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Two-Dimensional Child-Langmuir Law
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By considering uniform emission of electrons over a finite strip of widthW in a planar gap of
gap separationD, we extend the classical one-dimensional Child-Langmuir law to two dimensio
The limiting current density in two dimensionsJCL(2) in units of the classical one-dimensional valu
JCL(1) is found to be a monotonically decreasing function ofWyD. More surprisingly, it is virtually
independent of the external magnetic field that is imposed along the mean flow. These results
obtained from two different simulation codes,OOPIC andMAGIC. [S0031-9007(96)01721-8]
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The dynamics of charged particles in a gap has
mained an area of considerable interest in vacuum mi
electronics, crossed-field devices, and high power dio
If too much space charge is injected into a gap, the
sulting electric field becomes sufficiently high to refle
the injected particles, forming a virtual cathode. Lam
nar flow solution then ceases to exist and the flow in
gap shows oscillatory behavior. For a planar gap of
separationD and gap voltageV, the maximum electron
current density allowed for time-independent flow so
tion, JCL(1) for the one-dimensional model, is given b
the Child-Langmuir law [1–3],

JCLs1d ­
4´0

9D2

√
2e
m

!1y2

V 3y2, (1)

wheree and m are, respectively, the charge and mass
the emitted particle, and́0 is the free space permittivity
The value given in Eq. (1) is also called the limitin
current density or critical current density. Implicit
Eq. (1) is the neglect of relativistic effects and t
assumption of zero electron emission velocity.

While Eq. (1) is easy to derive, generalization to tw
dimensions is a formidable task analytically. Such a tw
dimensional problem is of fundamental interest, for
stance, for field emitters, where electrons are emitted o
in the vicinity of the sharp tip. Rather than solving t
entire problem for a field emitter, with the vast param
ter space resulting from the complicated geometry of
emitter-gate-anode assembly, and from the dependenc
the cathode material through the Fowler-Nordheim co
ficients, we simply ask: How is Eq. (1) modified whe
electrons are allowed to emit only over a finite strip on
planar cathode? Investigation of this question then p
vides physical insight into virtual cathode formation wh
electrons are emitted only over a restricted region on
cathode, as in the case of a field emitter.

With the use of two-dimensional particle-in-cell (PIC
simulations, we analyze a planar gap withD ­ 1 cm
and V ­ 1 kV. The anode-cathode plates are 8 cm
width, and the third dimension is infinite and uniform
Electrons are emitted from the cathode over a fixed s
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of width W sW , 8 cmd, centered around the midpoint.
The emission current densityJ is uniform both in space
and in time over that strip. Electrons are emitted with an
initial energy of 0.1 eV.

Two PIC codes are used:MAGIC [4] and OOPIC [5].
The MAGIC code simulations were fullyelectromagnetic,
with cell size of2.5 3 1024 m2 and time step of 0.53 ps.
The MAGIC simulations used aperiodic boundary condi-
tion to close the computational area at the termination of
the anode-cathode plates. TheOOPIC simulations, in con-
trast, wereelectrostatic,with cell size of8.0 3 1024 m by
2.5 3 1024 m and time step of 18.3 ps. Anonreflecting
boundary conditionwas used inOOPIC to close the simu-
lation. This differs from a periodic boundary in that par-
ticles are destroyed when they encounter the simulation
edge, rather than being returned to the simulation on the
other side. Both codes allow for the addition of a static
magnetic field to simulate immersed flow (to be described
below).

The simulations proceed by specifying the emission
width W, and a low injected current densityJ. The current
density J is then increased until oscillatory behavior is
observed in the simulation, and this is taken to be the
two-dimensional limiting current densityJCL(2) for that
value of W. Note that this definition of limiting current
density is consistent with that used to derive Eq. (1),
namely, the absence of a time-independent solution for a
given set of parameters, except that numerical simulation is
used instead of analytic methods. The results are show
in Fig. 1, for bothOOPIC and MAGIC simulations, for the
case of zero external magnetic field. The good agreemen
between the two vastly different simulations, together
with the recovery of the limit thatJCL(2) approaches
JCL(1) asW ¿ D, strongly suggests validity of the results.
The curves shown in Fig. 1 apply to all nonrelativistic
voltages. This statement is verified by spot checks using
different gap voltages and gap separations. A simple
scaling of the governing equations (Poisson equation, the
time-independent nonrelativistic force law and the time-
independent continuity equation) shows thatJCL(2)yJCL(1)
is a universal function ofW/D for zero emission velocity.
© 1996 The American Physical Society
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FIG. 1. The limiting current density in two dimensions,
units of the one-dimensional Child-Langmuir value, obtai
from OOPICandMAGIC for an unmagnetized gap.

That universal function is exceedingly difficult to deri
analytically. [See Eq. (2) below.]

The simulation shows the following scenario for t
breakdown of the laminar flow asJ ! JCLs2d. The elec-
tric field in the vicinity of the center of the emitting str
evolves progressively from the vacuum value to zero
to the space charge of the emitted electrons. At the poi
virtual cathode formation, the electric field reverses di
tion, slowing and reflecting the emitted electrons. Th
electrons are reflected back into the cathode, which
moves the space charge buildup, allowing the electric
to change sign and again pull electrons into the gap.
electric field at the center of the emitting strip oscilla
from this point on, as the space charge repeatedly b
up to form a virtual cathode. This is similar to the desc
tion of one-dimensional virtual cathode oscillations [
except that in two dimensions the virtual cathode alw
first appears at the center of the emitting region. Nea
edges of the emitting strip, the electric field remains ne
tive (i.e., points toward the cathode) at the transition fr
time-independent flow to turbulent flow.

The results described thus far correspond to a
external magnetic field. We next consider the oppo
limit, where a strong external magnetic field of 100
parallel to the mean electron flow is imposed. T
limiting current for this 2D “immersed flow” is calculate
via simulation. The results are shown in Fig. 2, wh
the limiting current for the case of zero magnetic field
also included for comparison. In Fig. 2, we see that
two-dimensional limiting current is virtually independe
of the external magnetic field. We have also simula
the intermediate magnetic field case of 0.01 T, at wh
the cyclotron frequency is on the order of the aver
plasma frequency; we find that the limiting current den
is also almost identical to those shown in Fig. 2. Over
range simulated,0.1 , WyD , 8, the data may be fitte
empirically by
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FIG. 2. The limiting current density in two dimensions,
units of the one-dimensional Child-Langmuir value, obtain
from OOPIC for an unmagnetizedsB ­ 0d and a strongly
magnetizedsB ­ 100 Td gap. Similar results were obtaine
with MAGIC.

JCLs2d
JCLs1d

­ 1
0.3145
WyD

2
0.0004

sWyDd2
(2)

to within 5%, for all values of magnetic field:B ­ 0, 0.01,
and 100 T.

The result that the magnetic field has only a very we
effect on the limiting current density is quite surprisin
at first sight. Inspection of the phase space plots of
simulations, however, offers an explanation. The virt
cathode always forms near the center of the emitt
strip in a sheath very close to the cathode. The sp
charge from the edges of the beam confines the transv
motion of the electrons in the sheath. For example, w
WyD ­ 0.32 and J ­ JCLs2d, the maximum transvers
energy of the electrons in the sheath is1.7 3 1024 eV for
the unmagnetized gap compared with2.8 3 10212 eV for
the strongly magnetized gapsB ­ 100 Td. While there
is 8 orders of magnitude difference in the two cases,
velocity of the electrons is too small for the magnetic fie
to produce a large force on the electrons in the she
(The maximum transverse energy outside of the she
however, is 7.3 eV for the unmagnetized gap compa
with 1.1 3 10211 eV for the strongly magnetized gap
Thus, the transverse motion of the electronin the vicinity
of the virtual cathodeis negligible in both the zero
magnetic field and the infinite magnetic field cases,
these simulations. The magnetic field does not, theref
produce a large effect as shown in Fig. 2. The she
physics is critical to the behavior of the entire gap [2,6,
In fact, the motion in the sheath dominates the formation
the virtual cathode, which explains the weak depende
of the critical current on magnetic field [8].

In summary, the classical Child-Langmuir law is ge
eralized to two dimensions via particle simulation. T
critical current density appears to be only weakly dep
dent on the axial magnetic field that confines the el
tron flow. The virtual cathode begins to form near t
4669
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central region of the emitting surface, and very close to
surface.
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