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The influence of noise on the detection and timing precision of neural signals is a topic of cur
interest. Experimentalists and theorists have recently studied its influence on neural respons
aperiodic stimuli and in relation to temporal encoding schemes. We explore these topics u
an array of noisy Hodgekin-Huxley neurons stimulated by a single pulse-type stimulus, which
either subthreshold or suprathreshold. The timing precision is improved by internal noise only
deterministically subthreshold stimuli. A classical statistical formula captures the dominant feature
the simulation [S0031-9007(96)01771-1]
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Attempts to understand how individual neurons
neuronal networks encode information have occup
neuroscientists for decades. The most frequently u
encoding scheme—rate coding—is based on short tim
averages of the rate at which neurons fire, or gene
action potentials (spikes). In 1972, populations of lea
integrate-and-fire stochastic neurons demonstrated
coding in a simulation [1]. But rate coding in a sing
neuron is slow (limited by the mean firing rate and
the averaging time of the detector neuron), and o
highly redundant ensembles of many neurons using
coding can speed the response. Recently, much int
has centered on developingtemporal encoding scheme
[2], wherein information is carried in spike patter
interpreted during a much shorter time window [3,
These ideas are embedded in a more general questi
one of information transmission efficiency: Are neuro
noisy and slow transmitting only a small amount
information plus much noise [5], or are they fast, efficie
largely noise free, and capable of transmitting sp
patterns which only seem to be noisy but, in fact,
deterministic and very complex [6,7]? In the lat
case, one would expect complex patterns, recogniz
by single or networks of detecting neurons, to eme
The feasibility of submillisecond coincidence detecti
which might be important for the interpretation of su
patterns, has been demonstrated in noise free den
trees [8] which are capable of large computational po
[9]. However, if one admits the possibility that at lea
some internal noise may be present, one is perforce
to a statistical consideration of spike timing precision [
Much effort has been put into this question, using b
experiments [10–13] and numerical models and theo
[8,12–15]. What is missing from this body of work
a consideration of the effects of noise on the respo
precision of deterministically subthreshold single stim
which are surely important in the peripheral if not t
central nervous system. Deterministically subthresh
stimuli are defined to be those which can evokeno spikes
in the absence of noise.
0031-9007y96y77(22)y4679(4)$10.00
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At the same time, it has become a widely used prac
to stimulate with an “aperiodic” single sample, that is
finite length time course, taken from a noise distribut
[11,16–21]. Experimentalists often repeatedly apply t
same sample (it thus becomes periodic unless present
random times) in order to average the responses [11
20]. The problem with this procedure, when consid
ing response timing precision, is that the stimulus sam
often contains both subthreshold and suprathreshold
tures, and, as we show here, the internal noise of
neuron affects these two features in quite different wa
Added internal neuronal noise can improve the timing p
cision of deterministically subthreshold stimuli, and o
timal noise results in maximal improvement, similar
stochastic resonance [16–20,22–31]. By contrast, n
only degrades the timing precision of suprathreshold s
uli. The effects of periodically forced, subthreshold sti
uli on a giant squid axon have been reported recently [

We report here the results of a numerical simulation
1000 Hodgekin-Huxley (HH) neuron models connected
parallel and converging, through excitatory synapses,
summing centerS, as shown in Fig. 1(a). The HHs a
identical simple 4 conductance (Na, K, leak, and stimul
models, as shown in Fig. 1(b), with the current throu
each conductance given by

Ix  gxsmb 2 Eextd , (1)

where gx is the channel conductance (x Na, K, leak,
or synaptic stimulus, syn),mb is the membrane potentia
and Eext is a constant external driving force. Each H
includes an internal Gaussian noisejn, of zero mean and
standard deviations, which is temporally correlated with
correlation timet (equal to the integration time step
but is uncorrelated with the noise in any other HH
the array. All HHs are subject to the same stimu
Sstd, applied as a synaptic conductance changegsynstd;
see Fig. 1(a). The stimulus can be deterministica
subthreshold or suprathreshold. All HHs are subj
to the same magnitude noise intensitys, which is an
independent variable. Similar arrays have been previo
© 1996 The American Physical Society 4679
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FIG. 1. (a) A schematic diagram of the parallel array
Hodgekin-Huxley (HH) neuron models convergent on a su
ming centerS through excitatory synapses. The simulation i
volved 1000 identical HH models in the array. (b) A diagra
of a single HH model showing the usual channel conductan
plus the stimulus,Sstd  Iygsynstd common to all HHs and the
noisejstd, independent for each HH.

studied with the single sample noise stimulus repeate
applied [17] as well as an array of on-off devices with
single frequency periodic input [33].

In our simulation, a biologically reasonable inpu
Sstd  sAtyt0d exps1 2 tyt0d, of maximum amplitudeA
and characteristic timet0, was applied only once. The
post stimulus time histogram (PSTH) of all spikes fro
the HHs was collected at the output of the summi
center. This quantity mimics the stimulusSstd, but is
somewhat different in shape. We define the spike tim
precisionP, based on the shape of a smoothed data
obtained as a five point moving average of the PSTH,

P  sPSTHdmaxyW , (2)

wheresPSTHdmax is the maximum value of the smoothe
data, andW is the width atsPSTHdmaxye. A subthreshold
stimulusSstd, and the resulting PSTHs (unsmoothed) f
three different noise intensities are shown in Fig. 2. W
note that for both small and large noise, Figs. 2(b) a
2(d), respectively, the timing precision is smaller th
for some intermediate noise intensity 2(c). On the oth
hand, the PSTHs for suprathreshold stimuli are sim
except thatP is monotonously degraded by increasin
noise intensity. Figure 3 summarizes this finding, whe
in 3(a) we show the timing precision versus intern
noise intensity for two subthreshold stimulus amplitud
Note that larger stimulus amplitudes result in larger sp
timing precisions. Moreover, for each amplitude, there
an optimal noise intensity which maximizes the precisio
and the optimal value of noise is smaller for larg
amplitude stimuli. By contrast, Fig. 3(b) shows tha
for suprathreshold stimuli, the noise induced optimizati
vanishes. Larger stimulus amplitudes and smaller no
intensities both lead inexorably to larger response sp
timing precisions as expected, the stimulus amplitu
effect on timing precision having also been observed
both recent [11] and classical [34] experiments.
4680
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FIG. 2. (a) An example subthreshold stimulus. (b)–(d) T
PSTHs resulting from the stimulus in (a): for small noise (b
optimal noise (c), and large noise (d). The solid curv
in (b)–(d) are the predictions of Eq. (3) forA  23.6 mV,
D0  240 mV. The noise standard deviations (in mV) show
were common to both the numerical simulations and the the

FIG. 3. The spike timing precision versus internal noise
tensity. (a) Deterministically subthreshold stimuli of larger am
plitude, A  24.5 mV (upper data set—triangles), and small
amplitude, A  23.6 mV (lower set—circles). The solid
curves are the predictions of Eqs. (3) and (4) forD0 
240 mV, where A is used as an adjustable fitting consta
obtaining A  24.0 mV (upper set) andA  22.5 mV (lower
set) for the fits shown, which deviate from theA values used in
the numerical simulation by less than 5%. (b) Suprathresh
stimuli for larger (upper data set) and smaller (lower data s
amplitude stimuli. Sequential points are connected by stra
lines as a guide to the eye, since the theory is not applicabl
suprathreshold stimuli. In both panels, the multiple symb
at each noise intensity represent the results of separate s
lations for the same conditions but differing realizations
the noise. The scatter thus indicates the statistical variab
of the simulation. It is worth noting that for noise intensitie
above about 4 mV, the precisions of both suprathreshold
subthreshold stimuli are approximately equal.
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Figure 4 shows the behavior at three constant no
intensities with increasing stimulus amplitude. For th
smallest noise, the threshold is close to deterministic a
is clearly distinguishable. Increasing stimulus amplitud
always results in improved timing precision, wherea
increasing noise intensity improves the precision on
of deterministically subthreshold stimuli and only over
limited range.

Because the results of our simulation seem entire
reasonable, it should be possible to capture the m
features with a simple analytical formula. Classically th
leaky integrator with a threshold has been investigated
a first passage time problem with a time varying thresho
[35–39]. By contrast with these prior and perhaps mo
biologically motivated calculations, we begin with
formula from the classical engineering literature [40
which is an exact result for the mean threshold cross
rate n, of a Gaussian, band-limited noise of standa
deviation s, whose mean is located a distanceD from
the threshold.

knl 
f0p

3
exp

∑
2

D2

2s2

∏
, (3)

where the shape of the power spectrum of the no
is low pass rectangular with upper cutoff frequencyf0.
We now make the familiar adiabatic assumption: that t
mean of this noise evolves identically in time with th
stimulus Sstd, and that the mean crossing rate is give
instantaneously by Eq. (3), that is, we pretend that t
statistics are stationary; whereuponknl ! knl std. The
temporal changes inknl std evolve on the scale oft0, and
the adiabatic assumption requires thatt0 ¿ 1yf0. With
this we can allow the threshold-to-stimulus (noise mea
distance in Eq. (3) to become a function of time,

D ! Dstd  D0 2 Sstd , (4)

whereD0 is the distance from the threshold to the baseli
of Sstd. Equation (3) thus gives the time evolution of th
meanknl std, which is actually the time evolution of the
PSTH, assuming that one threshold crossing results
the generation of one spike [41]. The PSTH is shown
the solid curves in Figs. 2(b)–2(d). The maximum valu

FIG. 4. The spike timing precision versus stimulus amplitud
for three noise intensities:s  0.2 mV uppermost data set,
s  1.7 mV middle data set, ands  4.6 mV lowermost data
set. The deterministic threshold is marked by the arrow.
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of knl std occurs att  t0, the characteristic time of the
stimulus, and is given by

knlmaxst0d 
f0p

3
expf2sD2

0 2 2D0A 1 A2dy2s2g . (4)

The equation for the two times at whichknlmaxst1, t2d 
knlmaxst0dye is transcendental but was solved numerica
for the width W  t2 2 t1, thus giving the precision,
P  knlmaxyW as shown by the solid curves in Fig. 3(a

Beyond the adiabatic assumption, a second approxi
tion inherent in this analysis neglects the fact that th
is a refractory time built into the HH model. Thoug
neither approximation is well represented by the HH d
namics, the fits to the numerical data based on Eq.
are surprisingly good. Though a more refined, accura
and biologically motivated theory, such as the one d
to Cowan [42], could be applied, we believe the simp
physical transparency of the present calculation has va
as an aid to understanding the dynamics of spike tim
precision.

To summarize, we have shown that the spike timi
precision due to subthreshold stimuli can be enhanced
internal noise, whereas the precision due to suprathres
stimuli is only degraded by it. In response to spik
arriving at the summing center, a single spike will
will not appear at the output of the integrate-and-fi
or decision neuron, shown in Fig. 1(a), in response
a single applied stimulus at the HH inputs. We a
currently studying the statistics of the decisions both w
this numerical model and with our experimental crayfi
tailfan/sixth ganglion preparation [43].
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