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Spin Glass Dynamics under a Change in Magnetic Field
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A barrier model is developed for spin glass dynamics. An ultrametric arrangement for spin glass
states at magnetizationM, with barrier heights increasing linearly with Hamming distance, is used
to represent aging. Upon a change in magnetic field, with an associated change in Zeeman energy
Ez, states with barrier heightsD , Ez rapidly transition to the new ground state magnetization.
Calculation of the time rate of change of the magnetization for finite hierarchies yields results
in agreement with experiment. Forms for the most probable values of the Parisi physical order
parameter for infinite hierarchies,Psqd, are extracted from experiment at representative temperatures.
[S0031-9007(96)01764-4]
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Aging is one of the characteristic features of sp
glasses [1]. The model of barrier heights [2] monoto
ically increasing with metastable state Hamming dista
on a hierarchical tree can account [1] for the aging p
nomenon (but see Ref. [3]). What remains is to relate
structure to spin glass dynamics, e.g., the time depend
of the thermoremanent magnetization,MTRMst, twd or of
the zero field magnetization,MZFCst, twd, wheret is the
time of measurement after waiting a timetw below the
spin glass transition temperatureTg.

Steps in this direction have been taken by C
et al. [4] and Kenninget al. [4], and within a trap model
by Bouchaud and Dean [5] and Vincentet al. [5].

The pure states introduced by Parisi [6] are thou
to originate from metastable states when the larg
barrier diverges as the temperature is lowered [1]. Th
infinite barriers encompass metastable states separate
a self-similar distribution of barrier heights regardless
temperature. When the spin glass is cooled throughTg

in a magnetic field (which could be zero) and held
the measuring temperatureTm for tw , the system ages b
overcoming barriers and populating additional metasta
states. Theultrametricsymmetry of states [7] ensures th
this diffusion is effectively one dimensional, with barrie
of increasing height being surmounted as time progres

The model for extraction of spin glass dynamics
which we shall make use [4] relies on the assumption t
the states separated by barrier heights0 # D # Ez empty
instantaneously into the new ground states upon a co
sponding change in magnetic fieldH. This assumption
can be related to the work of Narayan and Fisher [
Magnetic field cycling experiments [4] have shown th
the exchange of occupations “respects” the barrier heig
the new ground state occupation is bounded by the s
barrier heights,0 # D # Ez, as the original state occupa
tion. Subsequent diffusion within the initial manifold o
states takes place over barriers larger than those enc
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tered in the timetw , Dstwd, and to thesink arising from
the change in Zeeman energy overcoming the barriers
tween phase space states,D # Ez . This model can ac-
count forMTRMst, twd if the initial manifold is identified
with the field cooled states (with magnetizationMFC), and
the ground state uponH ! 0 is identified with the zero
magnetization state. The difficulty lies with the solutio
of the diffusion equation on the hierarchical tree approp
ate toM  MFC in the presence of a sink atD # Ez .

The solution to the problem of a random walk in
the absence of a sink on a finitebifurcating ultrametric
space was presented by Ogielski and Stein [9]. We ha
extended their calculation to include a sink, and solved f
the time dependence ofMZFCst, twd. In this manner, we
are able to compare directly with the classic experimen
of the Uppsala group [10].

We consider a hierarchical structure with branchin
ratio r. Starting at the order parameterq0 at the top
of the tree, we assign an increasing value ofq at each
subsequent branch down to the maximum valueqEA (the
Edwards-Anderson order parameter [11]). The Hammi
distanceD is defined byD 

1
2 sqEA 2 qd. Note that

in the Ogielski and Stein treatment [9]D is given by
the number of branches that one must meet before t
branches merge. It is more natural for our purposes
define the Hamming distanceD in terms ofq becauseq
does not necessarily increase linearly with an increas
number of branches. This relationship will not enter in
the calculation ofMZFCst, twd at givenmagnetic field, but
will be required when we compareMZFCst, twd at different
magnetic fields where it will be introduced through th
Parisi physical order parameterPsqd [12].

At t  2tw (the time of quenching the system below
Tg), the states of magnetization ofMFC are occupied
initially at Hamming distanceD  0, and aging begins.
Let the number of states of given magnetization at t
site of distancek be given byNkstd, the barrier height
© 1996 The American Physical Society
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at D  k be Dk, and the probability per unit time o
jumping from any one state atD  i to any of rj21

states atD  j beeij . Then,Nstd satisfies the differential
equation

≠ Nstd
≠ t

 e Nstd. (1)

By this definition, the diffusion matrixe results in an
n 3 n eigenvalue problem in contrast to that of Ogiels
and Stein which would be2n 3 2n. With n  80 and
r  2, we would have280 1023 metastable states. An
additional benefit of our definition is that we can solve t
diffusion problem even for nonintegerr .

For convenience we shall chooser  2 and n  20.
With this choice ofn, all of the states occupied for waitin
times and measurement times up to104 are available. Note
that the matrixe is not symmetric. Because there a
2k21 degenerate states at the Hamming distancek, we have
eij  2j2ieji . For i , j, we haveeij 

Pj21
i0 eji which

means the probabilities per unit time to overcome t
barrier heightDk from below and above are the same.
the hopping is thermally activated,eij  e2Dj yT for i , j.
We note from Ref. [2] that, for smallD, energy barriers
grow linearly with Hamming distance, i.e.,Dj  jD. By
solving the n 3 n eigenvalue problem with the initia
condition N0s2twd  N whereN is the total number
of states of given magnetization andNifi0s2twd  0, we
obtainNist , 0d during the waiting timetw.

At t  0, the system has aged fortw, and there is a
field changedH. With the field changeH ! 0, we
would be calculatingMTRMst, twd, while 0 ! H would
give MZFCst, twd. We focus onMZFCst, twd in order to
compare with the experiments of the Uppsala group [1
though the behavior ofMTRMst, twd is the same [and thus
will give the same absolute value forSstd as calculated
below].

Upon the field change0 ! H, the rapid increase o
magnetizationMZFCst  0d is caused by the instanta
neous transfer of states within the sink of theM  0
manifold to states with comparable barrier heights with
the M  MFC manifold. The subsequent increase
MZFCst, twd with time is associated with the diffusion
of states within theM  0 manifold to the sink, with
the concomitant instantaneous transfer to theM  MFC
manifold. The Zeeman energyEz is so small compared
to the barrier heightDstwd explored during the experi-
mental waiting timetw that for purposes of calculation
only the D  0 site is included in the sink. In case th
field dependence of the magnetization were to be imp
tant [see below where the nonlinear field dependence
MZFCst, twd generates Parisi’sPsqd], one must cut off
the region of phase space up toD . Ez. This defines
a new diffusion matrix modified toe0i  0; i.e., there is
no transition from theD  0 site to D  i sites. The
new initial conditions att  0 would beN0s01d  0 and
Nifi0s01d  Nifi0s02d.
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The solution N0st . 0dyN added to the initial
decay N0s02dyN corresponds to the magnetizatio
MZFCst, twdyMFC. We plot our calculation of the
quantity used by the Uppsala group [10]Sstd 
dMZFCst, twdyd ln t versust with n  20 in Fig. 1(a).

The comparison with the experiments of the Uppsa
group [10], Fig. 1(b), is remarkable. We find thatSstd
given by the hierarchical model is peaked at the me
surement timet ø tw . This feature was pointed to by
Grandlundet al. [10] as a signature of the droplet mode
[13] arising when nucleated spin domains grow to rea
the equilibrium domain size. The peak ofSstd at t  tw

in the hierarchical model arises from the massing of o
cupied states atDstwd at t  tw. While this does not
distinguish between the two models, it at least demo
strates thateach is capable of explaining the structure
of Sstd. In addition, the current calculation generates
quantitative fit, while the droplet model so far has on
suggested qualitative features. It should be noted t
Hoffmann and Sibani [14] have generated qualitative
similar properties forSstd using a parametrized maste
equation on a set of states which have the topology o
tree.

Reference [1] extended temperature cycling metho
[15] to extract the temperature dependence of a particu
barrier of heightD. Hammannet al. [1] were able to fit
2dDydTr to both a power law and an exponential inD,
whereTr is the reduced temperatureTyTg. We have used

FIG. 1. (a) Using the finite bifurcating ultrametric tree fo
n  20, we plot Sstd vs t for a three different waiting times.
(b) Experimental values forSstd from Ref. [10].
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the latter [Eq. (5) of Ref. [1] ],

2
dD

dTr
 a expsbDd , (2)

with their values ofa  0.5 and b  0.2 to fit to the
temperature cycling results of Granberget al. [15] using
the hierarchical structure of finite extent (n  20) out-
lined above. The results are exhibited in Fig. 2. Aga
the agreement is remarkable, now especially so beca
of the use of the temperature dependence of the ba
heights as extracted in Ref. [1] from a completely diffe
ent experiment. The need to account for the tempera
dependence of the barrier heights, and the use of va
for the parametersa andb from a different experiment,
strongly suggests that the results of Ref. [1] are univer

We are also able to formulate a continuum express
for MZFCst, twdyMFC applicable to physical systems i
terms of the most probable value of the Parisi physi
order parameterPsqd, the probability to find twopure
stateswith an overlapq. Our model, using the mos
probable order parameter, contrasts with the use of
energy fluctuations by Bouchaud and Dean [5]. O
observations [1] demonstrate that a large number
metastable states separated byfinite barriers form an
ultrametric space within a pure state. In our treatm
of the finite system, the assumption of linear increase
D as a function ofD, defined by the number of branche

FIG. 2. (a) Plots ofSstd vs t for temperature cycling change
DT sKd  0, 0.15, 0.3, 0.45, and 0.6 according to the protoco
of Ref. [13]. (b) Experimental values forSstd for the same
DT sKd from Ref. [13].
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one must meet before the two sites merge, automatica
connotes a linear dependence ofD (or Dd on the number
of branches occurred. In real systems,qk need not
linearly increase withk. Let P1sDd be the most probable
probability density for branching at Hamming distanceD.
Then the most probable value of the Parisi physical ord
parameterPsDd [6], the probability to find two states with
overlapq  qEA 2 2D, is related toP1sDd by

PsDd  P1sDdr
RD

0
P1sDd dD

, (3)

where r is the average branching ratio. A similar
conclusion has been reached by Sibani and Hertz [16
and by Weissmanet al. [17].

For an ultrametric tree withr branches at each vertex,
in a manner entirely analogous to the finite structur
treated previously, the continuum approximation define
above generates

r
RDsEz d

0
P1sDd dD


MZFCst, twd

MFC
wstwd . (4)

The factorwstwd is the number of explored states during
tw . The denominatorMFC is used to account for the
magnetization of each occupied state. It is seen that t
derivative of the left-hand side of Eq. (4) with respect to
the Hamming distanceDsEzd gives PsDd as defined by
Eq. (3). By virtue of the sum rule [10] relatingMTRM
and MZFC, this means, from Eq. (4), thatPsDd follows
immediately from

PsDd  vstwd
d

dDsEzd

"
MTRMst, twd

MFC

#
. (5)

Calculations of the dependence of the barrier heig
with D show a linear relationship for smallD [2].
Noting Ez ~ H2, we see thatPsDd, fPsqdg, can be
obtained, to within a multiplicative constant, by taking
the derivative ofMTRMst, tw dyMFC with respect toH2,
f2H2g, respectively.

We have measuredMTRMst, twdyMFC over a wide
range of temperatures and a very fine mesh of ma
netic fields. These measurements, and their derivati
with respect to2H2, are plotted in Fig. 3 for three rep-
resentative temperaturessTg  31.5 Kd: (a) Tr  0.13;
(b) Tr  0.47; and (c)Tr  0.88.

At low temperatures, Mézardet al. [18] find Psqd ~

s1 2 qd23y2 away from the delta function atq  qEA ø
1 2 aT2, wherea is a constant. Our result [Fig. 3(a′)]
fits that form exceedingly well. The extracted shape fo
Psqd remains similar for reduced temperatures up to abo
Tr ø 0.5.

NearTg, Mézardet al. [18] show thatPsqd flattens out
to a constant. Our measurements from aboutTr ø 0.5
to our highest temperature of measurementsTr  0.88d
exhibit a gradual evolution away from the power law a
lower temperatures to a pronounced plateau [Fig. 3(c′)] at



VOLUME 77, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 25 NOVEMBER 1996

ce
n

t
h

n
th
f

rl
e

P
r.
u
it
he
he
n

hi

to

0

d

)

n
f
ing
o

B
d

nd

e

.

nd

in
s

o,
,
B

.

Tr  0.88, though with a sharp but small area divergen
close toqEA. The height and width of the plateau regio
are observed to increase asTg is approached from below
[compare Figs. 3(b′) and 3(c′)].

These measurements and analysis are the firs
generate explicit forms for the most probable value of t
Parisi physical order parameter,Psqd. They appear to be
consistent with the predictions of mean field theory, a
represent a quantitative approach to examination of
experimental consequences of the hierarchical model
spin glass dynamics. Comparison with the Monte Ca
calculations of Young [19] displays consistency betwe
our data and numerical methods.

The authors are indebted to Dr. Eric Vincent, Dr. J.-
Bouchaud, Dr. L. F. Cugliandolo, Dr. B. Derrida, D
J. Kurchan, and Dr. M. Mézard for numerous helpf
discussions, and to Dr. Eric Vincent for assistance w
the experiments which were carried out in part at t
Service de Physique de l’Etat Condense at Saclay. T
have also benefited from discussions and corresponde
with Professor G. Parisi and Professor A. P. Young. T

FIG. 3. Plots ofMTRMst, twdyMFC vs 2H2 for Cu: Mn 6 at. %
sTg  31.5 Kd at t  10 sec and tw  5 min for (a) Tr 
0.13; (b) Tr  0.47; and (c)Tr  0.88. The solid lines are
best fits to the data, the derivative of which with respect
2H2 is plotted to the right, givingPsqd from Eq. (5) in the
text, with D  1

2 sqEA 2 qd.
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