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Strong Pinning and Plastic Deformations of the Vortex Lattice
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We investigate numerically the dynamically generated plastic deformations of a 3D vortex la
driven through a disorder potential with isolated, strong pinning centers (pointlike or extended a
the field direction). We find that the vortex lattice exhibits a very peculiar dynamical behavior in
plastic flow regime, in particular, topological excitations consisting of three or four entangled vor
are formed. We determine the critical current densityjc and the activation energy for depinningUc in
the presence of a finite density of strong pinning centers. [S0031-9007(96)01760-7]

PACS numbers: 74.60.Ge
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Recently the dynamical behavior of a vortex lattice (V
in a disordered type-II superconductor has attracted m
interest [1–4]. The intriguing dynamics of the VL orig
nates from the competition between the vortex-defect
the vortex-vortex interaction, leading to a threshold beh
ior: If the pinning potential dominates then the vortic
are essentially stationary with a slow residual motion d
to tunneling or thermal activation. In the opposite lim
when the pinning forces are weak compared with the d
ing force, the VL is only elastically deformed and flow
coherently. In the important intermediate regime, wh
the pinning and driving force are comparable, the VL d
forms plastically and an incoherent motion results [5
The breakdown of the weak collective pinning scena
[7] with increasing strength of the pinning potential h
been observed in numerical simulations [8]. Furthermo
it has numerically been shown [8] that the plastic flow o
2D VL driven through a random pinning potential consi
of channels of flowing vortices, i.e.,rivers, and regions of
pinned vortex lines, i.e.,islands. This so-called channe
flow behavior has been observed experimentally by me
of Lorentz microscopy [9]. The various anomalies [3,1
(e.g., thermal instability at large currents, nonmonoton
ity of the I-V curves, peak effect) occurring in the plas
flow regime suggest that the nature of the dynamics is
damentally dissimilar from the one in the elastic regim
In particular, the dynamically generated disorder is of g
eral importance as it seems to be a basic constituent o
dynamics in disordered systems.

In this paper we present for the first time a stu
on the dynamically produced defects in a 3D VL. W
concentrate on a VL driven through a material w
isolated strong pins. It turns out that such strong pinn
centers can entail the generation of localized topolog
excitations involving three or four entangled vortice
Moreover, the presence of strong pins leads to a prefe
orientation of motion of the VL and affects the critic
current density as well as the barrier for depinning. In
following we first introduce our model and then consid
pointlike as well as extended pinning centers.
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If the density ofdefectsis low, the VL deformations
produced by individual pinning centers can be stud
without accounting for collective effects. The pinnin
centers considered here are assumed to have a ro
shape with a small lateral (coherence length,j) but a
variable longitudinal (fromj to a few lattice constantsa0

along the field direction) extension. This kind of defe
corresponds, for instance, to the discontinuous colum
of damaged material, e.g., YBa2Cu3O7 irradiated with
0.58 GeV Sn ions [11], to carbon nanotubes embed
in BSCCO [12] or to MgO nanorods grown in BSCC
superconductors [13]. The pinning force with a range
the order ofj is taken to be infinitely large—a trappe
vortex segment cannot escape from the pinning cente
and, therefore, only the interaction between the vortice
relevant. This assumption is physically reasonable si
the maximal force the vortices exert on the pinned v
tex segment is much smaller than the maximal poss
force resulting from the depairing current. The drivin
force acting on the vortices is in the plane perpendic
lar to the VL and the magnetic field is restricted
B , 0.2Hc2 (i.e., the London approximation is valid) an
to l . a0 ­

p
F0yB sl ­ penetration depthd. These re-

strictions on the magnetic field are not severe, as mos
the experimentally accessible regime is covered. Wit
this regime, the scaling rules [14] are applicable allowi
one to generalize the results obtained for isotropic sup
conductors considered in the following. For convenien
and technical reasons the moving VL is chosen as
frame of reference and hence the pinning center appea
move through the VL. In order to describe the lattice d
formation produced by a defect we allow a finite numb
of soft vortices in the neighborhood of the pinned vorte
line to accommodate according to their interaction. A
other vortices are held fixed and consequently denote
hard vortices. Accordingly, we split the (isotropic) Lon
don energy functional for the soft vortices

F ­
´0

2

X
i,j

Z
dri ? drj

e2
p

jri2rj jylq
jri 2 rjj

, (1)
© 1996 The American Physical Society
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into three different parts: the self interaction accounti
for the line energy of the soft vortices, the mutu
interaction of the soft vortices, and the coupling of the s
vortices to the surrounding hard vortices. The instabil
to fluctuations of the energy functional (1) is cured b
taking a core term into account and by using a cut
,j. The algorithm to relax the vortices is based on
conjugate gradient method; for details on the numer
see Ref. [15]. We do not investigate the mechani
of vortex trapping, and therefore the pinning cen
considered is initially positioned at a lattice site, fixin
the vortex along its lengthlp. Subsequently the defec
together with the attached vortex segment is adiabatic
dragged through the VL while the deformation energy
the VL is monitored. The parameters in this procedure
the dragging angleq with respect to a basis lattice vecto
the distanced from the equilibrium lattice site, and th
lengthlp of the pinning center. The energy per length
the lattice deformations is measured in units of´0, where
´0 ­ sF0y4pld2, and the lattice spacinga0 is used as the
length unit.

The pointlike pinning centershave an extension o
3j along the field direction and the magnetic fieldB ø
0.0025Hc2 is fixed by settinga0yj ­ 50. Note that the
pinning lengthlp ­ 3j is larger than the cutoffj of the
energy functional but still small enough to correspond
pointlike pins. Quantitatively similar results are obtain
when lp is doubled. Estimates on elastic deformatio
of the VL suggest that the set of soft vortices should
clude the pinned vortex as well as the nearest neighbo
vortices. Small displacements of the pinned vortex s
ment entail pronounced deformations only close to the
where sharp kinks occur. With increasing displacem
d the parts of the pinned vortex above and below the
tend to align antiparallel and, therefore, attract each oth
see Fig. 1. At the critical distance,ddp ­ 0.22a0 (note
that ddp ­ 0.22a0 applies to all fields within the London
regime and therefore is a universal relation), this attr
tion dominates and makes the configuration collapse,
the two antiparallel vortex segments annihilate, leav
behind a free unpinned vortex and a vortex loop attach
to the pin. Subsequently the free vortex line relaxes
its equilibrium lattice position and the vortex loop shrink
and disappears. With thisone-loop depinningprocess the
pin is freed and hence the VL becomes unpinned. N
that the change in topology is mediated by vortex cutti
and recombination. The deformation energy versus
displacement is shown in Fig. 1. The sharp edge of
deformation energy at the recombination of the vortic
(see Fig. 1) strongly influences the exponent in the sca
law of the depinning barrier and, in particular, seems to
the signature of depinning from strong pins. As the d
pinning distanceddp ­ 0.22a0 is rather small, the pinned
vortex line does neither noticeably affect the other vo
tices during the dragging process nor experience the n
circularity of the hexagonal VL potential. Consequent
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FIG. 1. The deformation energy as a function of the displa
ment of the pinned vortex segment is independent of the a
q (the curvesq ­ 0±, 15±, and30± coincide). The magnetic
field is fixed atB ø 0.0025Hc2 (i.e., a0yj ­ 50) and the pin-
ning length is3j. The depinning occurs atddp ­ 0.22a0 and
the maximal pinning force amounts toFpin ­ 1.58´0.

the whole dragging process is essentially circular symm
ric rendering the energy of the lattice deformation as w
as the depinning mechanism independent of the angle.
a result, the presence of pointlike pinning centers does
lead to a preferred orientation for a moving VL and,
addition, no vortex entanglement is introduced.

The critical current densityjc derives from the critical
state and, therefore, is related to the maximal pinn
force per defectFpin by [16]

jc ­
cnFpin

B
. (2)

Here n is the volume concentration of effective pinnin
centers which depends on the total defect concentra
n0 and the effective trapping areaS according ton ­
n0SyS0, whereS0 ­ s

p
3y2da2

0 is the area of the unit cell
On the basis of the depinning distanceddp an upper limit
for S is obtained by

S ­

Ω
p d2

dp , if pd2
dp , S0 ,

S0, otherwise.
(3)

Inserting the numerical valuesFpin ­ 1.58´0 andddp ­
0.22a0 we find S ­ 0.17S0 , S0 for point pins and the
upper limit for the critical current density becomes

jc ø 0.4n0a2
0jj0 , (4)

where j0 ­ s4y3
p

3 dc´0yjF0 is the depairing curren
density. Note thatjc is inversely proportional toB. For
the creep activation energyUs jd, we obtain

Us jd ­ Uc

µ
jc 2 j

jc

∂a

, (5)

with Uc ­ s0.18 6 0.02d´0a0 and a ø 1.97. The ex-
ponenta ­ 2 can be derived from the following argu
ment: Minimizing the expressionEjsdd ­ Esdd 2 Fjd,
Fj ­ jF0yc we obtain the displacementdj of the vor-
tex atj , jc. The activation barrier is given byUs jd ­
Ejsddpd 2 Ejsdjd. ExpandingEsdd aroundddp, Esdd ø
Edp 1 Fjc

sd 2 ddpd 1 E00sddpd sd 2 ddpd2y2, provides
4637
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an expression for the displacementdj and furnishes the
result Us jd ø sFjc 2 Fjd2y2E00sddpd and hencea ­ 2,
provided the curvature of the pinning energy does not v
ish at criticality. Note that the corresponding exponent f
a string in a washboard pinning potential is5

4 [14].
Elastic considerations suggest thatextended pinning

centersdeform not only the nearest neighboring vortic
but also some of the next nearest neighbors and, theref
all these vortices must be soft. In order to study t
effect of extended pins, the magnetic field is fixed atB ø
0.06Hc2 corresponding toa0yj ­ 10, and the pinning
centers are restricted to lengthslp # 7a0. Firstly, we
analyze the topological aspects of the lattice deformatio
and, secondly, we determine the critical current dens
and the activation energy for depinning.

For extended pinning centers the situation is more co
plicated than for point pins and the lattice deformatio
produced depend crucially on the angleq , the pinning
length lp , and the distanced. In order to illustrate the
effects of extended pins we consider a pin with a leng
lp ­ 3a0 dragged along an angleq ­ 5±. At a distance
d ­ 0.98a0 configurations of four twisted vortices, so
called twisted quadruplets(TQs), are formed above and
below the pinning center, i.e., a loop and antiloop exci
tion of four vortices; see Fig. 2. At the transition from th
disentangled to the entangled state the deformation ene
drops considerably,s0.5 2 1d´0a0 (see Fig. 3) and be-
comes slightly larger than the energy of two TQs becau
the pin is not at a lattice site. The high energy of the
loop excitations,ETQ 2 E0 ­ 2.41´0a0 (E0 is the ground
state energy of the regular VL), is due to the hexag
nal VL which confines the TQ to a lengthlTQ ­ 2.94a0.
The TQs above and below the pinning center have
posite orientation and, therefore, attract each other. T
interaction energy of the TQs can be estimated by c
sidering two oppositely oriented vortex rings in para
lel planes separated by a distanceL. Choosing vortex

FIG. 2. An extended pinning center withlp ­ 3a0 together
with the pinned vortex segment is dragged through the VL
an angleq ­ 5±. Two TQ’s appear at­ 0.98a0 and disappear
again after the vortex has depinned via pair annihilation.
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rings on top of each other with the same radiusR, we
obtainEL . 22p2´0sR4yL3d 1 ´0OsR6yL5d. Using the
numerically obtained valuesL ø 6.4a0 and R ø a0, we
find ELsTQd ø 22p2´0a4

0yL3 ø 20.08´0a0. When the
pinned vortex segment is at its closest distance from
nearest neighboring vortex, the configuration is simi
to the initial state since the TQs “carry away” the di
placement of one lattice constant. Therefore it looks
if the nearest neighbor rather than the original vortex w
pinned.

If the pinned vortex segment is dragged beyond t
nearest neighboring vortex towards the next nearest ne
bor the distance between the TQs is increased. Des
the larger separation of the TQs, there is not enough sp
for the creation of a second pair of TQs (this behavior h
been obtained forlp # 7a0). Instead the pinned vortex
and the next nearest neighboring vortex form a config
ration of two twisted vortices. Since configurations
two twisted vortices are unstable in the VL [15], the tw
vortices collapse and apair annihilation stateis formed,
leading to an exchange of the pinned vortex segment;
Fig. 2. After depinning, the two oppositely oriented TQ
move together and annihilate, leaving behind a “heale
regular VL. The depinning terminates the generation
vortex entanglement associated with the formerly pinn
vortex. However, configurations of entangled vortices c
be stabilized by other defects, in particular, weak po
disorder.

The formation of two TQs is a generic case fo
extended pinning centers. With increasing angle,
force the pinned vortex exerts onto its closest neighbor
vortex is reduced and, therefore, only configurations
three twisted vortices, so-calledtwisted triplets(TTs), are
generated. The TTs behave similarly to the TQs a
disappear in the same way. For angles close topy6 a

FIG. 3. The deformation energy exhibits a palpable dr
when the topology changes at a displacementd , a0. For
q ­ 0± a one-loop depinning occurs whereas for small angl
e.g., q ­ 5±, TQs are generated. Intermediate angles, e
q ­ 8± and q ­ 15±, lead to the creation of TTs. For
larger anglesq ­ 18± and q ­ 28± a pair annihilation state
is formed. Note that the largest slope of the energy cur
obtained forq ­ 0±, determines the maximal pinning force a
well as the orientation of motion. The configurationssad, sbd,
andscd are displayed in Fig. 2.
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FIG. 4. Extended pinning centers can trigger the format
of configurations with three or four twisted vortices. Belo
the solid line depinning is mediated by a vortex loop creat
at the pin, whereas above this line depinning always invol
pair annihilation either with the nearest or the next nea
neighboring vortex.

pair annihilation state is formed (note that the twisted p
is unstable in the VL), which in turn leads to an exchan
of the pinned vortex segment with the neighboring vort
The lattice deformations as a function of angleq and
pinning length lp are summarized in the diagram
Fig. 4.

The strong dependence of the deformation energy
the angleq (see Fig. 3) makes the VL move along
lattice vector. This behavior is a consequence of
maximal pinning force which is obtained forq ­ 0±; see
Fig. 3. Interestingly, weak pinning seems to introduce
same orientation of motion as has been demonstrate
experiments on Al films [17] as well as by theoretic
studies [18,19]. The critical current density for extend
pins derives along the same lines as for point pins,
with S ­ S0, as the change in topology occurs atd , a0.
Accordingly, the critical current density is given by

jc ­
3
p

3
4

Fpin

´0
n0a2

0jj0 . (6)

Fpin depends on the field and, therefore, the criti
current density is not inversely proportional toB as for
point pins. Interpolating the numerically obtained da
n
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pointsFpins jcd, we obtain the following scaling behavio

jc ø 6.1

µ
Blp

B

∂g

n0jl2
pj0 , (7)

with g ­ 0.7 6 0.1, where B ­ F0ya2
0 is normalized

with respect toBlp ­ F0yl2
p. The activation energy to

change the topology, however, exhibits the same sca
behavior as for point-pins

Us jd ­ Ucslpd
µ

jc 2 j
jc

∂a

, (8)

with a ø 2, Ucslpd ­ b´0a0slpya0dd, b ­ 1.63 6

0.05, andd ­ 0.78 6 0.05.
In conclusion, we have studied the plastic deformatio

of the vortex lines due to strong pinning. We ha
identified the relevant depinning processes involving eit
loop creation or pair-annihilation, depending on the p
size. We have found that large pins do generate entan
configurations (TTs and TQs) which will be stabilize
by a finite density of pins. Finally, we have determin
the critical current densityjc as well as the activation
barrier Us jd for creep, the latter showing a univers
exponenta ø 2 originating from the change in topolog
at depinning.
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