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Noise-Mediated Spike Timing Precision from Aperiodic Stimuli in an Array of
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The influence of noise on the detection and timing precision of neural signals is a topic of current
interest. Experimentalists and theorists have recently studied its influence on neural responses to
aperiodic stimuli and in relation to temporal encoding schemes. We explore these topics using
an array of noisy Hodgekin-Huxley neurons stimulated by a single pulse-type stimulus, which is
either subthreshold or suprathreshold. The timing precision is improved by internal noise only for
deterministically subthreshold stimuli. A classical statistical formula captures the dominant features of
the simulation [S0031-9007(96)01771-1]

PACS numbers: 87.22.As, 05.40.+j, 87.10.+e

Attempts to understand how individual neurons or At the same time, it has become a widely used practice
neuronal networks encode information have occupiedo stimulate with an “aperiodic” single sample, that is, a
neuroscientists for decades. The most frequently usefihite length time course, taken from a noise distribution
encoding scheme-+ate coding—is based on short time [11,16—21]. Experimentalists often repeatedly apply this
averages of the rate at which neurons fire, or generatgame sample (it thus becomes periodic unless presented at
action potentials (spikes). In 1972, populations of leakyrandom times) in order to average the responses [11,16—
integrate-and-fire stochastic neurons demonstrated rag9]. The problem with this procedure, when consider-
coding in a simulation [1]. But rate coding in a single ing response timing precision, is that the stimulus sample
neuron is slow (limited by the mean firing rate and byoften contains both subthreshold and suprathreshold fea-
the averaging time of the detector neuron), and onlytures, and, as we show here, the internal noise of the
highly redundant ensembles of many neurons using rateeuron affects these two features in quite different ways.
coding can speed the response. Recently, much intere&tided internal neuronal noise can improve the timing pre-
has centered on developirigmporal encoding schemes cision of deterministically subthreshold stimuli, and op-
[2], wherein information is carried in spike patternstimal noise results in maximal improvement, similar to
interpreted during a much shorter time window [3,4].stochastic resonance [16—20,22—-31]. By contrast, noise
These ideas are embedded in a more general questionenly degrades the timing precision of suprathreshold stim-
one of information transmission efficiency: Are neuronsuli. The effects of periodically forced, subthreshold stim-
noisy and slow transmitting only a small amount ofuli on a giant squid axon have been reported recently [32].
information plus much noise [5], or are they fast, efficient, We report here the results of a numerical simulation of
largely noise free, and capable of transmitting spikel000 Hodgekin-Huxley (HH) neuron models connected in
patterns which only seem to be noisy but, in fact, argarallel and converging, through excitatory synapses, on a
deterministic and very complex [6,7]? In the latter summing centei, as shown in Fig. 1(a). The HHs are
case, one would expect complex patterns, recognizabieentical simple 4 conductance (Na, K, leak, and stimulus)
by single or networks of detecting neurons, to emergemodels, as shown in Fig. 1(b), with the current through
The feasibility of submillisecond coincidence detection,each conductance given by
which might be important for the interpretation of such I, = ¢.(mp — Euy) (1)
patterns, has been demonstrated in noise free dendritic x 7 8xlM ext/>
trees [8] which are capable of large computational powewhere g, is the channel conductance €Na, K, leak,
[9]. However, if one admits the possibility that at leastor synaptic stimulus, synj, is the membrane potential,
some internal noise may be present, one is perforce le@ind E.,, is a constant external driving force. Each HH
to a statistical consideration of spike timing precision [9].includes an internal Gaussian noigg of zero mean and
Much effort has been put into this question, using bothstandard deviatiow, which is temporally correlated with
experiments [10—13] and numerical models and theoriesorrelation timer (equal to the integration time step),
[8,12—15]. What is missing from this body of work is but is uncorrelated with the noise in any other HH in
a consideration of the effects of noise on the responsthe array. All HHs are subject to the same stimulus
precision of deterministically subthreshold single stimuli,S(z), applied as a synaptic conductance chaggg(r);
which are surely important in the peripheral if not thesee Fig. 1(a). The stimulus can be deterministically
central nervous system. Deterministically subthresholéubthreshold or suprathreshold. All HHs are subject
stimuli are defined to be those which can evokespikes to the same magnitude noise intensity which is an
in the absence of noise. independent variable. Similar arrays have been previously
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FIG. 1. (a) A schematic diagram of the parallel array of 150 ( ) =99

Hodgekin-Huxley (HH) neuron models convergent on a sum- 0
ming center?, through excitatory synapses. The simulation in- j '

volved 1000 identical HH models in the array. (b) A diagram -10 0 10 20 30
of a single HH model showing the usual channel conductances
plus the stimulusS(z) = 1/gs(r) common to all HHs and the

noise{ (1), independent for each HH. FIG. 2. (a) An example subthreshold stimulus. (b)—(d) The
PSTHs resulting from the stimulus in (a): for small noise (b),
studied with the single sample noise stimulus repeatedl%pt”“"JII noise (c), and large noise (d). The solid curves

. . : b)—(d) are the predictions of Eq. (3) fotf = 23.6 mV,
applied [17] as well as an array of on-off devices with aA0(=)—E10) mv. Theeloise standard é]e\/(ia)tions (in mV) shown

single frequency periodic input [33]. were common to both the numerical simulations and the theory.
In our simulation, a biologically reasonable input,
S(t) = (At/tg) exp(1 — t/tg), of maximum amplituded
and characteristic time,, was applied only once The
post stimulus time histogram (PSTH) of all spikes from
the HHs was collected at the output of the summing
center. This quantity mimics the stimulu&r), but is
somewhat different in shape. We define the spike timing
precision P, based on the shape of a smoothed data set
obtained as a five point moving average of the PSTH,

P = (PSTFDmax/W > (2)

where(PSTHmax is the maximum value of the smoothed
data, and¥ is the width aPSTHmax/e. A subthreshold
stimulusS(¢), and the resulting PSTHs (unsmoothed) for
three different noise intensities are shown in Fig. 2. We '
note that for both small and large noise, Figs. 2(b) and 0 2 4 6 8 10
2(d), respectively, the timing precision is smaller than
for some intermediate noise intensity 2(c). On the other
hand, the PSTHs for suprathreshold stimuli are similaFIG. 3. The spike timing precision versus internal noise in-
except thatP is monotonously degraded by increasingte_nsity. (a) Deterministically subthresholql stimuli of larger am-
noise intensity. Figure 3 summarizes this finding, whereitude, 4 = 24.5 mV (upper data set—triangles), and smaller
. - L . amplitude, A = 23.6 mV (lower set—circles). The solid
in '3(a.) we _show the timing precision versus m_ternalCurves are the predictions of Egs. (3) and (4) fap =
noise intensity for two subthreshold stimulus amplitudes.—40 mv, where A is used as an adjustable fitting constant,
Note that larger stimulus amplitudes result in larger spikeobtainingA = 24.0 mV (upper set) andi = 22.5 mV (lower
timing precisions. Moreover, for each amplitude, there isset) for the fits shown, which deviate from thevalues used in

an optimal noise intensity which maximizes the precision,the numerical simulation by less than 5%. (b) Suprathreshold

d th timal | f . . ler for | stimuli for larger (upper data set) and smaller (lower data set)
and the optimal valué of noise 1S smaller Tor 1argerymyiivude stimuli. Sequential points are connected by straight

amplitude stimuli. By contrast, Fig. 3(b) shows that, jines as a guide to the eye, since the theory is not applicable to
for suprathreshold stimuli, the noise induced optimizationsuprathreshold stimuli. In both panels, the multiple symbols
vanishes. Larger stimulus amplitudes and smaller noisat each noise intensity represent the results of separate simu-

i it i idations for the same conditions but differing realizations of
intensities both lead inexorably to larger response spik e noise. The scatter thus indicates the statistical variability

timing prepisfions as gxpecte_d, the stimulus amp”t“q%f the simulation. It is worth noting that for noise intensities
effect on timing preC|S|on_haV|ng also peen observed impove about 4 mv, the precisions of both suprathreshold and
both recent [11] and classical [34] experiments. subthreshold stimuli are approximately equal.
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Figure 4 shows the behavior at three constant noisef (v)(¢) occurs atr = f,, the characteristic time of the
intensities with increasing stimulus amplitude. For thestimulus, and is given by
smallest noise, the threshold is close to deterministic and o
is clearly distinguishable. Increasing stimulus amplitude (¥)madto) = NG exd—(Af — 2404 + A%)/207%]. (4)
always results in improved timing precision, whereas
increasing noise intensity improves the precision onlyThe equation for the two times at whig)madz1,2) =
of deterministically subthreshold stimuli and only over a{v)madfo)/e is transcendental but was solved numerically
limited range. for the width W = r, — 11, thus giving the precision,
Because the results of our simulation seem entirel? = (v)max/ W as shown by the solid curves in Fig. 3(a).
reasonable, it should be possible to capture the main Beyond the adiabatic assumption, a second approxima-
features with a simple analytical formula. Classically thetion inherent in this analysis neglects the fact that there
leaky integrator with a threshold has been investigated as a refractory time built into the HH model. Though
a first passage time problem with a time varying thresholdeither approximation is well represented by the HH dy-
[35—-39]. By contrast with these prior and perhaps moregnamics, the fits to the numerical data based on Eq. (3)
biologically motivated calculations, we begin with a are surprisingly good. Though a more refined, accurate,
formula from the classical engineering literature [40],and biologically motivated theory, such as the one due
which is an exact result for the mean threshold crossingo Cowan [42], could be applied, we believe the simple
rate », of a Gaussian, band-limited noise of standardphysical transparency of the present calculation has value
deviation o, whose mean is located a distansefrom  as an aid to understanding the dynamics of spike timing

the threshold. precision.
fo A2 To summarize, we have shown that the spike timing
(v) = Nehi —ﬁ} (3)  precision due to subthreshold stimuli can be enhanced by

_ internal noise, whereas the precision due to suprathreshold
where the shape of the power spectrum of the noisgtimyli is only degraded by it. In response to spikes
is low pass rectangular with upper cutoff frequenty  arriving at the summing center, a single spike will or
We now make the familiar adiabatic assumption: that thyj|| not appear at the output of the integrate-and-fire,
mean of this noise evolves identically in time with the 5, decision neuron, shown in Fig. 1(a), in response to
;timulusS(r), and that the mean_crossing rate is giveng single applied stimulus at the HH inputs. We are
instantaneously by Eg. .(3), that is, we pretend that theyrrently studying the statistics of the decisions both with
statistics are stationary; whereup¢m — (v) (). The  this numerical model and with our experimental crayfish
temporal changes ifw) (1) evolve on the scale af, and  t4jifan/sixth ganglion preparation [43].

the adiabatic assumption requires that> 1/f,. With We are grateful to M. Stemmler and to E. Kaplan for

this we can allow the threshold-to-stimulus (noise meanktimuylating discussions on timing precision. This research

distance in Eq. (3) to become a function of time, is supported by the Office of Naval Research physics
A— A@) = Ao — S(1), (4) division.

whereA is the distance from the threshold to the baseline
of S(¢r). Equation (3) thus gives the time evolution of the *Center for Neurodynamics.
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