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On-line versus Off-line Learning from Random Examples: General Results
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| propose a general model of on-line learning from random examples which, when applied to a
smooth realizable stochastic rule, yields the same asymptotic generalization error rate as optimal batch
algorithms. The approach is based on an iterative Gaussian approximation to the posterior Gibbs
distribution of rule parameters. [S0031-9007(96)01752-8]

PACS numbers: 87.10.+e, 05.90.+m

Understanding the ability of neural networks to infer un-a distribution P(y | w) with the unknown parametew.
known rules from random data is an active and fascinating hroughout this Lettesy will be anN component real vec-
field in statistical mechanics. For an overview, see [1—3]tor. This picture fits well to the problem ainsupervised
Recently, much interest was devoted to the problem of onlearning,where one tries to model an unknown probability
line learning. When examples are presented sequentiallyensity from random observations. In this case, each
to the learner, on-line algorithms change their hypothesiss typically identified with a vectoxk,, in a space of fea-
about the unknown rule, depending on the old hypothesitures. For the case sfipervised learninggachyy is a pair
and the most recent example only. Hence the storage of tHer,,, x .} which contains a vector of inputs, and an out-
entire set of examples is avoided. Although some amourptut o, which, e.g., may be a discrete classification label or
of information is obviously discarded in this method, sur-a continuous function value for a regression problem. For
prisingly, on-line algorithms can achieve similar asymp-the supervised problem the data generating probability is a
totic generalization rates [4—6] as the more complicategroductP(y|w) = P(o | w,x)f(x), wheref is the den-
optimal batch algorithms. In some cases, for optimallysity of the inputs. The conditional probabiliB(o | w, x)
tuned algorithms [7—9], even theameasymptotic rates for getting an output to a given input models the stochas-
[10] can be obtained. However, the latter results on optitic rule to be learned. In the context of neural networks,
mal learning rates were derived for highly idealized situa.we may think thatP corresponds to a net with weights
tions. Usually, the thermodynamic limit is studied, wherew which calculates an output to an inputx. This cal-
the number of parameters and data grows infinite. Thergulation is corrupted by an additional independent noise
using a variational method, the average case performangeocess.
of the algorithm can be explicitly calculated in terms of The problem ofon-line learningcan be stated as fol-

a few order parameters. This calculation requires the agews: We assume that all examples are observed sequen-
sumption of special network architectures combined withtially but are not stored. When the+ 1 exampley,+;

a highly symmetric data distribution. For both theoreti-is received, the learner tries to calculate a new estimate
cal and practical purposes it is important to understandav(s + 1) which is based only orny,+;, the old estimate
whether on-line algorithms can achieve the same predic¥ (), and possibly a set of other auxiliary quantities which
tion performance as the corresponding batch procedures imave to be updated at each time step but are much smaller
a more general setting. Unfortunately, it is reofpriori in number than the entire set of previous training data.
clear how to derive globally optimal on-line algorithms The following Bayesian approach [11] motivates the con-
outside the thermodynamic limit framework. Hence, Istruction of an optimal on-line algorithm in a natural and
will be directly concerned with the problem a@symp- simple way. In the Bayesian framework of statistical in-
totic optimality when the number of data is much largerference [11], one assumes that the prior uncertainty about
than the number of parameters. Using an approximationnknown parameters, e.g., network couplings, can also be
to a Bayes procedure, | will derive an on-line algorithmencoded in a probability distribution, the so-calledor
which achieves the smallest error rates possible for the(w). According to Bayes theorem, the knowledge about
learning of smooth stochastic rules when the problem isv, after having observed examples, is expressed by the
realizable. This result holds for both supervised and unsysosterior density

pervised learning. The derivation gives a simple explana- !

tion for the optimality of the algorithm, thereby providing pwID) =z "'pw) [ P(yulw) 1)
an interpretation of previous results for the thermodynamic u=l
limit in terms of statistical quantities. which plays the role of a Gibbs distribution in the sta-

The basic probabilistic setting of the learning problemtistical mechanics of learning. The normalizing constant
is as follows. A setof dataD; = (y,y2,....,y,)isob- Z = [ dwp(w) l_[;:1 P(y, | w)is the partition function.
served and assumed to be generated independently fronhe on-average (over the posterior) optimal prediction on
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novel data cannot be realized by a network in which theAn algorithm which is somehow similar in spirit is the
parameters take specific values; it can only be realized bgn-line Gibbs algorithm defined in [6]. Their model can
performing an ensemble average over the posterior Gibldse understood as an approximation of the old posterior by
distribution, e.g., the Bayes optimal prediction for the un-a sphericalGaussian.

known probability itself is given by the mixture In the following, | will discuss the average case per-
formance of the algorithms (4) and (5). Since so far
P(y) = / dwP(y|w)p(w|D;) (2) ageneralmethod for calculating expliciglobal conver-
gence properties for arbitrary on-line algorithms is not
which is the so-callegredictive distribution. available, | will restrict myself to a local analysis. As-

When a new data point,+; is observed, the posterior suming that the on-line dynamics is close to an attrac-
density has to be updated. One easily obtains the followtive fixed point w*, it is possible to obtain an exact
ing exact recursion for the posterior: general expression for the asymptotic convergence rate.

The fixed point corresponds to a maximum of the normal-

P(yi+1lW)p(w|Dy) D ived kel I .

FdwPGrms I Wip(w D)) 3 |zeq Ilkellho_od; >, InP(y,|w") of the data fo.rt —

! which satisfies/ dyQ(y)d; InP(y |w) = 0. The integra-
In general, the knowledge ddll previous data is re- tion is over the true distributio®(y) of the data [13].
quired for the update. The situation changes when the will not restrict myself torealizable problems where
number of examples is sufficiently large. For large Q(y) = P(y|w*), but will allow for the case where the
the posterior distribution is strongly concentrated aroundearner does not use the correct family of distributions.
its maximumw. Assuming thatP is a smooth function For larger, we expect that the covarianee of the pos-
of its parametersw, we use a Taylor's expansion to terior becomes small, and we can sePlay, . | w(r) +
approximate the posterior by the Gaussian distributions)), = In P(y,+1|Ww(r)) + O(C). For w close tow*,
p(wID,) =exd—3 X, (w; — wi)J;j(w; — ;)] with  replacing time differences by derivatives, we get from
Jij = —9:8;3 34—y InP(y, |W). The partial deriva- (5)dCi;/dt = 3y Cu(t)C1j(1)9xd; In P(y41 | W) which
tives are with respect to the componentsvof For the is solved byd(C™);;/dt = —d;9;InP(y,+1 |w"). Upon
case where the data are actually generated by a distribiptegration and replacing a time average by an average over
tion inside the clas®(y|w), such an expansion can be the data, we finally find
rigorously justified [12]. Hence, asymptotically, the pos- €N
terior is determined entirely by a set 6f(N?) quantities, lim Y- f dyQ(y)d;0;InP(y|w") = A;;.
the mean and covariances of the Gaussian. Hence, for—> ! '
t > N2, it is possible to express all information which (6)

ishcohntained in”thehpostﬁrior by ? rrllumber of quantitiﬁs].hus for larger, the fluctuations of the matrixC can
which are smaller than the size of the training set. T iso ’ X 1
e neglected, and we gef = A~!/r. The 1/t de-

motivates the following on-line algorithm where the pos- . .
cay of the learning rate represents a common learning

terior is approximated by a Gaussifor all timest. The schedule, see, e.q., Ref. [5]. Settifgt) = w' + €(1)

recursion for the first and second moments defines the . o : . .
; X o ; and linearizing the dynamics close to the fixed point,
algorithm. Using Wick’s theorem for Gaussian averages

. ) . we obtain upon averaging that is an unbiased esti-
applied to (3), we obtain the recursion for the mean mate asymptotically, i.e.{e;(r))p = 0. The brackets

N . . denote an average with respect to the entire training
Wit + 1) = wie) + Z]: Cij(0)3; InCP Cyr1 [ W(2) set. For the second momengs; (1) = (e;(t)e;(t))p we
' get E(t + 1) — E(t) = CBC — CAE — EAC with the
tu@u, ) matrix Bij = [dyQ()a;InP(y|w"a,;InP(y|w").
s yields the final asymptotic solution for tigeiadratic
estimation error

p(W|D 1) =

where the angle brackets denote average with respect
a Gaussiam(r) with mean zero and covarianc€s;(r) =
(ui(t)u;(t))y. The matrixC represents an adaptive learn- (€i(n)e;(t))p = I(A*IBA*I)I.]., t— o, (7)

ing rate for which we obtain ) ' )
For a realizable rule, i.e., when the data are actually

Cii(t + 1) = Cij(1) + Z Cie()C1 (D910, generated from the probabilit(y | w*), one hasB =
o ' A = J(w"). J is known as thd-isher information matrix
X NP (et WD) + u@)a.  (5) [12]. For this case we get the simplified result

1 —1 %
The Gaussian approximation becomes exact for a model (ei()e;()p = 7(J7 (W), t— . (8)
with prior Gaussian, when the output is a linear functionEquation (8) can be compared to the famoRso-
of the weightsw with additive Gaussian noise. This Cramér inequality [14] of statistics which states that
holds, for example, in the problem of linear regressionthe quadratic estimation error for unbiased estimators
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(fuffills 3 ;[E — J~'(w*)/1];jziz; = O for any real vec- number of degrees of freedom, = N /2t for 1 — o,
tor (z1,...zx)), showing that the on-line algorithm defined The derivations above show that, in order to achieve
by (4) and (5) becomes actualhptimalwhen the number asymptotic optimality, further simplifying approximations
of examples grows large. More rigorously, the optimalityto the algorithms (4) and (5) are possible. The Gauss-
of the error (8) also follows directly from a recent result inian averaged probabilitgP( y,+1 | w(z) + u(z)))y may be
[15]. There itis proved that, under smoothness conditionseplaced by unaverageB(y;+; | w(z)), and iteration of
on the family distributions for any estimator, the set of allthe matrixC could be replaced by the explicit rate sched-
w* for which limsup_..7 > (ei(1)e;(1))pJij(Ww*) < N, ule (C™Y;; =1t [ dyP(y|Ww)a;a;InP(y|W). Numerical
has Lebesgue measure zero. examples comparing the different approximations will be
The quadratic estimation error has, in general, no direagiven elsewhere.
interpretation for the ability of a learning device to predict How does the present on-line framework relate to the
novel data. One can study a more natural measure faptimal on-line algorithms of [7—10] constructed for the
the learning performance which is given by the distanceéhermodynamic limit? Although | do not have general
between the predictive distribution (2) and the true dataroof, | expect that the present algorithm, when applied
generating distribution. An entropic generalization errorto realizable rules, will coincide with these algorithms.

[16,17] is defined by As an example, | discuss the supervised learning of a
Pi(y) P(y|w" realizable rule which is defined by a single layer per-
gg = —] dyQ(y)[In —In—————=1, (9) ceptron with Gaussiameight noisewhich was studied
Q(y) Q(y) in [9]. The output is given byr = sgn(W - x), where

which compares the relative entropy error of the predics is a noisy version of the true weight vecter* with
tive probability with the corresponding performance of the||w*|| = [|[W|| = 1 and W - w* = w. This corresponds
best solutiorw™, i.e., the one which is reached asymptoti-torglprobabilityP((r |w*,x) = ¢(o/BW* - x)with 8 =
cally. Inserting our expansion (7) yields, = 5420 —“_ and¢(x) = 27) /2 [*, dte /2. Assuming that
for t — . This result gives the same performance agdor a spherical distribution of inputg(x) with ||x|| =
the one derived for théatch maximum likelihood esti- N, off-diagonal elements o€, as well as the fluctua-
mate [1,16]. For the realizable case this reduces to thgons of the diagonal elements, can be neglectedvier
well known universal asymptotics [1,16,17] for Bayes and=, one finds that the on-line algorithm (4) can be writ-
maximum likelihood estimators which depend only on theten as

C(t) exg—3(ar1W (1) + X,41)2/plo 1 X1y

V27p o W(t) - Xi11//p) ’

where C = C;(t) and p = NC;; + B~'. It can be | by simple perceptrons. While the asymptotic gener-
shown that, in the thermodynamic limit, Eqg. (5) is solvedalization ability for batch learning in such nonsmooth

by C(t)N = (1 — ||w||?). The 0-1 generalization er- cases was solved recently [17,18], a general result for
ror, which gives the probability to predict the correctthe corresponding on-line algorithms is an open problem.
noise free classification label for the true vectet, is  Finally, the calculation of global convergence properties
go—1 = %arccosR), with R = ﬁ For larger we is a major challenge for future research. The results of
obtain from (8)R =1 — % with J;; = 2(%)1/2 % Ref. [19] maybe helpful her_e. _ _ _

. o—201+128) o _ _ I benefited much from discussions with S. Amari, M.
JZ. dx . This coincides with the result obtained Bjehl, N. Caticha, P. Riegler, H. Sompolinsky, T. Tishby,
by [9]. A second case is the unsupervised problem of [10]and M. warmuth. I also would like to thank G. Reents for
where the learner has to estimate a symmetry axisor  an argument in the proof of Eq. (6) and H. Sompolinsky
a distribution of the typeP(x | w*) o e V™ YPy(x),  for finding an error in the manuscript. This work was

where P, is a spherical distribution.  Again, the result sypported by a Heisenberg fellowship of the Deutsche
of [10] for the order parameteR can be obtained in Forschungsgemeinschaft.

terms of the Fisher information &= o = 1 — eamd

where J; = [ dbg(b)[U'(b)]* and g is the distribution

of b = w* - x. . .
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