
Harvard University for stimulating discussions.

[1] A. I. Belesevet al., Phys. Lett. B350, 263 (1995).
[2] Ch. Weinheimeret al., Phys. Lett. B300, 210 (1993).
[3] W. Stoeffl and D. J. Decman, Phys. Rev. Lett.75, 3237

(1995).
[4] K. Szalewicz, O. Fackler, B. Jeziorski, W. Kolos, and H.

Monkhorst, Phys. Rev. A35, 965 (1987).
[5] S. Jonsell and H. J. Monkhorst, Phys. Rev. Lett.76, 4476

(1996).
[6] M. Goldberger and K. Watson,Collision Theory (John

Wiley and Sons, New York, 1964).
[7] R. D. Williams and S. E. Koonin, Phys. Rev. C27, 1815

(1983).
[8] J. L. Lopez and L. Durand, Phys. Rev. C37, 535 (1988).
[9] A. Saenz and P. Froelich (to be published).

[10] L. Wolniewicz, J. Chem. Phys.43, 1087 (1965).
[11] B. Jeziorski, W. Kolos, K. Szalewicz, O. Fackler, and H.

Monkhorst, Phys. Rev. A32, 2573 (1985).
[12] P. Froelichet al., Phys. Rev. Lett.71, 2871 (1993).
[13] P. Froelich and W. Weyrich, J. Chem. Phys.85, 1456

(1986).
[14] J. Arafune and T. Watanabe, Phys. Rev. C34, 336 (1986).
4727


