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Critical Phenomena for Electronic Structure at the Large-Dimension Limit
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We show that the symmetry breaking of the electronic structure configurations at the large-D limit is
completely analogous to the standard phase transitions and critical phenomena in statistical mec
Electronic structure at the large-D limit exhibits critical points with mean field critical exponent
(b ­

1
2 , a ­ 0dis, d ­ 3, andg ­ 1). The complete mapping is presented for the Hartree-Fock tw

electron atom in weak electric field and the two Coulomb center problems. [S0031-9007(96)006

PACS numbers: 31.15.Gy, 05.70.Jk
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Large-D expansions were originally developed for sp
cific theories in the fields of nuclear physics, critic
phenomena, and particle physics [1]. They subseque
found wide use in other areas such as atomic and mole
lar physics [2] and quantum optics. This method i
volves generalizing the problem toD-dimensional space
and treatingD as a free parameter. Typically, the lim
D ! ` yields dramatic simplification in the analysis of
wide class of problems, and often an analytic solution c
be obtained in that limit. Finite-D corrections can then be
taken into account by introducing a systematic pertur
tion expansion in1yD. In atomic and molecular physics
dimensional scaling offers promising new computation
procedures for the study of a variety of physical proble
[2]. Among recent applications of dimensional scaling a
the large order dimensional perturbation expansion [3],
cluding complex dimensional scaling for resonances a
unstable states [4], correlated electronic structure mod
for atoms and solids based on the sub-Hamiltonian
and dimensional renormalization for atoms [6] and simp
diatomic molecules [7].

Yaffe has shown that if a quantum theory satisfies c
tain assumptions then it is possible to find a set of g
eralized coherent states which can be used to obta
classical Hamiltonian such that the resulting dynam
agrees with the large-D quantum dynamics [8]. In the
application of dimensional scaling to electronic structu
the limit D ! ` reduces to a classical electrostatic pro
lem in which the electrons assumed fixed positions re
tive to the nuclei and to each other in theD-scaled
space. This configuration corresponds to the minim
of an effective potential which includes Coulomb inte
actions as well as centrifugal terms arising from the ge
eralizedD-dependence kinetic energy. Typically, in th
large-D regime the electronic structure configuration u
dergoes symmetry breaking for certain ranges of nucl
charges or geometries and thus acquires multiple mini
Breaking the total symmetrical configuration and tunn
ing among different minima, which is akin to resonan
among valence bond structures, are completely analog
to phase transitions and critical phenomena in statist
mechanics [9].
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One important aspect of critical phenomena is t
characterization of the critical points by the critica
exponents [10]. In mean field theories all systems ha
the same critical exponents independent of the mo
systems or the details of the forces. In this Letter w
show that electronic structure of atoms and molecules
the large-D limit exhibit critical phenomena with mean
field critical exponents (b ­

1
2 , a ­ 0dis, d ­ 3, and

g ­ 1). This analogy is shown by allowing the nuclea
charge for atoms and the inverse internuclear dista
for molecules to play the role of temperature as in t
standard phase transition. For simplicity we present h
the detailed calculations for two-electron atom and tw
Coulomb center problems at the large-D limit. More
complete and general results forN-electron atoms will be
given elsewhere [11].

The effective Hamiltonian at the large dimension lim
can be obtained from theD-dimensional Hamiltonian by a
simple scaling transformation;k2 Bohr radii for distance
and 1yk2 hartree for energy, wherek ­

1
2 sD 2 1d. In

the rescaledD-dimensional Schrödinger equation,1yk2

multiplies all kinetic terms associated with the intern
motions. Thus ask ! `, the kinetic term vanishes and
the wave function becomesd function located at the
minimum of the effective potential [2]. In the Hartree
Fock approximation at theD ! ` limit, the dimensional-
scaled effective Hamiltonian for a two-electron atom in
external weak electric fieldE can be written as [12]

H` ­
1
2

µ
1

r
2
1

1
1

r
2
2

∂
2 Z

µ
1

r1
1

1
r2

∂
1

1

sr2
1 1 r

2
2 d1y2

2 E sr1 2 r2d , (1)

wherer1 and r2 are the electron-nucleus radii, andZ is
the nuclear charge. The direction of the electric field w
chosen in order to preserve the symmetry of the effect
Hamiltonian

H`sZ, E ; r1, r2d ­ H`sZ, 2E ; r2, r1d .

The large-D limit ground state energy is then given by

E`sZ, E d ­ min
hr1,r2j

H` . (2)
© 1996 The American Physical Society
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This condition yields the equations

2
1

r
3
i

1
Z

r
2
i

2
ri

sr2
1 1 r

2
2 d3y2

­ siE ,

i ­ 1, 2, s1 ­ 1, s2 ­ 21 . (3)
In the absence of an external fieldE ­ 0, Herschbach

and co-workers [13] have found that these equations h
a symmetrical solution with the two electrons equidista
from the nucleus, withr1 ­ r2 ­ r ­ 23y2ys23y2Z 2

1d. This symmetrical solution represents a single mi
mum in the region where all the eigenvalues of the H
sian matrix are positive,Z $ Zc ­

p
2. For smallerZ,

this symmetry is broken. WhenZ , Zc or E fi 0, the
solutions of the variational equations (3) become unsy
metrical with one electron much closer to the nucleus th
the other (r1 fi r2). Introducing new variablessr, hd

r1 ­ r, r2 ­ s1 2 hdr , (4)
whereh fi 0 measures the deviation from the symmet
cal solution, the electric fieldE can be written as a func
tion of Z andh,

E sZ, hd ­ 2
1

r3 1
Z
r2 2

1
r2f2s1 2 hd 1 h2g3y2 ,

(5)
where

1
r

­
s1 2 hd f2s1 2 hd 1 h2g

s1 2 hd3 1 1

3

"
Z 2

s2 2 hd s1 2 hd2

f2s1 2 hd 1 h2g5y2

#
. (6)

For E ­ 0, the asymmetry parameterh is given by

hsZ, E ­ 0d ­
sZc 1 Zd1y2fZ 2 sZ2

c 2 Z2d1y2g
Z2 2 1

3 sZc 2 Zd1y2. (7)
By studying the eigenvalues of the Hessian matrix,

have found that this solution is a minimum of the effecti
potential for the range1 # Z # Zc.

Now a complete mapping between this problem a
critical phenomena in statistical mechanics is read
feasible with the following analogies: (i) nuclear char
Z $ temperatureT , (ii) external electric fieldE $
ordering field h, (iii) ground state energyE`sZ, E d $

free energyfsT , hd, (iv) asymmetry parameterh $ order
parameterm, and (v) stability limit pointsZc, E ­ 0d $

critical point sTc, h ­ 0d.
Using this scheme, we can define the critical expone

sb, a, d, andgd for the electronic structure of the two
electron atom in the following way:

hsZ, E ­ 0d , s2DZdb , DZ ! 02

E`sZ, E ­ 0d ,j DZ j 22a , DZ ! 0

E sZc, hd , hdsgshd, h ! 0
(8)

≠h

≠E

Å
E ­0

,j DZj2g , DZ ! 0 ,

whereDZ ; Z 2 Zc.
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The expression for the electric field, Eq. (5), has t
following asymptotic expansion near the critical point:

E sDZ, hd ­
9

16
DZh 1

9
32

DZh2 1
9

64
p

2
h3

1 OsDZ2h, h4d . (9)

From this expression and Eqs. (3) and (8), it is straig
forward to obtain the critical exponents

b ­
1
2

, a ­ 0dis, d ­ 3, g ­ 1 . (10)

The results of the asymmetry parameterh as a function
of nuclear charge atE ­ 0 and as a function of the
external field for different values of the nuclear char
are shown in Figs. 1(a) and 1(b). The behavior of t
asymmetry parameter (order) shown in these figures
completely analogous to figures representing the beha
of magnetization as a function of the temperature in me
field theory.

Analogous symmetry breaking effects appear at
large-D limit for molecules when either the nuclea
charges or the internuclear distances are varied [1
As an example we consider the one electron two-cen

FIG. 1. (a) The asymmetry parameterh as a function of the
nuclear chargeZ for the two-electron atom. (b) The asymmetr
parameterh as a function of the external electric fieldE for
three different values ofZ: Z 1 Zc ­

p
2; Z ­ 1.35 , Zc;

Z ­ 1.5 . Zc.
467
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Coulomb systems. The treatment of these systems a
large-D limit parallels the previous treatment for atom
The nuclei A and B are located on thez axis at z ­
2Ry2 and z ­ 1Ry2 with nuclear chargesZA and ZB,
respectively; the electron is located atsr, zd, wherer is
the distance from thez axis.

In the Born-Oppenheimer approximation, the electro
energyEsR, Dd is then parametrically dependent upon t
internuclear distanceR and the difference between th
nuclear charges,D ­ sZB 2 ZAdy2. The scaled effective
Hamiltonian at the large-D limit is given by [14]

H` ­
1

2r2 2
1 2 D

ra
2

1 1 D

rb
, (11)

wherera, rb are the electron-nuclear distances.
The difference between the nuclear charges,D, plays

the same role as the external electric field for the tw
electron atoms with

H`sra, rb; Dd ­ H`srb , ra; 2Dd . (12)

As with the two-electron atom, evaluating the ele
tronic energy forD ! ` reduces simply to determining
the minimum of the effective potential. For finding th
minimum, it is convenient to introduce spheroidal coord
natesl ­ sra 1 rbdyR andm ­ sra 2 rbdyR which are
related to the cylindrical coordinates byz ­ Rlmy2 and
r2 ­ R2sl2 2 1d s1 2 m2dy4. In these coordinates,

E`sR, Dd ­ min
hl,mj

H ` . (13)

This equation leads to the two variational equatio
≠H`y≠l ­ 0 and≠H`y≠m ­ 0.

Herschbach and co-workers [14] studied the symme
cal problem withD ­ 0 and have found that the sym
metrical solution exists form ­ 0, where the electron
is equidistant from the two nuclei (ra ­ rb). For small
R, this solution corresponds to a minimum while fo
large R it corresponds to a saddle point. The symme
breaking which splits the single minimum in the unite
atom limit into the symmetric double minima in the sep
rated atom limit occurs at the critical internuclear distan
Rc ­ 3

p
3y4 and lc ­

p
3. For R . Rc, or D fi 0, it

is necessary to consider the nonsymmetrical solutions
order to describe the phase transition. From the va
tional equations,≠H`y≠l ­ 0 and≠H`y≠m ­ 0, we
obtained

D ­
mhl2fl2 1 3sm2 2 1dg 2 m2j
lhl2 2 m2fm2 1 3sl2 2 1dgj

(14)

and

1
R

­
sl2 2 1d2sm2 2 1d2

lhl2 2 m2fm2 1 3sl2 2 1dgj
. (15)

For D ­ 0 and m fi 0, this solution is a minimum for
R . Rc.

As for the two-electron atom, to calculate the critic
exponents we perform the following mapping: (i) in
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verse nuclear distance1R $ temperatureT , (ii) difference
between the nuclear chargesD $ ordering fieldh, (iii)
ground state energyE`sR, Dd $ free energyfsT , hd, (iv)
asymmetry parameterc ; 2≠E`sR, Ddy≠D $ order pa-
rameterm ; 2≠fsT , hdy≠h, and (v) stability limit point
sRc, D ­ 0d $ critical point sTc, h ­ 0d.

To obtain the critical exponents, the asymptotic exp
sion of Eqs. (14) and (15) around the critical point give

D ­

"
2 2

sl 2 lcd
p

3
1

sl 2 lcd2

3

#
sl 2 lcdm

1

∑
8

p
3

1 10sl 2 lcd
∏

m3

1 Osssmsl 2 lcd4 , m3sl 2 lcd2, m5ddd , (16)

e ­
p

3sl 2 lcd 2
sl 2 lcd3

3
p

3
1

2
p

3
sl 2 lcdm2

1 Ossssl 2 lcd4, m2sl 2 lcd2, m4ddd , (17)

wheree plays the role of the reduced temperature

e ;
1yR 2 1yRc

1yRc
.

The critical exponents are now defined as

cse, D ­ 0d , s2edb , e ! 02,

E`se, D ­ 0d ,j e j 22a , e ! 0 ,

Dse ­ 0, cd , cdsgscd, c ! 0 ,
(18)

≠c

≠D

Å
D­0

,j ej2g , e ! 0 .

As for the two-electron atom, we obtain the sam
critical behavior as shown in Figs. 2(a) and 2(b), with t
same mean field critical exponents.

In analogy with the mean field theory of magnetis
[9], we show that the deviation from the symmetric
configurations at the large-D limit is zero for all values
of Z . Zc. At the critical chargeZc, symmetry breaking
occurs and the value of the asymmetry parameterh

increases asZ decreases to below the critical pointZ ,

Zc. Under these conditions, one electron begins mov
away from both the nucleus and the other electron. In
limit Z ! 1 the electron is no longer bound to the ato
The two symmetry breaking phases represent either of
two electrons escaping the nucleus.

The same behavior is found in the two-center Coulo
problem for the dissociation process, where we hav
symmetrical configuration forR , Rc with D ­ 0. At
R ­ Rc the symmetry breaking occurs and we have t
symmetrical phases with the electron localized on o
or the other nucleus, which is akin to resonance am
valence bond structures [15]. WhenR . Rc, the value
of the asymmetry parameter increases, and as a resul
obtains the atomic dissociation limit asR ! `.

It is straightforward to generalize these results
more complex electronic structure problems where r



VOLUME 77, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 15 JULY 1996

to
nd

r
.)

rt

d
s

ys.

m.

ys.

.

t.

n

FIG. 2. (a) The asymmetry parameterm as a function of the
inverse internuclear distance1yR for the two-center Coulomb
problem. (b) The asymmetry parameterm as a function of
the difference in nuclear chargeD for three different values of
the internuclear distanceR : R ­ Rc ­ 3

p
3y4; R ­ 2 . Rc;

R ­ 1 , Rc.

phase diagrams appear [11]. The mapping betwe
electronic structure at the large-D limit and the mean
field theory of phase transitions invites applications
other powerful statistical mechanical techniques such
the renormalization group method to electronic structu
of atoms and molecules [16].

According to the hypothesis of the universality of th
critical exponents [17], only two quantities determine th
critical behavior of most systems: the dimensionality
space and the dimensionality of the order parameter.
systems that have the same values of these two quant
are said to be members of the same universality class [1
According to variational calculations at the large-D limit,
we obtained classical critical exponents for the symme
breaking of electronic structure configurations leading
en
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ionization and dissociation. Research is underway
examine the underlying structure of phase transitions a
the universality class atD ­ 3.
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