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Measurement of Phase and Magnitude of the Reflection Coefficient of a Quantum Dot
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We measure the phase and magnitude of the reflection coefficient of a quantum dot (QD) in the
integer quantum Hall regime. This was done by coupling the QD under study to a large QD, serving as
an interferometer,and monitoring the phase of the magnetoconductance oscillations of the coupled
system. As the Coulomb blockade resonances of the QD are scanned we find two distinct and
qualitatively different behaviors of the phase. Our results agree for the most part with the theoretical
predictions for resonant tunneling in a noninteracting system. [S0031-9007(96)01774-7]

PACS numbers: 85.30.Vw, 73.40.Hm, 85.30.St, 85.30.Wx
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According to Landauer formula the conductance o
system depends only on the absolute value squared
the transmission coefficient and therefore does not c
tain any phase information. However, measurement
the phase evolution of the transmission and reflection
efficients might provide added information about a mes
scopic system. An important example is the transmissi
reflection, and dwell times, determined from the deriv
tives of the phases of the transmission and reflection co
ficients with respect to the energy [1]. The phase fact
can be obtained by coupling the mesoscopic system
der study to an interference device which serves as
interferometer. This novel method had been recently em
ployed [2] to probe the phase of the transmission co
ficient of a quantum dot (QD) [3]. In this experiment
QD was inserted in one arm of an Aharonov-Bohm (A
ring and the phase shift of the AB conductance oscil
tions was monitored as the resonance peaks of the
were scanned. However, thetwo terminalnature of the
measurement imposed, due toOnsager relations,a phase
rigidity of the oscillations and prevented a direct measu
ment of the evolving phase in the QD [4]. Employin
a four terminal, double slitinterference structure [5] lifts
this rigidity and allows a direct measurement of the pha
of the transmission coefficient [6].

In the present paper we develop a new interferome
method which enables one to measure directly the m
nitude and the phase of the reflection coefficient of a Q
in the integer quantum Hall(IQH) regime. Our interfer-
ence structure [see Fig. 1(a)] consists of a large circu
(diameter 1.5mm) QD (the interferometer,on the left)
coupled to a smalls0.5 mm 3 0.5 mmd QD (the system
under study, on the right). The combined structure is c
pled to two 2D reservoirs, on the left (S) and on the right
(D). If a magnetic field is applied perpendicularly to th
plane of the two dimensional electron gas (2DEG) ed
channels, associated with the intersection of the Lan
levels (LL) with the Fermi level, form. Assuming tha
only the outer edge channel (lowest LL) in the interfe
ometer couples out due to its close proximity to the lea
then the transmission probability through the two coup
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QD system is given by [7–9]

TDS ­

Ç
t1t2

1 2 r1r2eiwsBd

Ç2
, (1)

wheret1 andr1 are the transmission and reflection coef
cients of the small QD, whilet2 andr2 are related to the
entry quantum point contact (QPC) on the opposite s
of the interferometer, andwsBd is the magnetic field de-
pendent phase acquired by an electron traveling aro

FIG. 1. (a) The interferometer on the left (large QD), coupl
to a small QD on the right (the device under study). The arro
indicate the direction of current flow in the edge channe
(b) The MC is oscillating with two periods: a large period
associated with the small QD, and superimposed on it a sm
period, associated with the interferometer (see the enlar
regime).
© 1996 The American Physical Society
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the disk. Equation (1) can be derived easily by sum
ming all the semiclassical trajectories of the outer ed
channel fromS to D, as they cross a multiple numbe
of times the perimeter of the interferometer. Expan
ing TDS in a series form yields that thenth harmonic
of the magnetoconductance (MC) oscillations is propo
tional to cosnfwsBd 1 w0g, wherew0 ­ usr1d 1 const,
with r1 ­ jr1jeiusr1d. This relates the phase of the reflec
tion coefficient,usr1d, directly to the phase of the first
harmonic of the conductance. Note that for our expe
mental conditions the temperature is comparable with t
energy spacing in the interferometer, and, consequen
the magnitude of the MC oscillations is strongly dampe
however, the phase of the oscillations is not affected. D
phasing in the interferometer might decrease further t
magnitude; however, also in this case the phase is
changed [9,10]. In general, the transmission and refle
tion coefficients in Eq. (1) depend on energy; howeve
we do not expect a significant effect due to finite temper
ture since botht1 andr1 (the small QD on the right) and
t2 andr2 (the QPC on the left) are smooth functions of en
ergy on the scale of the temperature [11]. The magnitu
of the reflectionjr1j, in turn, is found from the nonoscil-
latory part of the conductance, given by Ohm’s law:g0 ­
se2yhdysjt1j

22 1 jt2j
22d, with jr1j

2 ­ 1 2 jt1j
2 [10].

Interaction among electrons in a QD with an applie
magnetic field results in a formation of compressible an
incompressible strips [12] and a modification of the char
distribution [13]. While the derivation of Eq. (1) is base
on a single particle (SP) interference approach, the ex
tence of interaction could suggest a modified treatme
However, the many body problem can be simplified by ta
ing into account the effect ofe-e interaction by replacing
the external potential by an effective, self-consistent, p
tential, and thus reducing the problem to a SP one [14]. A
though the transmission probability [Eq. (1)] has the sam
form as in the noninteracting case, the details of the tra
port are modified by thee-e interaction. For example, we
find experimentally that the phasewsBd, deduced from the
actual periodicity of the MC oscillations, differs signifi-
cantly from the prediction of a SP model [3].

In practice, the coupled QD system was defined
metallic gates on top of a GaAs-AlGaAs heterostru
ture supporting a 2DEG, with a mobilitym ­ 1.6 3

106 cm2yV s and a carrier densityns ­ 3.0 3 1011 cm22

at T ­ 4.2 K. Applying a negative gate voltage deplete
the electrons underneath and forms the device where
QPC’s that form the openings to the QD’s can be adjust
individually. We allow only the outer edge channel t
tunnel through the composite structure by tuning the co
ductance of each QPC forming the interferometer and t
small QD belowe2yh. The MC was measured in a dilu-
tion refrigerator sTbath ­ 30 mK, Telectrons ø 100 mKd
using standard lock-in techniques. We show below resu
from a device measured with a magnetic field ofB ø 4 T
corresponding to a filling factorn ­ 3 in the bulk (by es-
timating the depletion layer width [12] we find the num
-
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ber of edge channels inside both QD’s to be the same
in the bulk). A similar behavior is found for different de
vices and under conditions for different filling factors.

The MC oscillations of the double dot device ar
shown in Fig. 1(b). One can clearly see two differe
periods: a large period, associated with the small QD, a
superimposed on it a small period, associated with t
interferometer. The large ratio between the two perio
enables us to determinew0 by scanning the magnetic
field through several periods of MC oscillations associat
with the interferometer without affecting significantly th
properties of the small QD (changing the magnetic flu
treating the small QD by much less than a flux quant
Scanning the plunger gate voltage of the small QD,Vp ,
at a fixed magnetic field, we find pronounced peaks
the conductance indicating that the small QD is in th
Coulomb blockade (CB) regime [Fig. 2(a)]. We then plo
the evolution of the phase of the MC oscillations,w0,
found from the phase of the first harmonic of the Fouri
transform of the MC data, as several CB resonanc
are being scanned byVp [Fig. 2(b)]. Superimposed on
a linear background,w0 has a periodic structure which
repeats itself near each resonance.

FIG. 2. (a) The CB peaks in the conductance. (b) The pha
of the MC oscillations,w0, of the double dot device exhibits
a periodic structure with a linear background. (c) The sam
as in (b) but for the interferometer by itself (the small QD wa
removed in order to calibrate the interferometer). (d) The pha
of the reflection coefficient,usr1d, obtained by subtracting the
background calibration phase,w0, in (c) from the total phase
in (b). (e) The magnitude squared of the reflection coefficie
jr1j

2.
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As we scan the plunger voltage of the small QD,Vp ,
the interferometer is also affected electrostatically due
the close proximity between the two QD’s, and therefor
the phasew0 is modified by this (undesirable) effect
To account for that we calibrate the interferometer b
opening the right-most side QPC of the small QD there
effectively eliminating the small QD. This enables
measurement of the effect ofVp on the phase acquired by
an electron circulating inside the interferometer. Scanni
now Vp we find small (ø5% of the conductance), equally
spaced conductance peaks. Note that the interferom
shows conductance oscillations with the same peri
at zero magnetic field, indicating that these are C
oscillations (rather than AB-like oscillations, originating
from a possible dependence of the interferometer area
Vp). The evolution ofw0 is found by monitoring the MC
oscillations as we varyVp . We find [Fig. 2(c)] a linear
dependence of this phase onVp with approximately the
same slope as found in the presence of the small Q
however, the periodic structure near each resonance p
disappears [15]. We determine the phase of the reflect
coefficient,usr1d, by subtracting the background shown i
Fig. 2(c) from the data in Fig. 2(b). We find [Fig. 2(d)
thatusr1d has an oscillatory behavior with the same perio
as that of the CB peaks of the small QD: it peaks wi
a magnitude#0.5p on the rising side of the resonanc
and dips with the same magnitude on the descend
side of the resonance. Note the reproducible “hump
in the phase in between the CB peaks. To comple
the determination of the complex coefficientr1, we plot
in Fig. 2(e) its magnitude squared,jr1j

2, found from the
nonoscillatory part of the conductance.

The behavior ofusr1d, shown in Fig. 2(d), is not
unique. We retune the voltages applied to the QPC’s
the small QD—attempting to form a higher barrier on th
drain (D) side, and a lower barrier on the interferomete
side (the reasons for doing this are explained below
We measure again the evolution ofw0 in this regime
as we scanVp across the CB peaks seen in Fig. 3(a
and plot usr1d in Fig. 3(b), after the subtraction of the
linear background. The phaseusr1d exhibits now a totally
different behavior: a monotonic rise by almost exactly2p

per CB peak, with an increased slope near the center
each peak. Note that this behavior and the one seen
Fig. 2(d) are the only ones found in our experiments.

We compare now our results with theoretical prediction
of resonant tunneling through a noninteracting syste
Our model system contains a scattering region with
arbitrary potential coupled (weakly) via sitesR (right)
and L (left) to 2 one dimensional, disorder free lead
Using a tight binding model and a standard Green functi
method [16] we calculate the transmission and reflecti
coefficients, t and r, of the system. We consider the
behavior near a resonance, namely,jEF 2 Enj ø DE,
whereEF is the Fermi energy,En is an eigenenergy of the
isolated scattering region, andDE is the average energy
spacing between eigenstates. Assuming a small coup
4666
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FIG. 3. (a) The CB peaks forg2 , 0 (defined in the text).
(b) The phaseusr1d, after subtracting the linear background,
increases by2p across each resonance peak.

between the leads and the scattering region we obtain

t ­
2ic

n
Rscn

Ldpa2

´ 2 ´ns1 1 g1y2d 2 ig1

, (2)

r ­
´ 2 ´ns1 1 g1y2d 2 ig2

´ 2 ´ns1 1 g1y2d 2 ig1

, (3)

where a is a dimensionless coupling constant between
the scattering region and the leads (we assumea ø 1),
c

n
Rscn

Ld is the amplitude of the wave function of staten in
the coupling siteRsLd, g1 ­ a2sjcn

R j2 1 jc
n
Lj2d, g2 ­

a2sjcn
R j2 2 jc

n
Lj2d; ´ ­ EFyV and ´n ­ EnyV are the

normalized Fermi and eigenenergies, with 4V being the
width of the energy band in the leads. According to
Eq. (2), which is the well known Breit-Wigner formula,
jtj2 has a peak at́ ­ ´ns1 1 g1y2d with a heightsg2

1 2

g2
2dyg2

1 and a widthg1 [see Fig. 4(a)]. The phaseustd
changes byp as ´n is scanned across the resonance
[see Fig. 4(b)]. While the peak injtj2 is associated
with a dip in jrj2, since jr j2 ­ 1 2 jtj2, two different
behaviors for the phaseusrd are possible, revealing the
asymmetry between the two barriers which confine the
scattering region. Ifg2 . 0, reflection from the side
of the higher barrier, thenusrd approaches a peak from
the left of the resonance and a symmetric dip from the
right of the resonance [see Fig. 4(c)]; while ifg2 , 0,
reflection from the side of the lower barrier, thenusrd
changes monotonically by2p across the resonance with
an increased slope near the center of the peak [se
Fig. 4(d)].

We find a good qualitative agreement between ou
experimental results for the behavior near the center of th
peaks and the theoretical predictions: the measuredusr1d
seen in Figs. 2(d) and 3(b) versus the calculated behavio
in Figs. 4(c) and 4(d), respectively. This is somewha
surprising sincee-e interactions, dominating the properties
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FIG. 4. Theoretical predictions for resonant tunneling in
tight binding model. (a) The transmission magnitude squar
jtj2; (b) the phase of the transmission coefficient,ustd, both
calculated from Eq. (2). The phase of the reflection coefficie
usrd: (c) for g2 . 0 (reflection from the side of the highe
barrier), and (d) forg2 , 0 (reflection from the side of the
lower barrier), calculated from Eq. (3).

of the QD, are ignored in our simple model. Note that o
model is not applicable far from resonance, hence, we
the following argument for this regime. LettL srLd be the
transmission (reflection) coefficient of the QPC betwe
the small QD and the interferometer. AssumingjtLj ø 1
we find that far from resonance the total reflection of t
small QD is given byr1 ­ rL 1 OsjtLj2d, namely,r1 is
expected to vary smoothly as a function ofVp (since the
latter has a small influence on the barriers). Howeve
closer look at the experimental results indicates that t
is not the case. We find for both cases,g2 . 0 seen in
Fig. 2(d) andg2 , 0 seen in Fig. 3(b), small humps in
the phaseusr1d near the points of minimum conductanc
A further experimental and theoretical study is needed
clarify the origin of these humps.

We would like to compare our results to a recentdouble
slit interference experiment in which the phase of t
transmission coefficient of a QD was measured in z
magnetic field [6]. A good agreement is found between
experimental results ofustd and the theoretical prediction
for the behavior near the center of the peaks, as in
present case; however, the phaseustd exhibits a very
sharp drop byp between resonance peaks. The orig
of these sharp drops is not known at the moment, leav
the behavior far from resonance, forr and t, not well
understood.

In summary, we have measured the phase and the m
nitude of the reflection coefficient of a QD in the IQH
regime and found two distinct behaviors. The experime
tal results close to the resonance peaks agree with a sim
theoretical model for resonant tunneling in a nonintera
ing system, while there are deviations away from the re
nance conditions.
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