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Critical Phenomena for Electronic Structure at the Large-Dimension Limit
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We show that the symmetry breaking of the electronic structure configurations at théldirgit-is
completely analogous to the standard phase transitions and critical phenomena in statistical mechanics.
Electronic structure at the larde-limit exhibits critical points with mean field critical exponents
B = % a = 045, 6 = 3, andy = 1). The complete mapping is presented for the Hartree-Fock two-
electron atom in weak electric field and the two Coulomb center problems. [S0031-9007(96)00621-7]

PACS numbers: 31.15.Gy, 05.70.Jk

LargeD expansions were originally developed for spe- One important aspect of critical phenomena is the
cific theories in the fields of nuclear physics, critical characterization of the critical points by the critical
phenomena, and particle physics [1]. They subsequentlgxponents [10]. In mean field theories all systems have
found wide use in other areas such as atomic and molectihe same critical exponents independent of the model
lar physics [2] and quantum optics. This method in-systems or the details of the forces. In this Letter we
volves generalizing the problem -dimensional space show that electronic structure of atoms and molecules at
and treatingD as a free parameter. Typically, the limit the largeb limit exhibit critical phenomena with mean
D — = yields dramatic simplification in the analysis of a field critical exponents £ = % a = 045, 6 = 3, and
wide class of problems, and often an analytic solution can, = 1). This analogy is shown by allowing the nuclear
be obtained in that limit. Finit® corrections can then be charge for atoms and the inverse internuclear distance
taken into account by introducing a systematic perturbafor molecules to play the role of temperature as in the
tion expansion il /D. In atomic and molecular physics, standard phase transition. For simplicity we present here
dimensional scaling offers promising new computationakhe detailed calculations for two-electron atom and two
procedures for the study of a variety of physical problemsCoulomb center problems at the larBelimit. More
[2]. Among recent applications of dimensional scaling arecomplete and general results fdrelectron atoms will be
the large order dimensional perturbation expansion [3], ingiven elsewhere [11].
cluding complex dimensional scaling for resonances and The effective Hamiltonian at the large dimension limit
unstable states [4], correlated electronic structure modelsan be obtained from th2-dimensional Hamiltonian by a
for atoms and solids based on the sub-Hamiltonian [S]simple scaling transformation? Bohr radii for distance
and dimensional renormalization for atoms [6] and simpleand 1/«2 hartree for energy, wherg = %(D - 1. In
diatomic molecules [7]. the rescaled-dimensional Schrédinger equatiohy x>

Yaffe has shown that if a quantum theory satisfies cermultiplies all kinetic terms associated with the internal
tain assumptions then it is possible to find a set of genmotions. Thus as — «, the kinetic term vanishes and
eralized coherent states which can be used to obtain #he wave function becomes function located at the
classical Hamiltonian such that the resulting dynamicsminimum of the effective potential [2]. In the Hartree-
agrees with the larg®- quantum dynamics [8]. In the Fock approximation at th® — oo limit, the dimensional-
application of dimensional scaling to electronic structurescaled effective Hamiltonian for a two-electron atom in an

the limit D — o reduces to a classical electrostatic prob-external weak electric fiel@ can be written as [12]
lem in which the electrons assumed fixed positions rela-

tive to the nuclei and to each other in th&scaled H, = i(% + %) — Z<L + i)

space. This configuration corresponds to the minimum 2 \pj P2 p1 p2

of an effective potential which includes Coulomb inter- N 1 — Fpy — po) )
actions as well as centrifugal terms arising from the gen- (p? + pA)/2 pr = p2)>

eralizedD-dependence kinetic energy. Typically, in the where p; and p, are the electron-nucleus radii, addis

largeD regime the electronic structure configuration U""the nuclear charge. The direction of the electric field was

dergoes symmetry preaklng for certain ranges of m.JC.Ieacrhosen in order to preserve the symmetry of the effective
charges or geometries and thus acquires multiple minim

Breaking the total symmetrical configuration and tunnel—%'am”ton'an

ing among different minima, which is akin to resonance HoA(Z, E;pr.p2) = HolZ, —E; pa.p1).
among valence bond structures, are completely analogote largeb limit ground state energy is then given by
to phaS(_a transitions and critical phenomena in statistical E.Z.F) = min Ha. 2
mechanics [9]. (P12}
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This condition yields the equations The expression for the electric field, Eq. (5), has the
1 z pi following asymptotic expansion near the critical point:
-+ - 5= =0E,
pi  pi (pi + p2)P1 9 9 _, . 9
F(AZ,m) = —AZn + —AZn "+ —=n
i=1,2 o =1, oy=—1. 3) (AZ.m) = 1gAZn + HAZn" + o
In the absence of an external fieli = 0, Herschbach + O(AZ2n, ). Q)

and co-workers [13] have found that these equations have _ . o _
a symmetrical solution with the two electrons equidistant From this expression and Egs. (3) and (8), it is straight-

from the nucleus, withp; = p, = p = 23/2/(2%2z —  forward to obtain the critical exponents
1). This symmetrical solution represents a single mini- 1
mum in the region where all the eigenvalues of the Hes- B=7 =04, 6=3 y=1. (10)

sian matrix are positiveZ = Z. = V2. For smallerz, .
this symmetry is broken. Whe# < Z. or £ # 0, the The results of the asymmetry parametgras a function
solutions of the variational equations (3) become unsym®f nuclear charge af = 0 and as a function of the
metrical with one electron much closer to the nucleus thaffXternal field for different values of the nuclear charge
the other p; # p»). Introducing new variable&, ) are shown in Figs. 1(a) and 1(b). Th.e behawo_r of thg
o1 =p o= (1 - n)p 4) asymmetry parameter (order) shown in these figures is
wheren # 0 meaSL;res the deviation fro’m the Symmetri_completely an_alogous to flgures representing the l_:)ehawor
cal solution, the electric fiel@® can be written as a func- of magnetization as a function of the temperature in mean

tion of Z and field theory. _
m { 7z 1 Analogous symmetry breaking effects appear at the
FZ,g)=——+ — — , largeD limit for molecules when either the nuclear
p>  p2 p2(0 — ) + P2 charges or the internuclear distances are varied [14].
(5) As an example we consider the one electron two-center
where
_ _ 2
1 _0=mR0-=-m + 9] (a) 10 —
p (I—=mP+1

@ — g
X {Z RO+ 772]5/2} ©)

For E = 0, the asymmetry parameteris given by

Z.F = 0) = (Z. + 2)'2[z — (22 — 2%)'/?] M os F i
T’ 2 22 — 1
X (Z. — Z)l/z. @)
By studying the eigenvalues of the Hessian matrix, we
have found that this solution is a minimum of the effective 0.0 ‘ 1|2 ‘ 1‘4

potential for the rangé = Z = Z...

Now a complete mapping between this problem and
critical phenomena in statistical mechanics is readily (b)
feasible with the following analogies: (i) nuclear charge
Z < temperatureT, (i) external electric fieldZ <
ordering field &, (iii) ground state energy¥«.(Z,E) <
free energyf (T, h), (iv) asymmetry parametej — order
parametern, and (v) stability limit point(Z., £ = 0) < n
critical point(7,,h = 0).

Using this scheme, we can define the critical exponents
(B, a, 8, andy) for the electronic structure of the two-
electron atom in the following way:

2(Z,E =0)~ (—AZ2)P, AZ—0

E-(Z,E =0)~| AZ |> % AZ—0

8
E(Ze,m) ~ n°sg(n), n—0 FIG. 1. (a) The asymmetry parametgras a function of the
9 nuclear charg& for the two-electron atom. (b) The asymmetry
an ~| AZI7Y, AZ—0, parameterp as a function of the external electric fiell for
dE 1E=0 three different values ofZ: Z + Z. = /2, Z = 1.35 < Z.;
whereAZ =7 — Z.. Z=15>2Z.

467



VOLUME 77, NUMBER 3 PHYSICAL REVIEW LETTERS 154dLy 1996

Coulomb systems. The treatment of these systems at therse nuclear distanc# — temperaturd, (i) difference
largeD limit parallels the previous treatment for atoms. between the nuclear chargés«— ordering field s, (iii)

The nucleiA and B are located on the axis atz =  ground state energi..(R, A) «— free energyf (T, h), (iv)
—R/2 andz = +R/2 with nuclear chargeZ, andZz, asymmetry parametef = —9E..(R,A)/dA < order pa-
respectively; the electron is located (at, z), wherep is  rameterm = —af(T,h)/dh, and (v) stability limit point
the distance from the axis. (R:, A = 0) < critical point(T.,h = 0).

In the Born-Oppenheimer approximation, the electronic  To obtain the critical exponents, the asymptotic expan-
energyE(R, A) is then parametrically dependent upon thesion of Egs. (14) and (15) around the critical point gives

internuclear distanc&k and the difference between the (A = A) (A — A2
nuclear charges)\ = (Zz — Z4)/2. The scaled effective A= {2 7 <+ 3 < }(/\ — A
Hamiltonian at the larg® limit is given by [14] 3
8
1 1 —A 1+ A +|:_+10)\_)\cj|3
=7 ﬁ oy B r, (11) V3 ( J#
+ 0 = )N 1A = A K’),  (16)

wherer,, r;, are the electron-nuclear distances.
The difference between the nuclear chargksplays _ A — 1) 2 5
the same role as the external electric field for the two- € = V3(A — &) — —="— + —=(A — A)u
; 33 V3
electron atoms with

Ho(ra,rp: A) = Holry, ra; —A). (12)

As with the two-electron atom, evaluating the elec-
tronic energy forD — o reduces simply to determining e = 1/R — 1/R.
the minimum of the effective potential. For finding this 1/R. '
minimum, it is convenient to introduce spheroidal coordi-The critical exponents are now defined as
natesA = (r, + r,)/R andu = (r, — rp)/R which are

+ O((A — A)h w2(X — A% Y, (17)

wheree plays the role of the reduced temperature

related to the cylindrical coordinates by= RAu/2 and Yle, A =0 ~(-e)f, e—0,

p2 =R*(A* — 1)(1 — u?)/4. Inthese coordinates, Eo.le,A=0)~|e|?% e—0, 18
This equation leads to the two variational equations W ~lel™”. €—0.

OH./oA = 0anddH../ou = O. aA la=o

Herschbach and co-workers [14] studied the symmetri- As for the two-electron atom, we obtain the same
cal problem withA = 0 and have found that the sym- critical behavior as shown in Figs. 2(a) and 2(b), with the
metrical solution exists forw = 0, where the electron same mean field critical exponents.
is equidistant from the two nuclei{ = r,). For small In analogy with the mean field theory of magnetism
R, this solution corresponds to a minimum while for [9], we show that the deviation from the symmetrical
large R it corresponds to a saddle point. The symmetryconfigurations at the large-limit is zero for all values
breaking which splits the single minimum in the unitedof Z > Z.. At the critical chargeZ., symmetry breaking
atom limit into the symmetric double minima in the sepa-occurs and the value of the asymmetry paramejer
rated atom limit occurs at the critical internuclear distancdncreases ag decreases to below the critical poiAt<
R, =3+/3/4and A, = V3. ForR > R.,or A #0,it Z.. Under these conditions, one electron begins moving
is necessary to consider the nonsymmetrical solutions igway from both the nucleus and the other electron. In the
order to describe the phase transition. From the varialimit Z — 1 the electron is no longer bound to the atom.
tional equationsp H../oA = 0 andaH../ou = 0, we The two symmetry breaking phases represent either of the

obtained two electrons escaping the nucleus.
The same behavior is found in the two-center Coulomb
212 2 _ _ 2
A = '“{/\2[/\ +23(§L 1)2] 28, (14) problem for the dissociation process, where we have a
MAZ — w?[w? + 3022 - D]} symmetrical configuration foR < R. with A = 0. At
and R = R, the symmetry breaking occurs and we have two
(A2 — 1)2(u? — 1) symmetrical phases with the electron localized on one

1
— = . 15 or the other nucleus, which is akin to resonance amon
R MA%2 — p2[p? + 3002 - D]} (19) valence bond structures [15]. Whéh> R,, the value ’
For A =0 and p # 0, this solution is a minimum for of the asymmetry parameter increases, and as a result one
R > R.. obtains the atomic dissociation limit &— oo,
As for the two-electron atom, to calculate the critical It is straightforward to generalize these results to
exponents we perform the following mapping: (i) in- more complex electronic structure problems where rich
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(@) 10 ‘ T ‘ ionization and dissociation. Research is underway to
examine the underlying structure of phase transitions and
the universality class & = 3.
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