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Measurement of Phase and Magnitude of the Reflection Coefficient of a Quantum Dot
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We measure the phase and magnitude of the reflection coefficient of a quantum dot (QD) in the
integer quantum Hall regime. This was done by coupling the QD under study to a large QD, serving as
an interferometer,and monitoring the phase of the magnetoconductance oscillations of the coupled
system. As the Coulomb blockade resonances of the QD are scanned we find two distinct and
qualitatively different behaviors of the phase. Our results agree for the most part with the theoretical
predictions for resonant tunneling in a noninteracting system. [S0031-9007(96)01774-7]

PACS numbers: 85.30.Vw, 73.40.Hm, 85.30.St, 85.30.Wx

According to Landauer formula the conductance of aQD system is given by [7—9]
system depends only on the absolute value squared of ity
the transmission coefficient and therefore does not con- W ) (1)
tain any phase information. However, measurement of o _ _
the phase evolution of the transmission and reflection cowherer; andr, are the transmission and reflection coeffi-

efficients might provide added information about a mesocients of the small QD, while, andr, are related to the
scopic system. An important example is the transmissior€Ntry quantum point contact (QPC) on the opposite side
reflection, and dwell times, determined from the deriva-Of the interferometer, ang (B) is the magnetic field de-
tives of the phases of the transmission and reflection coeRendent phase acquired by an electron traveling around

ficients with respect to the energy [1]. The phase factors v
P
®) 'A ll—\l B@

can be obtained by coupling the mesoscopic system un-
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der study to an interference device which serves as an
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interferometer. This novel method had been recently em-
ployed [2] to probe the phase of the transmission coef-
ficient of a quantum dot (QD) [3]. In this experiment a
QD was inserted in one arm of an Aharonov-Bohm (AB)
ring and the phase shift of the AB conductance oscilla-
tions was monitored as the resonance peaks of the QD
were scanned. However, theo terminalnature of the
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measurement imposed, due@msager relationsa phase 5
rigidity of the oscillations and prevented a direct measure- QD under
ment of the evolving phase in the QD [4]. Employing Interferometer A
a four terminal, double sliinterference structure [5] lifts (b) i
this rigidity and allows a direct measurement of the phase e T '
of the transmission coefficient [6]. = %21, 46mT 1.7mT

In the present paper we develop a new interferometry . O .',_: & 1”1“—» —
method which enables one to measure directly the mag- ~ — @™/} | :"n f-u hol -||f|1 ]
nitude and the phase of the reflection coefficient of a QD § bl | | AN K. |,l|||jIJI|I|J'[||'|ri|'|F|||'I{yL
in theinteger quantum Hal(IQH) regime. Our interfer- g oMy L. LELEY [ A Wi x4
ence structure [see Fig. 1(a)] consists of a large circular —E ":“' MY A AR a4
(diameter 1.5um) QD (the interferometer,on the left) S :.;: Y "'\';\ b
coupled to a small0.5 um X 0.5 um) QD (the system m: =0.1 K v \

under study, on the right). The combined structure is cou-
pled to two 2D reservoirs, on the lef§)(and on the right

43 43

(D). If a magnetic field is applied perpendicularly to the Magnetic fild. 8 [T]

plane of the two dimensional electron gas (2DEG) edgéIG. 1. (a) The interferometer on the left (large QD), coupled
channels, associated with the intersection of the Landai® & small QD on the right (the device under study). The arrows
levels (LL) with the Fermi level, form. Assuming that indicate the direction of current flow in the edge channels.

. . (b) The MC is oscillating with two periods: a large period,
only the outer edge channel (lowest LL) in the Interfer'associated with the small QD, and superimposed on it a small

ometer couples out due to its close proximity to the leadsperiod, associated with the interferometer (see the enlarged
then the transmission probability through the two coupledegime).
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the disk. Equation (1) can be derived easily by sum-ber of edge channels inside both QD’s to be the same as
ming all the semiclassical trajectories of the outer edgén the bulk). A similar behavior is found for different de-
channel fromS to D, as they cross a multiple number vices and under conditions for different filling factors.
of times the perimeter of the interferometer. Expand- The MC oscillations of the double dot device are
ing Tps In a series form yields that theth harmonic shown in Fig. 1(b). One can clearly see two different
of the magnetoconductance (MC) oscillations is proporperiods: a large period, associated with the small QD, and
tional to cosi[¢(B) + @], where g = 6(r1) + const, superimposed on it a small period, associated with the
with r; = |ri]e’?"). This relates the phase of the reflec- interferometer. The large ratio between the two periods
tion coefficient,f(r,), directly to the phase of the first enables us to determing, by scanning the magnetic
harmonic of the conductance. Note that for our experifield through several periods of MC oscillations associated
mental conditions the temperature is comparable with thavith the interferometer without affecting significantly the
energy spacing in the interferometer, and, consequentlyroperties of the small QD (changing the magnetic flux
the magnitude of the MC oscillations is strongly dampeditreating the small QD by much less than a flux quanta).
however, the phase of the oscillations is not affected. DeScanning the plunger gate voltage of the small Q1,
phasing in the interferometer might decrease further that a fixed magnetic field, we find pronounced peaks in
magnitude; however, also in this case the phase is urthe conductance indicating that the small QD is in the
changed [9,10]. In general, the transmission and reflecoulomb blockade (CB) regime [Fig. 2(a)]. We then plot
tion coefficients in Eq. (1) depend on energy; howeverthe evolution of the phase of the MC oscillationsy,
we do not expect a significant effect due to finite temperafound from the phase of the first harmonic of the Fourier
ture since both; andr; (the small QD on the right) and transform of the MC data, as several CB resonances
t, andr, (the QPC on the left) are smooth functions of en-are being scanned by, [Fig. 2(b)]. Superimposed on
ergy on the scale of the temperature [11]. The magnituda linear backgrounde, has a periodic structure which
of the reflection|r;|, in turn, is found from the nonoscil- repeats itself near each resonance.
latory part of the conductance, given by Ohm'’s laxy:=
(e2/h)/(1t117% + |6l 72), with |r]> = 1 — |1]* [10].
Interaction among electrons in a QD with an applied
magnetic field results in a formation of compressible and 2 0103 : 3
incompressible strips [12] and a modification of the charge 5 0.05] _ b
distribution [13]. While the derivation of Eq. (1) is based 0,00 -
on a single particle (SP) interference approach, the exis- ; : , .
tence of interaction could suggest a modified treatment. = ' ' it =
However, the many body problem can be simplified by tak- pin o PRE]
ing into account the effect afe interaction by replacing 3'. " ™
the external potential by an effective, self-consistent, po- oo T T
tential, and thus reducing the problem to a SP one [14]. Al- sT T T T T T
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though the transmission probability [Eq. (1)] has the same = 41'9 : 'nl!--_
form as in the noninteracting case, the details of the trans- &= 2] _— ad ]
port are modified by the-e interaction. For example, we e e e ———_—
find experimentally that the phagdB), deduced from the 05 : : . i
actual periodicity of the MC oscillations, differs signifi- = Jid) \ \ \
cantly from the prediction of a SP model [3]. = 004 M AL M AL -

In practice, the coupled QD system was defined by o ] ' £ N £ N
metallic gates on top of a GaAs-AlGaAs heterostruc- 'ﬂ Gl

1

ture supporting a 2DEG, with a mobilityy = 1.6 X i T e T
10° c?/V's and a carrier density, = 3.0 X 10'! cm™2 o, 084 < W R i
atT = 4.2 K. Applying a negative gate voltage depletes B g'iz ' ! _
the electrons underneath and forms the device where all ' — T T -
QPC’s that form the openings to the QD’s can be adjusted gl -0.582 -0.50 -0.48
individually. We allow only the outer edge channel to Plunger voltage, J;[V]

tunnel through the composite structure by tuning the cong,5 5. (a) The CB peaks in the conductance. (b) The phase
ductance of each QPC forming the interferometer and thgf the MC oscillations,¢o, of the double dot device exhibits
small QD belowe?/h. The MC was measured in a dilu- a periodic structure with a linear background. (c) The same
tion refrigerator (Tpam = 30 MK, Teiectrons = 100 MK) as in (b) but for the interferometer by itself (the small QD was

using standard lock-in techniques. We show below result&moved in order to calibrate the interferometer). (d) The phase
f device measured with a maanetic fieldgof 4 T of the reflection coefficientd(r,), obtained by subtracting the
rom a devic g background calibration phase,, in (c) from the total phase

corresponding to a filling factor = 3 in the bulk (by es- in (b). (e) The magnitude squared of the reflection coefficient,
timating the depletion layer width [12] we find the num- |r]*.
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As we scan the plunger voltage of the small QB,, _ 030 — T T T T
the interferometer is also affected electrostatically due to % 0.254 (a) .
the close proximity between the two QD's, and therefore, g 0.20+ & /\
the phase¢y is modified by this (undesirable) effect. :015— \ / s 1
To account for that we calibrate the interferometer by 32 0.70- / / / \ .
opening the right-most side QPC of the small QD thereby 8 005— k /o .
effectively eliminating the small QD. This enables a “ 000 J — e V .\\J .\‘
measurement of the effect &f, on the phase acquired by T
an electron circulating inside the interferometer. Scanning 84 (b)
now V,, we find small &5% of the conductance), equally = 6] LJ ]
spaced conductance peaks. Note that the mterferometev\ 4] o
shows conductance oscillations with the same perlodcn 5] Jﬂ

at zero magnetic field, indicating that these are CB 1
oscillations (rather than AB-like oscillations, originating M
-0.43 -0.42 -0.41 -0.40 -0.39 -0.38

Plunger voltage, 1 [V]

from a possible dependence of the interferometer area on
V,). The evolution ofyp, is found by monitoring the MC
oscillations as we vary,. We find [Fig. 2(c)] a linear FIG. 3. (a) The CB peaks foy_ < 0 (defined in the text).
dependence of this phase &f) with approximately the (b) The phased(ry), after subtracting the linear background,
same slope as found in the presence of the small QONcreases bfa across each resonance peak.
however, the periodic structure near each resonance peak

disappears [15]. We determine the phase of the reflection

coefficient,d(r;), by subtracting the background shown in between the leads and the scattering region we obtain

Fig. 2(c) from the data in Fig. 2(b). We find [Fig. 2(d)] 2l () o

thatd(r;) has an oscillatory behavior with the same period t= —, (2)
as that of the CB peaks of the small QD: it peaks with e~ el + y4/2) — iy

a magnitude=0.57 on the rising side of the resonance e —g,(1 +v1/2) —iy-

and dips with the same magnitude on the descending Fe e = en(l + y4/2) — iys’ (3)

side of the resonance. Note the reproducible “humps”
in the phase in between the CB peaks. To completavhere « is a dimensionless coupling constant between
the determination of the complex coefficient we plot  the scattering region and the leads (we assum« 1),
in Fig. 2(e) its magnitude squareft;|?, found from the (7)) is the amplitude of the wave function of statén
nonoscillatory part of the conductance. the coupling siteR(L), v+ = a>(lygl* + Y%, y- =
The behavior ofé(r;), shown in Fig. 2(d), is not a*(lygl*> — |41 1?); e = Er/V ande, = E,/V are the
unique. We retune the voltages applied to the QPC’s ohormalized Fermi and eigenenergies, witti Being the
the small QD—attempting to form a higher barrier on thewidth of the energy band in the leads. According to
drain ©) side, and a lower barrier on the interferometerEq. (2), which is the well known Breit-Wigner formula,
side (the reasons for doing this are explained below)|t|> has a peak at = ¢,(1 + . /2) with a height(y —
We measure again the evolution ¢f, in this regime y2)/y2 and a widthy, [see Fig. 4(a)]. The phas#(t)
as we scanV, across the CB peaks seen in Fig. 3(a),changes byrw as ¢, is scanned across the resonance
and plot#(r;) in Fig. 3(b), after the subtraction of the [see Fig. 4(b)]. While the peak if¢|*> is associated
linear background. The pha8ér;) exhibits now a totally with a dip in |7|?, since|r|> =1 — [¢|>, two different
different behavior: a monotonic rise by almost exa@ly  behaviors for the phase(r) are possible, revealing the
per CB peak, with an increased slope near the center aglsymmetry between the two barriers which confine the
each peak. Note that this behavior and the one seen #tattering region. Ify_ > 0, reflection from the side
Fig. 2(d) are the only ones found in our experiments. of the higher barrier, thed(r) approaches a peak from
We compare now our results with theoretical predictionghe left of the resonance and a symmetric dip from the
of resonant tunneling through a noninteracting systemright of the resonance [see Fig. 4(c)]; whileyf < 0,
Our model system contains a scattering region with ameflection from the side of the lower barrier, théir)
arbitrary potential coupled (weakly) via sitd® (right)  changes monotonically b7 across the resonance with
and L (left) to 2 one dimensional, disorder free leads.an increased slope near the center of the peak [see
Using a tight binding model and a standard Green functioririg. 4(d)].
method [16] we calculate the transmission and reflection We find a good qualitative agreement between our
coefficients,t and r, of the system. We consider the experimental results for the behavior near the center of the
behavior near a resonance, namdlyr — E,| < AE, peaks and the theoretical predictions: the measafeg
whereEr is the Fermi energyE, is an eigenenergy of the seen in Figs. 2(d) and 3(b) versus the calculated behavior
isolated scattering region, anklE is the average energy in Figs. 4(c) and 4(d), respectively. This is somewhat
spacing between eigenstates. Assuming a small couplingurprising since-e interactions, dominating the properties
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