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I propose a general model of on-line learning from random examples which, when applied t
smooth realizable stochastic rule, yields the same asymptotic generalization error rate as optimal b
algorithms. The approach is based on an iterative Gaussian approximation to the posterior G
distribution of rule parameters. [S0031-9007(96)01752-8]
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Understanding the ability of neural networks to infer un
known rules from random data is an active and fascinati
field in statistical mechanics. For an overview, see [1–3
Recently, much interest was devoted to the problem of o
line learning. When examples are presented sequenti
to the learner, on-line algorithms change their hypothe
about the unknown rule, depending on the old hypothe
and the most recent example only. Hence the storage of
entire set of examples is avoided. Although some amou
of information is obviously discarded in this method, su
prisingly, on-line algorithms can achieve similar asymp
totic generalization rates [4–6] as the more complicat
optimal batch algorithms. In some cases, for optimal
tuned algorithms [7–9], even thesameasymptotic rates
[10] can be obtained. However, the latter results on op
mal learning rates were derived for highly idealized situ
tions. Usually, the thermodynamic limit is studied, wher
the number of parameters and data grows infinite. The
using a variational method, the average case performa
of the algorithm can be explicitly calculated in terms o
a few order parameters. This calculation requires the
sumption of special network architectures combined wi
a highly symmetric data distribution. For both theoret
cal and practical purposes it is important to understa
whether on-line algorithms can achieve the same pred
tion performance as the corresponding batch procedure
a more general setting. Unfortunately, it is nota priori
clear how to derive globally optimal on-line algorithm
outside the thermodynamic limit framework. Hence,
will be directly concerned with the problem ofasymp-
totic optimality when the number of data is much large
than the number of parameters. Using an approximat
to a Bayes procedure, I will derive an on-line algorithm
which achieves the smallest error rates possible for t
learning of smooth stochastic rules when the problem
realizable. This result holds for both supervised and uns
pervised learning. The derivation gives a simple explan
tion for the optimality of the algorithm, thereby providing
an interpretation of previous results for the thermodynam
limit in terms of statistical quantities.

The basic probabilistic setting of the learning proble
is as follows. A set oft dataDt ­ s y1, y2, . . . , ytd is ob-
served and assumed to be generated independently f
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a distributionPs y j wd with the unknown parameterw.
Throughout this Letter,w will be anN component real vec-
tor. This picture fits well to the problem ofunsupervised
learning,where one tries to model an unknown probability
density from random observations. In this case, eachym

is typically identified with a vectorxm in a space of fea-
tures. For the case ofsupervised learning,eachyk is a pair
hsm, xmj which contains a vector of inputsxm and an out-
putsm which, e.g., may be a discrete classification label or
a continuous function value for a regression problem. Fo
the supervised problem the data generating probability is
productPs y j wd ­ Pss j w , xdfsxd, wheref is the den-
sity of the inputs. The conditional probabilityPss j w , xd
for getting an output to a given input models the stochas
tic rule to be learned. In the context of neural networks,
we may think thatP corresponds to a net with weights
w which calculates an outputs to an inputx. This cal-
culation is corrupted by an additional independent noise
process.

The problem ofon-line learningcan be stated as fol-
lows: We assume that all examples are observed seque
tially but are not stored. When thet 1 1 exampleyt11

is received, the learner tries to calculate a new estimat
ŵst 1 1d which is based only onyt11, the old estimate
ŵstd, and possibly a set of other auxiliary quantities which
have to be updated at each time step but are much small
in number than the entire set of previous training data
The following Bayesian approach [11] motivates the con-
struction of an optimal on-line algorithm in a natural and
simple way. In the Bayesian framework of statistical in-
ference [11], one assumes that the prior uncertainty abou
unknown parameters, e.g., network couplings, can also b
encoded in a probability distribution, the so-calledprior
pswd. According to Bayes theorem, the knowledge about
w, after having observedt examples, is expressed by the
posterior density

psw j Dtd ­ Z21pswd
tY

m­1

Ps ym j wd (1)

which plays the role of a Gibbs distribution in the sta-
tistical mechanics of learning. The normalizing constant
Z ­

R
dwpswd

Qt
m­1 Ps ym j wd is the partition function.

The on-average (over the posterior) optimal prediction on
© 1996 The American Physical Society 4671
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novel data cannot be realized by a network in which
parameters take specific values; it can only be realize
performing an ensemble average over the posterior G
distribution, e.g., the Bayes optimal prediction for the
known probability itself is given by the mixture

P̂ts yd ­
Z

dwPs y j wdpsw j Dtd (2)

which is the so-calledpredictive distribution.
When a new data pointyt11 is observed, the posterio

density has to be updated. One easily obtains the fol
ing exact recursion for the posterior:

psw j Dt11d ­
Ps yt11 j wdpsw j DtdR
dwPs yt11 j wdpsw j Dtd

. (3)

In general, the knowledge ofall previous data is re
quired for the update. The situation changes when
number of examples is sufficiently large. For larget,
the posterior distribution is strongly concentrated aro
its maximumŵ. Assuming thatP is a smooth function
of its parametersw, we use a Taylor’s expansion
approximate the posterior by the Gaussian distribu
psw j Dtd . expf2 t

2

P
ij swi 2 ŵidĴijswj 2 ŵjdg with

Ĵij ­ 2≠i≠j
1
t

Pt
m­1 ln Ps ym j ŵd. The partial deriva-

tives are with respect to the components ofŵ. For the
case where the data are actually generated by a dist
tion inside the classPs y j wd, such an expansion can b
rigorously justified [12]. Hence, asymptotically, the po
terior is determined entirely by a set ofO sN2d quantities,
the mean and covariances of the Gaussian. Hence
t ¿ N2, it is possible to express all information whic
is contained in the posterior by a number of quanti
which are smaller than the size of the training set. T
motivates the following on-line algorithm where the po
terior is approximated by a Gaussianfor all timest. The
recursion for the first and second moments defines
algorithm. Using Wick’s theorem for Gaussian avera
applied to (3), we obtain the recursion for the mean

ŵist 1 1d ­ ŵistd 1
X

j

Cijstd≠j lnkPsss yt11 j ŵstd

1 ustddddlu , (4)

where the angle brackets denote average with respe
a Gaussianustd with mean zero and covariancesCijstd ­
kuistdujstdlu. The matrixC represents an adaptive lear
ing rate for which we obtain

Cijst 1 1d ­ Cijstd 1
X
kl

CikstdCljstd≠k≠l

3 lnkPsssyt11jŵstd 1 ustddddlu . (5)

The Gaussian approximation becomes exact for a m
with prior Gaussian, when the output is a linear funct
of the weightsw with additive Gaussian noise. Th
holds, for example, in the problem of linear regressi
4672
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An algorithm which is somehow similar in spirit is th
on-line Gibbs algorithm defined in [6]. Their model ca
be understood as an approximation of the old posterior
a sphericalGaussian.

In the following, I will discuss the average case pe
formance of the algorithms (4) and (5). Since so
a generalmethod for calculating explicitglobal conver-
gence properties for arbitrary on-line algorithms is n
available, I will restrict myself to a local analysis. As
suming that the on-line dynamics is close to an attr
tive fixed point wp, it is possible to obtain an exac
general expression for the asymptotic convergence r
The fixed point corresponds to a maximum of the norm
ized likelihood 1

t

P
m ln Ps ym j wpd of the data fort ! `

which satisfies
R

dyQs yd≠i ln Ps y j wd ­ 0. The integra-
tion is over the true distributionQs yd of the data [13].
I will not restrict myself to realizable problems where
Qs yd ­ Ps y j wpd, but will allow for the case where the
learner does not use the correct family of distribution
For larget, we expect that the covarianceC of the pos-
terior becomes small, and we can set lnkPsss yt11 j ŵstd 1

udddlu ­ ln Psss yt11 j ŵstdddd 1 O sCd. For w close to wp,
replacing time differences by derivatives, we get fro
(5) dCijydt ­

P
kl CikstdCljstd≠k≠l ln Ps yt11 j wpd which

is solved bydsC21dijydt ­ 2≠i≠j ln Ps yt11 j wpd. Upon
integration and replacing a time average by an average o
the data, we finally find

lim
t!`

sC21dij

t
­ 2

Z
dyQs yd≠i≠j ln Ps y j wpd ; Aij .

(6)

Thus, for larget, the fluctuations of the matrixC can
be neglected, and we getC . A21yt. The 1yt de-
cay of the learning rate represents a common learn
schedule, see, e.g., Ref. [5]. Settingŵistd ­ wp

i 1 eistd
and linearizing the dynamics close to the fixed poi
we obtain upon averaging that̂w is an unbiased esti-
mate asymptotically, i.e.,keistdlD . 0. The brackets
denote an average with respect to the entire train
set. For the second momentsEijstd ­ keistdejstdlD we
get Est 1 1d 2 Estd . CBC 2 CAE 2 EAC with the
matrix Bij ­

R
dyQs yd≠i ln Ps y j wpd≠j ln Ps y j wpd.

This yields the final asymptotic solution for thequadratic
estimation error

keistdejstdlD ­
1
t sA21BA21dij , t ! ` . (7)

For a realizable rule, i.e., when the data are actua
generated from the probabilityPs y j wpd, one hasB ­
A ; Jswpd. J is known as theFisher information matrix
[12]. For this case we get the simplified result

keistdejstdlD ­
1
t sssJ21swpddddij , t ! ` . (8)

Equation (8) can be compared to the famousRao-
Cramèr inequality [14] of statistics which states tha
the quadratic estimation error for unbiased estimat
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P

ijfE 2 J21swpdytgijzizj $ 0 for any real vec-
tor sz1, . . . zN dddd, showing that the on-line algorithm define
by (4) and (5) becomes actuallyoptimalwhen the number
of examples grows large. More rigorously, the optima
of the error (8) also follows directly from a recent result
[15]. There it is proved that, under smoothness conditi
on the family distributions for any estimator, the set of
wp for which lim supt!` t

P
ij keistdejstdlDJijswpd , N ,

has Lebesgue measure zero.
The quadratic estimation error has, in general, no di

interpretation for the ability of a learning device to pred
novel data. One can study a more natural measure
the learning performance which is given by the dista
between the predictive distribution (2) and the true d
generating distribution. An entropic generalization er
[16,17] is defined by

´g ­ 2
Z

dyQs yd

(
ln

P̂ts yd
Qs yd

2 ln
Ps y j wpd

Qs yd

)
, (9)

which compares the relative entropy error of the pred
tive probability with the corresponding performance of t
best solutionwp, i.e., the one which is reached asympto
cally. Inserting our expansion (7) yieldśg ­

TrsBA21d
2t

for t ! `. This result gives the same performance
the one derived for thebatch maximum likelihood esti-
mate [1,16]. For the realizable case this reduces to
well known universal asymptotics [1,16,17] for Bayes a
maximum likelihood estimators which depend only on
e
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c

ed
10

ul
n

o
ve
st
tie
h

y

ns
ll

ct
t
for
e
ta
r

c-
e
i-

s

he
d
e

number of degrees of freedoḿg ­ Ny2t for t ! `.
The derivations above show that, in order to achie
asymptotic optimality, further simplifying approximation
to the algorithms (4) and (5) are possible. The Gau
ian averaged probabilitykPsss yt11 j ŵstd 1 ustddddlu may be
replaced by unaveragedPsss yt11 j ŵstdddd, and iteration of
the matrixC could be replaced by the explicit rate sche
ule sC21dij ­ t

R
dyPs y j ŵd≠i≠j ln Ps y j ŵd. Numerical

examples comparing the different approximations will
given elsewhere.

How does the present on-line framework relate to
optimal on-line algorithms of [7–10] constructed for th
thermodynamic limit? Although I do not have gener
proof, I expect that the present algorithm, when appl
to realizable rules, will coincide with these algorithm
As an example, I discuss the supervised learning o
realizable rule which is defined by a single layer p
ceptron with Gaussianweight noisewhich was studied
in [9]. The output is given bys ­ sgnsw̃ ? xd, where
w̃ is a noisy version of the true weight vectorwp with
jjwpjj ­ jjw̃jj ­ 1 and w̃ ? wp ­ v. This corresponds
to a probabilityPss j wp, xd ­ fss

p
b wp ? xd with b ­

v2

12v2 andfsxd ­ s2pd21y2
Rx

2` dte2t2y2. Assuming that
for a spherical distribution of inputsfsxd with jjxjj ­
N , off-diagonal elements ofC, as well as the fluctua
tions of the diagonal elements, can be neglected forN !
`, one finds that the on-line algorithm (4) can be wr
ten as
ŵst 1 1d ­ ŵstd 1
Cstd expf2 1

2 sssst11ŵstd ? xt11ddd2yrgst11xt11
p

2pr fsssst11ŵstd ? xt11yp
r ddd

, (10)
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where C ; Ciistd and r ­ NCii 1 b21. It can be
shown that, in the thermodynamic limit, Eq. (5) is solv
by CstdN ­ s1 2 jjŵjj2d. The 0–1 generalization e
ror, which gives the probability to predict the corre
noise free classification label for the true vectorwp, is
´021 ­

1
p arccossRd, with R ­

w?wp

jjwjj . For large t we

obtain from (8) R . 1 2
N

2Jii t with Jii ­ 2s b

2p3 d1y2 3R
`
2` dx

e2x2 s111y2bd

fsxd . This coincides with the result obtain
by [9]. A second case is the unsupervised problem of [
where the learner has to estimate a symmetry axiswp for
a distribution of the typePsx j wpd ~ e2Uswp?xdPsphsxd,
wherePsph is a spherical distribution. Again, the res
of [10] for the order parameterR can be obtained i
terms of the Fisher information asR ­

w?wp

jjwjj . 1 2
N

2Jii t ,
where Jii ­

R
dbgsbdfU 0sbdg2 and g is the distribution

of b ­ wp ? x.
To summarize, I have presented a framework for

line learning from random examples, which achie
asymptotically optimal error rates for realizable stocha
rules. So far, my analysis is restricted to probabili
which are smooth functions of the parameters. T
excludes, e.g., the problem ofnoise freerules defined
t
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-
s
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by simple perceptrons. While the asymptotic gen
alization ability for batch learning in such nonsmoo
cases was solved recently [17,18], a general result
the corresponding on-line algorithms is an open proble
Finally, the calculation of global convergence propert
is a major challenge for future research. The results
Ref. [19] maybe helpful here.
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