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Spin Glass Dynamics under a Change in Magnetic Field
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A barrier model is developed for spin glass dynamics. An ultrametric arrangement for spin glass
states at magnetizatio, with barrier heights increasing linearly with Hamming distance, is used
to represent aging. Upon a change in magnetic field, with an associated change in Zeeman energy
E., states with barrier heightd < E, rapidly transition to the new ground state magnetization.
Calculation of the time rate of change of the magnetization for finite hierarchies vyields results
in agreement with experiment. Forms for the most probable values of the Parisi physical order
parameter for infinite hierarchie®(q), are extracted from experiment at representative temperatures.
[S0031-9007(96)01764-4]
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Aging is one of the characteristic features of spintered in the timer,,, A(z,), and to thesink arising from
glasses [1]. The model of barrier heights [2] monoton-the change in Zeeman energy overcoming the barriers be-
ically increasing with metastable state Hamming distancéween phase space statéds< E.. This model can ac-
on a hierarchical tree can account [1] for the aging pheeount for Mtr\m(2, t,,) if the initial manifold is identified
nomenon (but see Ref. [3]). What remains is to relate thisvith the field cooled states (with magnetizatibfic), and
structure to spin glass dynamics, e.g., the time dependentiee ground state upoH — 0 is identified with the zero
of the thermoremanent magnetizatidd;r\ (2, £,,) Or of  magnetization state. The difficulty lies with the solution
the zero field magnetizatiod{zrc (¢, 1,,), Wherer is the  of the diffusion equation on the hierarchical tree appropri-
time of measurement after waiting a timg below the ate toM = Mgc in the presence of a sink &t < FE,.
spin glass transition temperatufe. The solution to the problem of a random walk in

Steps in this direction have been taken by Chuthe absence of a sink on a finitéfurcating ultrametric
et al. [4] and Kenninget al. [4], and within a trap model space was presented by Ogielski and Stein [9]. We have
by Bouchaud and Dean [5] and Vincegttal. [5]. extended their calculation to include a sink, and solved for

The pure states introduced by Parisi [6] are thoughthe time dependence @fzkc(z, 7,,). In this manner, we
to originate from metastable states when the largesire able to compare directly with the classic experiments
barrier diverges as the temperature is lowered [1]. Thesef the Uppsala group [10].
infinite barriers encompass metastable states separated bywe consider a hierarchical structure with branching
a self-similar distribution of barrier heights regardless ofratio r. Starting at the order parametgg at the top
temperature. When the spin glass is cooled throfigh of the tree, we assign an increasing valuegoét each
in a magnetic field (which could be zero) and held atsubsequent branch down to the maximum vajug (the
the measuring temperatufg, for r,,, the system ages by Edwards-Anderson order parameter [11]). The Hamming
overcoming barriers and populating additional metastabldistanceD is defined byD = %(qEA — g). Note that
states. Theltrametricsymmetry of states [7] ensures that in the Ogielski and Stein treatment [9) is given by
this diffusion is effectively one dimensional, with barriers the number of branches that one must meet before two
of increasing height being surmounted as time progressebranches merge. It is more natural for our purposes to

The model for extraction of spin glass dynamics ofdefine the Hamming distand@ in terms ofg becausey
which we shall make use [4] relies on the assumption thaloes not necessarily increase linearly with an increasing
the states separated by barrier heights A = E. empty  number of branches. This relationship will not enter into
instantaneously into the new ground states upon a corréhe calculation ofzrc (7, 7,,) at givenmagnetic field, but
sponding change in magnetic fiek.  This assumption will be required when we compazc(t, 1,,) atdifferent
can be related to the work of Narayan and Fisher [8]magnetic fields where it will be introduced through the
Magnetic field cycling experiments [4] have shown thatParisi physical order parametBfq) [12].
the exchange of occupations “respects” the barrier heights: At + = —1,, (the time of quenching the system below
the new ground state occupation is bounded by the sanig,), the states of magnetization dff[rc are occupied
barrier heights) = A = E_, as the original state occupa- initially at Hamming distanced = 0, and aging begins.
tion. Subsequent diffusion within the initial manifold of Let the number of states of given magnetization at the
states takes place over barriers larger than those encousite of distancek be given byN(r), the barrier height
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at D = k be A, and the probability per unit time of  The solution No(r > 0)/N added to the initial
jumping from any one state atD =i to any of r/~!  decay Ny(07)/N corresponds to the magnetization
states aD = j bee;;. Then,N(r) satisfies the differential Myzpc(z,1,)/Mrc.  We plot our calculation of the

equation guantity used by the Uppsala group [1H§(z) =
aN(r) dMzrc(t,t,,)/d In t versust with n = 20 in Fig. 1(a).
o, €N@. 1) The comparison with the experiments of the Uppsala

group [10], Fig. 1(b), is remarkable. We find th&fr)

By this definition, the diffusion matrixe results in an given by the hierarchical model is peaked at the mea-
n X n eigenvalue problem in contrast to that of Ogielski surement timer =~ r,,. This feature was pointed to by
and Stein which would b@" X 2". With n = 80 and  Grandlundet al. [10] as a signature of the droplet model
r =2, we would have2®"-10> metastable states. An [13] arising when nucleated spin domains grow to reach
additional benefit of our definition is that we can solve thethe equilibrium domain size. The peak $ft) att = ¢,
diffusion problem even for noninteger in the hierarchical model arises from the massing of oc-

For convenience we shall choose= 2 andn = 20. cupied states at(r,) at r = r,. While this does not
With this choice ofs, all of the states occupied for waiting distinguish between the two models, it at least demon-
times and measurement times ud® are available. Note strates thateachis capable of explaining the structure
that the matrixe is not symmetric. Because there areof S(s). In addition, the current calculation generates a
2*~1 degenerate states at the Hamming distaneee have  quantitative fit, while the droplet model so far has only
€; = 2/"'e;;. Fori < j, we havee;; = > €;; which  suggested qualitative features. It should be noted that
means the probabilities per unit time to overcome theHoffmann and Sibani [14] have generated qualitatively
barrier heightA; from below and above are the same. If similar properties forS(s) using a parametrized master
the hopping is thermally activateel, = e d/Tfori < j. equation on a set of states which have the topology of a
We note from Ref. [2] that, for smalD, energy barriers tree.
grow linearly with Hamming distance, i.&); = jA. By Reference [1] extended temperature cycling methods
solving then X n eigenvalue problem with the initial [15] to extract the temperature dependence of a particular
condition No(—1,,) = N where N is the total number barrier of heightA. Hammannret al. [1] were able to fit
of states of given magnetization and.o(—¢,) = 0, we  —dA/dT, to both a power law and an exponentialAn
obtainN;(r < 0) during the waiting time,, . whereT, is the reduced temperatufg¢ T,. We have used

At r = 0, the system has aged foy, and there is a
field change6H. With the field changel — 0, we
would be calculatingtrm(2, t,,), While 0 — H would ol (@)
give Mzrc(t,t,). We focus onMzgc(t,t,,) in order to
compare with the experiments of the Uppsala group [10] b
though the behavior a¥ftr (2, 1,,) is the same [and thus
will give the same absolute value f6i(r) as calculated g,
below].

Upon the field chang® — H, the rapid increase of
magnetizationMzgc(t = 0) is caused by the instanta-
neous transfer of states within the sink of the= 0

= 10* 10° 10*

manifold to states with comparable barrier heights within ~ ° 10 o 10 10° 10° Harb. unit)

the M = Mgc manifold. The subsequent increase of
Mzrc(t,t,) with time is associated with the diffusion
of states within theM = 0 manifold to the sink, with
the concomitant instantaneous transfer to Mie= Mgc
manifold. The Zeeman enerdy, is so small compared

to the barrier heightA(z,,) explored during the experi-
mental waiting timer,, that for purposes of calculation
only the D = 0 site is included in the sink. In case the
field dependence of the magnetization were to be impor-
tant [see below where the nonlinear field dependence of
Mzgc(t,t,) generates Parisi'®(q)], one must cut off
the region of phase space up o= E,. This defines 0
a new diffusion matrix modified te,; = 0O; i.e., there is 10° 10} 10° 10° 10* t(sec)

no transition frqm theD = 0 site to D = i sites. The g 1 (@) Using the finite bifurcating ultrametric tree for
new initial conditions at = 0 would beNy(0") = 0and  , = 20, we plot S(r) vs  for a three different waiting times.
Nizo(0") = N;»0(07). (b) Experimental values fa$(¢) from Ref. [10].

4649



VOLUME 77, NUMBER 22 PHYSICAL REVIEW LETTERS 25 NVEMBER 1996

the latter [Eq. (5) of Ref. [1]], one must meet before the two sites merge, automatically
d connotes a linear dependencefofor D) on the number
B exp(BA), (2) of branches occurred. In real systemg, need not

linearly increase wittk. Let P1(D) be the most probable

with their values ofa = 0.5 and 8 = 0.2 to fit to the  Probability density for branching at Hamming distar2e

temperature cycling results of Granbergal. [15] using Then the most probable valug pf the_Parisi physical prder

the hierarchical structure of finite extent € 20) out- Paramete(D) [6], the probability to find two states with

lined above. The results are exhibited in Fig. 2. Againoverlapg = gea — 2D, is related taP(D) by

the agreement is remarkable, now especially so because »

of the use of the temperature dependence of the barrier P(D) = Pl(D)rf°

heights as extracted in Ref. [1] from a completely differ-

ent experiment. The need to account for the temperatur@here r is the average branching ratio. A similar

dependence of the barrier heights, and the use of valug®nclusion has been reached by Sibani and Hertz [16],

for the parameters: and B from a different experiment, and by Weissmaet al. [17].

strongly suggests that the results of Ref. [1] are universal. For an ultrametric tree withr branches at each vertex,
We are also able to formulate a continuum expressiofit & manner entirely analogous to the finite structure

for Myrc(t,1,)/Myc applicable to physical systems in treated previously, the continuum approximation defined

terms of the most probable value of the Parisi physicapbove generates

order pgrameterP(q), the probability to fipd twopure fmfz)Pl(D)dD  Myec(i, 1)

stateswith an overlapg. Our model, using the most rto = e

probable order parameter, contrasts with the use of free FC

energy fluctuations by Bouchaud and Dean [5]. Ourrhe factorw(,) is the number of explored states during
observations [1] demonstrate that a large number of = The denominatoiMpc is used to account for the
metastable states separated fmjite barriers form an  magnetization of each occupied state. It is seen that the
ultrametric space within a pure state. In our treatmenferivative of the left-hand side of Eq. (4) with respect to
of the finite system, the assumption of linear increase ifne Hamming distanc®(E,) gives P(D) as defined by

A as a function ofD, defined by the number of branches gq. (3). By virtue of the sum rule [10] relatindf/rm

and Myxc, this means, from Eq. (4), that(D) follows
immediately from

ool (@) 1, = 10° |:

P(D) = d
045 03 015 0 ( )_w(tW)dD(EZ)

P(D)dD
(DY, 3)

(tw) - (4)

Mrrm(t, 1) :| (5)

MEgc

Calculations of the dependence of the barrier height
with D show a linear relationship for smaib [2].
Noting E. « H?>, we see thatP(D), [P(g)], can be
obtained, to within a multiplicative constant, by taking
the derivative ofMrrwm(t,1,,)/Mgpc With respect toH?,

10° 10° 10 10° 10 t(arb.unit) [—H?], respectively.

We have measureddtrm(t, 1, )/Mpc over a wide
range of temperatures and a very fine mesh of mag-
(b) tw(sec)= 10° netic fields. These measurements, and their derivative

with respect to—H?, are plotted in Fig. 3 for three rep-

resentative temperatured, = 31.5 K): (a) 7, = 0.13;
(b) T, = 0.47; and (c)T, = 0.88.

At low temperatures, Mézardt al.[18] find P(q)
(1 — ¢)~3/* away from the delta function at = gga =~
1 — aT?, wherea is a constant. Our result [Fig. 3(h
fits that form exceedingly well. The extracted shape for
P(q) remains similar for reduced temperatures up to about
T, = 0.5.

10° 10! 10? 10° 10* t(sec) NearT,, Mézardet al. [18] show thatP(g) flattens out

FIG. 2. (a) Plots ofS(¢) vs ¢ for temperature cycling changes toa Constant. Our measurements from abﬁﬂk 0.5
AT(K) = 0,0.15,0.3,0.45, and 0.6 according to the protocol to our highest temperature of measuremeiit = 0.83)

of Ref. [13]. (b) Experimental values fa§() for the same €xhibit a gradual evolution away from the power law at
AT(K) from Ref. [13]. lower temperatures to a pronounced plateau [Fig.) 34t

S0

S@)

4650



VOLUME 77, NUMBER 22

PHYSICAL REVIEW LETTERS

25 NVEMBER 1996

T, = 0.88, though with a sharp but small area divergencework was supported in part by NSF Grants No. DMR 90
close togga. The height and width of the plateau region 23107, No. DMR 94 96027, and No. DMR 96 23195.

are observed to increase &g is approached from below
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FIG. 3. Plots ofMrwm(?, t,,)/Mpc VS —H? for Cu: Mn 6 at. %
(T, =31.5K) at r = 10 sec ands, =5 min for (a)7, =
0.13; (b) T, = 0.47; and (c)7, = 0.88. The solid lines are
best fitsto the data, the derivative of which with respect to
—H? is plotted to the right, givingP(g) from Eq. (5) in the
text, with D = 3(qgea — q).
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