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Gravitational Instantons and Minimal Surfaces
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We show that for every minimal surface iR® there is a gravitational instanton, an exact
solution of the Einstein field equations with Euclidean signature and anti-self-dual curvature. The
explicit metric establishing this correspondence is presented and a new class of exact solutions are
obtained. [S0031-9007(96)01786-3]
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Einstein field equations for anti-self-dual gravitational Upplpy — ”zx2 = K 4)
fields with Euclidean signature reduce to a complex elliptic
Monge-Ampere equation [1]. On a complex maniféd  as the only Einstein field equation governing this class of

of dimension 2, this equation is given by anti-self-dual solutions. The two-dimensional real Monge-
B Ampére equation with constant right hand side (4) admits
(99u)? = k*1, (1)  multi-Hamiltonian structure [11] which, by the theorem of

Magri [12], provides proof of its complete integrability.
whereu is the Kéhler potentiak) denotes the holomorphic Furthermore, Eq. (4) is equivalent to the equation for
exterior derivative, the bar denotes complex conjugationminimal surfaces in the elliptic case [13], whereas in the
and*1 is the volume element oM . Herex isaconstant hyperbolic case it corresponds to the Born-Infeld equation

which determines the character of this equation, namely, it14]. Using this correspondence, we can write the metric
is elliptic for « > 0 and hyperbolic if« < 0. Fork =0  for a class of instantons in the form

we have the complex homogeneous Monge-Ampére equa-

tion which plays a prominent role in the theory of functions 2 = K+ ¢f i + dy?)

of two complex variables as it is the direct generalization 1+ kgp? + ¢2

of Laplace’s equation [2]. The complex elliptic Monge- 1+ ¢2 *

Ampére equation is the Einstein field equation governing + 2 (dx* + dz?)
instantons [3—9]. It is a formidable equation; however, 1+ K¢,2 + ¢2

some progress can be made by looking at its reduction by

in less than two complex variables. Well-known instan- +2 > (didx + dydz), (5)
ton solutions such as the Eguchi-Hanson [5] and Gibbons- 1+ kdi + b3

Hawking [6] solutions can be obtained from a reduction of ) o ) )
Eq. (1) in one real variable [7]. In this Letter we shall Con_where.by the Einstein field equations reduce to the classical
sider a reduction of the complex Monge-Ampére equatiorfduation

in two real variables. One possibility, which is rather naive

but nevertheless very fruitful, is to simply assume that the (1 + ¢§)¢n —2¢:P by + (k + ¢,2)¢xx =0 (6)
Kéhler potential depends only on the real parts of the two

complex coordinates. For another reduction see [10]. Sa@overning minimal surfaces if = +1, or the Born-Infeld

if we lay down a local coordinate system 0 with two  equation fork = —1. Hence we have the following:
complex coordinateg! = ¢+ + iz, (> = x + iy and as- Theorem.—For every minimal surfacefiri the metric
sume thaw = u(z, x) only, then we are led to the K&hler (5) provides an instanton solution of the Einstein field
metric equations with Euclidean signature and anti-self-dual
curvature.
ds? = uy(di® + dy?) + ue(dx® + dz°) The proof of this theorem consists of a straightforward

) check that for the metric (5) the only Einstein field

+ 2u (dtdx + dydz) equation is given by Eqg. (6) governing minimal surfaces

and the Kahler 2-form in E3, and, provided that it is satisfied, the curvature 2-
form is anti-self-dual.
® = wydt A dy + updx A dz Examplt_as of instanton metrics_ that we can obtain
through this correspondence are given by
+ u(dx A dy + di A dz) 3 .
2 1 2 2
which is closed. Now from the reduction of the complex ds® = r[(dr + rangdg)” + (dR + rtanfd¢)
Monge-Ampére equation (1) we obtain + r2(d6* + d¢?)] (7
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and

ds* = ___l__;_[er + (r? — a)db?
" asind cosf
r2

+ (1 ~ < cos 0>dy2 +2 dydz
r

N (1 - s e)dz?] (8)

which is an asymptotically Euclidean metric that corre-

Infeld equation [15] is one of the richest of its kind, and its
complete integrability is therefore well established. It can
be solved by the classical hodograph method and from the
hodograph solution of Egs. (13), we arrive at the metric

ds® = (f = g)(dr* — dx* — dy?)

+

[dz + (f + g)dyP’.,  (14)

f—g

sponds to the catenoid or the helicoid minimal surfacewhere f(x + ) andg(x — ¢) are two arbitrary functions.

depending on

(9)

respectively.

This solution is analogous to (10).

We have established that every solution of the equation

for minimal surfaces inE3 gives rise to an instanton

solution of the Einstein field equations. This is a very
large class of solutions which is impossible to explore

Finally, there is a remarkably simple instanton metricfully in this Letter. We shall provide an exhaustive list

that contains an arbitrary analytic function
1
ds® = £(dr* + dx* + dy*) + 3 (dz + mdy)*, (10)
where¢ andn are conjugate analytic functions satisfying

ft = T Mx>, Mt = ‘fx» (11)

the Cauchy-Riemann equations.

In the hyperbolic case we can use the correspondenC(f3
between the Born-Infeld equation and the real hyperbolic ]

Monge-Ampére equation in two dimensions [14] to write
the metric in the form

ds* = V[(dx + Udt)* + (dz + Udy)?]
- %(dtz + dy?), (12)

where U,V satisfy the two-dimensional gas dynamics
version of the Born-Infeld equation [15],
U, =Uuu, + v3v,,

Vi =(UV)s, (13)

in a forthcoming publication.
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