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Imagine being showv samples of random variables drawn independently from the same distribution.
What can you say about the distribution? In general, of course, the answer is nothing, unless you have
some prior notions about what to expect. From a Bayesian point of view one neeaspaari
distribution on the space of possible probability distributions, which defines a scalar field theory. In
one dimension, free field theory with a normalization constraint provides a tractable formulation of the
problem, and we discuss generalizations to higher dimensions. [S0031-9007(96)01804-2]

PACS numbers: 02.50.Fz, 02.50.Ey, 03.70.+k, 87.10.+e

As we watch the successive flips of a coin (or thefaithful to the original problem of estimating a function
meanderings of stock prices), we ask ourselves if what weather than a limited number of parameters.
see is consistent with the conventional probabilistic model No finite number of examples will determine uniquely
of a fair coin. More quantitatively, we might try to fit the the whole functionQ(x), so we require a probabilistic de-
data with a definite model that, as we vary parametersscription. Using Bayes’ rule, we can write the probability
includes the fair coin and a range of possible biases. Thef the functionQ(x) given the data as
estimation of these underlying parameters is the classical
problem of statistical inference or “inverse probability,” PLO(x) | x1,x2, ..., xn]
and has its origins in the foundations of probability theory _ Plx).x0. . ...xn | Q) ]P[O()]

itself [1]. But when we observe continuous variables, the (1)
relevant probability distributions are functions, not finite P(xi, %2, xv)

lists of numbers as in the classical examples of flipping 0(x)0(x3) - - O(xn)P[O(x)]

coins or rolling dice. In what sense can we infer these = 2)

functions from a finite set of examples? In particular, f[dQ(x)]Q(xl)Q(XZ)"'Q(XN)P[Q(X?]

how do we avoid the solipsistic inference in which eachWhere we make use of the fact that eaghis chosen

data point we have observed is interpreted as the locatidRdependently from the distributio@(x), and P[Q(x)]

of a narrow peak in the underlying distribution? summarizes our priori hypotheses about the form of
Let the variable of interest be with probability distri- ~ Q(x). If asked for an explicit estimate of(x), one

bution Q(x); we start with the one dimensional case. WeMight try to optimize the estimate so that the mean-square

are given a set of points;, x,, ..., xy that is drawn inde- deviation from the correct answer is, at each paings

pendently fromQ(x), and are asked to estimag(x) it- small as po_ssuble. This optimal Ie;ast-square estimator

self. One approach is to assume that all posgitle) are ~ Qesi(x; {x;}) is the average of0(x) in the conditional

drawn from a space parametrized by a finite set of coordistribution of Eq. (2), which can be written as

dinates, implicitly excluding distributions that have many (0(x)0(x1)0(x2) - - - Q(xy YO

sharp features. In this case, it is clear that the number of Qest (o3 {xi}) = o > ©

(Q(x1)Q(x2)--- Q(xn))

examplesV can eventually overwhelm the number of pa-

rametersk [2]. Although the finite dimensional case is where by(- - -)© we mean expectation values with respect

often of practical interest, one would like a formulation to thea priori distributionP[Q(x)]. The prior distribution
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P[Q(x)] is a scalar field theory, and tlrepoint functions becomes large. Keeping only the configuration that ex-

of this theory are precisely the objects that determine outremizes the action—the pure classical approximation,

inferences from the data. with no fluctuations—is equivalent to maximum likeli-
The restriction of the distributio®(x) to a finite di- hood estimation, which chooses the distributigi(x),

mensional space represents, in the field theoretic larthat maximizesP[Q(x) |{x;}]. In our case, integration

guage, a sharp ultraviolet cutoff scheme. Several authomver fluctuations will play a crucial role in setting the

have considered the problem of choosing among distribuproper value of the scalé

tions with different numbers of parameters, which corre- The classical equations of motion fgrand A are

sponds to assuming that the true thea®Q(x)], has a

hard ultraviolet cutoff whose unknown location is to be 85(¢sA) _ 95(¢:A) _ 0 9)

set by this choice. As in field theory itself, one would 8¢ (x) aA ’

like to have a theory in which the observable quantities—

like your best estimat@..(x; {x;})—areindependenpf ~ Which imply

the cutoff as the cutoff goes to infinity. Our Bayesian ap- A N

proach will provide this. €2 palx) + iZ% e W = 3 5(x — x),  (10)
The prior distribution, P[Q(x)], should capture our € i=1

prejudice that the distributio@(x) is smooth, saP[Q(x)]

must penalize large gradients, as in conventional field l]dxewbd(x) —1. (11)

theories. To have a field variabl¢(x) that takes on a o

full range of real values—oo < ¢ < ), we write

Integrating Eqg. (10) and comparing with Eq. (11), we
1 find that iAg = N, provided thatd¢(x) vanishes as
4 1
00 = exp{ ¢l @ |x] — o [3]; as is often the case, the steepest descent

where €, is an arb|trary length scale. Then we takeapprommatlon to the integral requires us to deform the

¢ to be a free scalar field with a constraint to enforce'ntegral into the complex plane. If the pointsx;} are
normalization of O(x). Thus ¢(x) is chosen from a actually chosen from a distributioi(x), then, asN —

P o, we hope thatg(x) will converge to — In[{yP(x)].
probability distribution This would guarantee that our average over all possible
1 distributionsQ(x) is dominated by configuration@(x)
Pel¢0)] = Eexp{—zfdx(axdﬂz} that approximate the true dist>r/ibutioﬁq. So we write
dea(x) = —In[€pP(x)] + ¢(x) and expand Eg. (10) to
X 5[1 _ L ] dxe¢(x)i|, (5) first order iny(x). In addition we notice that the sum
o of delta functions can be written as
where Z is a normalization constant andis a length N
scale that defines the hypothesized smoothness of the Z 8(x — x;) = NP(x) + \/Np(x), (12)
distribution Q(x). We write P¢[¢(x)] to remind us that i=
we have chosen a particular value forand we will later ) ) )
consider averaging over a distribution 68, P(¢). The Wherep(x) is a fluctuating density such that
objects of interest are the correlation functions
(p(D)p(x)) = P(x)8(x — x'). (13)

(Q(x1)Q(x2) - Q(xy )
v The (hopefully) small fields(x) obeys the equation
[ pordswll] zoxd-swl  ©
i=1 X

— NP(0)](x) = VN p(x) + €3>InP(x), (14)

_ L l] @f D¢ exd—S(¢;M)], (7)  which we can solve by WKB methods because of the

6 Z large factorN:
where, by introducing the Fourier representation of the
delta function, we define the action Ylx) = [ dx' K(x,x') [N p(x') + €32 InP(x)],
S(h;A) = ] dx(9,b)? (15)
A u 2 1/4
+ 18_] dxe W + Z d(x;) —id. (8) K(x,x") ~ [€ P(x)P(x")]V
0 i=1
We evaluate the functional integral in Eq. (7) in a semi- % ex ma’(x’x) NP(y) (16)
classical approximation, which becomes accuratevas .n(xxr) dy ¢ '
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Thus the “errors™y(x) in our estimate of the distribution estimate of the probability distribution from Eq. (3) is
involve an average of the fluctuating density over afinite even when we ask abod@(x) at the points where
region of (local) size¢ ~ [¢/NP(x)]'/2. The average we have been given examples: we are in one dimension
systematic error and the mean-square random error amhere ultraviolet divergences are not a problem.

easily computed in the limilv — « because this length  Although our theory is finite in the ultraviolet, we

scale becomes small. We find do have an arbitrary length scale This means that
we define,a priori, a scale on which variations of the
(Y(x)) = _t ?InP(x) + -, (17)  probability O(x) are viewed as “too fast.” One would
NP(x) rather let all scales in our estimate of the distribution
) 1 1 Q(x) emerge from the data points themselves. We can
L8] ¥ JNPO) o (18)  restore scale invariance (perhaps scale indifference is a

better term here) by viewind itself as a parameter
justifying our claim that the classical solution convergesthat needs to be determined. Thus, as a last step in

to the correct distribution. evaluating the functional integral, we should integrate
The complete semiclassical result is over ¢, weighted by some prior distributior®(€), for
values of this parameter. The hope is that this integral
(Q(x1)0(x2) - Oy ) = will be dominated by some scalé,, that is determined
| primarily by the structure oD (x) itself, at least in the
-~ Rexd—S(¢da; A = —iN)], (19) largeN limit. As long as oura priori knowledge about
N can be summarized by a reasonably smooth distribution,
whereR is the ratio of determinants, then, at largeV, €. must be the minimum of’, since this
q ) _1 is the only place wheré appears with coefficients that
R = { e{—¢a; + Nch(x)]} . (20) grow as powers off. To see how this works we compute
det(—€92) the average value of and minimize with respect to

Up to constant factors, this amounts to balancing the
ependence of the kinetic energy against that of the
tuation determinant. The result is

This has to be computed a bit carefully—there is noﬁ'd
restoring force for fluctuationsy, but these can be fluc
removed by fixing the spatially uniform component of

¢ (x), which enforces normalization a@(x) [4]. Then

the computation of the determinants is standard [5], and (. Nl/{ [dxP'/? }2/3 ”
we find * [ dx(d,InP)?

1/2
R = exr{—% <%> f dx\/ch(x)}, (21)  Strictly, one should use a particular valuefofand not its
average, but fluctuations are of lower orderNnand do
where as before we use the limif — « to simplify  not change the qualitative result « N'/3.
the result [6]. It is interesting to note th& can also If the fluctuation effects were ignored, as in maximum
be written as exp-(1/2) [dx ¢é~'], so the fluctuation likelihood estimation,¢ would be driven to zero and
contribution to the effective action counts the number ofwe would be overly sensitive to the details of the data

independent “bins” (of size-¢) that describe) (x). points. This parallels the discussion of “Occam factors”
Putting the factors together, we find that in the finite dimensional case, where the phase space
factors from integration over the parametégs,} serve
(Q(x1)Q(x2) -+ Qe )@ = to discriminate against models with larger numbers of

N parameters [2]. It is not clear from the discussion of
l_[P(xi)eXF[ — F(x1,x2,...,xy)], (22) finite dimensional models, however, whether these factors
i=1 are sufficiently powerful to reject models with an infinite
number of parameters. Here we see that, even in an
infinite dimensional setting, the fluctuation terms are
1 /N\/2 sufficient to control the estimation problem and select a
F({xi}) = 3( ) fdx P2 (x)e” "2 model with finite,N-dependent, complexity.
¢ N Because we are trying to estimate a function, rather
t _ 2 than a finite number of parameters, we must allow our-
* 2 f dx(@:InP = oxyp)” + l; hxi). selves to give a more and more detailed description of the
(23) function Q(x) as we see more examples; this is quanti-
fied by the scalé.. on which the estimated distribution is
The crucial point, which can be verified from the explicit forced to be smooth. With the selection of the optimal
solution in Eq. (16), is thaF({x;}) is finite, even when ¢ from Eq. (24), we see thaf. = (€./N)'/? o« N~1/3,
multiple points x; approach each other. Hence ourThe classical solution converges to the correct answer
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with a systematic error, from Eq. (17), that vanishes asre drawn from ensembles with proportionately higher or-
() « N=2/3, while the random errors have a varianceder notions of smoothness, one would require an infinite
[EQ. (18)] that vanishes with the same powerhdf We  amount of information to specify the function at finite pre-
can understand this result by noting that in a region otision. Once we adopt these more stringent smoothness

size &. there are, on averag#l, ~ NP(x)¢&. examples,

hypotheses, however, the worst that happens is a reduction

which scales a#/., « N%?; the random errors then have in the error exponeni by a factor of 2.

a standard deviatiofA s ~ 1/+/Nex [7].
What happens in higher dimensions?

Is there a more general motivation for the choice of

If we keep theaction in Eq. (25)? First, this action gives the maxi-

free field theory then we will have problems with ultra- mum entropy distribution consistent with a fixed value of
violet divergences in the various correlation functions of [ d”x(d% ¢)?, and by integrating ovef we integrate over

the field (x). Becausa(x) = (1/€) exd —¢(x)], ultra-

these fixed values. Thus our action is equivalent to the

violet divergences irp mean that we cannot define a nor- rather generic assumption that probability distributions are

malizable distribution for the value @ at a single point
in the continuum limit.

drawn from an ensemble in which this “kinetic energy”
In terms of information theory is finite. Second, addition of a constant ¢gx) can be

[8], if functions Q(x) are drawn from a distribution func- absorbed in a redefinition of the arbitrafy, so it makes
tional with ultraviolet divergences, then even specifyingsense to insist om» — ¢ + const as a symmetry. Fi-
the functionQ(x) to finite precision requires an infinite nally, addition of other terms to the action cannot change

amount of information.

the asymptotic behavior at largé unless these terms are

As an alternative, we can consider higher derivativerelevant operators in the ultraviolet. Thus many different
actions in higher dimensions. All the calculations arepriors P[Q(x)] will exhibit the same convergence proper-
analogous to those summarized above, so here we lisies, indexed by a single exponeta).

only the results. If we write, inD dimensions,Q(x) =
(1/€5) exd — ¢ (x)], and choose a prior distribution

Ploco) = Ted ~ [ axaror]

2
X 6|:1 - indee¢(x)i|; (25)
€o

then to insure finiteness in the ultraviolet we must
have 2a > D. The saddle point equations lead to a
distribution that smooths the examples on a scale
(€2*=D /NQ)!/2@ and the fluctuation determinant makes
a contribution to the actiorr [ dPx[NQ(x)/¢2* PP/,
Again we find the optimal value of as a compromise
between this term and the kinetic energy, resulting.in«
NP/@a*=D*  Then the optimal value of becomest. =
N~ 1/@a+D) gq that the estimated distribution is smooth in
volumes of dimensior¥? that containN,, ~ NQ&P ~
N2e/a+D) examples. Then the statistical errors in the
estimate will behave as

8ms * 80/0 ~ No/? ~ N7H,

(26)

with the “error exponentiu = «/(2a + D). Note that
since2a > D, the exponent/4 < u < 1/2. The most
rapid convergencep = 1/2, occurs if Q(x) is drawn
from a family of arbitrarily smooth ¢ — ) distribu-
tions, so we can choose fixed, small bins in which to accu-
mulate the samples, leading to the naiye/N counting
statistics. If we assume that our prior distribution func-
tional is local, therme must be an integer and we can have
u — 1/4 only as D — oo, so that the slowest possible
convergence occurs in infinite dimension.

The fact that higher dimensional functions are more dif-
ficult to learn is often called the “curse of dimensional-
ity.” We see that this is not just a quantitative problem—
unless we hypothesize that higher dimensional functions
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