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Nonuniversal Conductance Quantization in Quantum Wires
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We have measured the transport properties of high-quality quantum wires fabricated in GaAs-AlG
by using cleaved edge overgrowth. The low temperature conductance is quantized as the el
density in the wire is varied. While the values of the conductance plateaus are reproducible,
deviate from multiples of the universal value of2e2yh by as much as 25%. As the temperature or d
bias increases the conductance steps approach the universal value. Several aspects of the data
explained qualitatively using Luttinger liquid theory although there remain major inconsistencies w
such an interpretation. [S0031-9007(96)01675-4]

PACS numbers: 73.20.Dx, 73.23.Ad, 73.23.Ps, 73.50.Jt
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One-dimensional (1D) electronic systems, so-ca
Luttinger liquids, are expected to show unique transp
behavior as a consequence of the Coulomb interaction
tween carriers [1–4]. Even for Coulomb energies sma
than the electron kinetic energy correlated electron beh
ior is expected. Because of the large quantum mech
cal zero point motion of the electrons, these correlati
are short ranged and their spatial extent is expecte
increase in a power law manner as the system’s temp
ture is lowered [4]. The longer correlation length cau
the system to be more susceptible to pinning by local
purities. Therefore the conductance of a 1D system
expected to be suppressed at low temperature even
wire with just a few impurities [4–6]. This remarkab
results as well as many other non-Fermi liquid proper
of the Luttinger model remain largely untested by expe
ments due to the lack of a suitable 1D wire [7].

One of the fingerprints of a noninteracting 1D condu
tor is its quantized conductance in multiples of the univ
sal valueGO  2e2yh [8]. This quantization results from
an exact compensation of the increasing electron velo
and the decreasing density of states as the number of c
ers increases. Therefore, as subsequent 1D electronic
band are filled with electrons, the conductance appears
series of plateaus or steps with values equal toGQ multi-
plied by the number of partly occupied wire modessNd.

In an earlier publication, mainly focusing on our nov
wire fabrication process, we determined the transp
mean free path as well as the energy and mode s
trum in the wire using magneto-transport spectrosc
[9]. The exceptionally long transport mean free pa
in excess of10 mm and the exceedingly large subba
spacing of 20 meV make these wires ideal for study
effects of electron-electronse-ed interactions in 1D. Here
we present results of such an investigation as tempera
and bias voltage are varied.

Transport through the wires at low temperatures (0.3
presents a significant mystery. Although the wire’s co
ductance is quantized in equal steps showing plateaus
are flat to within 5%, the quantized conductance is
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producibly lower thanNGQ . This reduction is of fixed
amount for a particular wire width and can be as large
25%. At higher temperatures and dc biases the cond
tance approachesNGQ. We discuss three different mod
els to put our unexpected findings in their proper conte
While some aspects of the data can be reproduced qu
tatively, none of the scenarios provides a satisfactory
terpretation of all our observations.

The exceptional quality of the 1D wires is central to o
ability to obtain high quality, reproducible data. For th
reason we reiterate the intricate fabrication process.

Wire fabrication by cleaved edge overgrowth [10] an
the unique,in situ contacting scheme are shown in Fig.
The starting point is a modulation doped GaAs quantu
well of 14, 25, or 40 nm thickness embedded between t

FIG. 1. (a) Wire preparation by cleaved edge overgrowth
GaAs-AlGaAs by molecular-beam epitaxy. For details see te
© 1996 The American Physical Society
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thick AlGaAs layers and doped from the top [Fig. 1(a
The resulting two-dimensional electron gas (2DEG)
sides 500 nm below the top surface, has an electron
sity n ø s1 2d 3 1011 cm22, and a mobilitym $ 3 3

106 cm2yV sec. A long and narrow evaporated tungs
stripe [Fig. 1(a)] will later define the 1D wire region. Th
quantum wire itself is fabricated by cleaving the sp
imen in ultrahigh vacuum and overgrowing the smo
cleavage plane with a second modulation doping sequ
[Figs. 1(a) and 1(b)]. This introduces electrons at the e
of the quantum well [see Fig. 1(d)] creating one or mo
confined edge states along the cleave. Strong overlap
tween the 2DEG and the edge states couple both sys
intimately along the entire edge. The 1D wire region
obtained by decoupling the edge states from the 2D
with the help of the tungsten gatesT d, which, after the
cleave, extends exactly to the edge of the quantum w
Figure 1(c) shows a blowup of the critical device regi
under suitable bias conditions. In essence, the top gat
separates the 2DEG into two sheets that connect, thro
the edge states, to the 1D wire. The side gate (S), o
200 nm from the cleaved edge, primarily serves to v
the electrons density along the edge.

Figures 1(d), 1(e), and 1(f ) show a sequence
schematic cross sections of charge distributions in
wire region for different top-gate voltagesVT . As VT is
biased increasingly negative the 2DEG is separated
the 1D wire becomes firmly confined in two dimension
in thez direction by the quantum well and in they direc-
tion by the strong triangular potential of the cleaved-ed
modulation-doping sequence. Electrons in such clea
edge overgrowth wires are confined on three sides
atomically smooth barriers and on the fourth side b
strong electric field. It is important to realize that t
top gate affects only the density in thewire region and
the side gate affects the density in theentire edge. For
strongest 1D confinement the top gate is biased negat
and the side gate strongly positively pushing the electr
against the cleaved edge of the quantum well.

Electronic transport measurements on the quantum w
are performed in a pumped He3 cryostat using an excita
tion voltage ofVex  10 mV at 16 Hz in the contact con
figuration shown in Fig. 1(c). Figure 2 shows the line
response conductance of a wire embedded in a 25
quantum well as a function ofVT . Clear conductance
quantization is observed. Importantly, the values of
conductance plateaus are markedly different fromNGQ

(dotted lines) and seem to be quantized in units of0.85 3

s2e2yhd. This nonuniversal value is reproducible to with
5% in all wires fabricated from the same quantum well m
terial even if it was cleaved and overgrown in separate ru
However, wires made with different quantum well widt
give different values. The 40, 25, and 14 nm quant
wells have prefactors 0.9, 0.85, and 0.8, respectively.
plateaus are flat to within 5% and their existence dem
strates that deviations from universality are independen
electron density in the wire. Constant step height betw
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FIG. 2. Linear response conductance of a2 mm long wire
in a 25 nm quantum well vs the top-gate voltagesVT d
measured at a temperature of 0.3 K. The solid line is
measured conductance. The dashed curve is the mea
conductance multiplied by an empirical factor of 1.15. Ins
Linear response conductance of the last plateau for wire
different lengths fabricated consecutively along the edge o
single 25 nm cleaved edge overgrowth specimen. The num
denote the wire length in microns.

plateaus rules out a single series resistance as the orig
nonuniversality. In such a case the step height would h
to decrease for the higher modes.

The effect of temperature on the wire conductance
shown in Fig. 3. At high temperatures the higher plate
degrade due to the thermal population of the more clos
spaced upper subbands [8]. However, the lowest pla
remains flat even at 20 K with a value approachingGQ at
high enough temperatures. The rigid rise, preserving
plateau, suggests once more that there is no depend
on the electron density in the wire. The temperat
dependence of the higher plateaus,GN sT d, is stronger and
appears to be given byGN sTd  NG1sT d. This suggests
that each mode contributes an equal amount to the t

FIG. 3. Differential conductance of a2 mm long wire in a
25 nm quantum well vs top-gate voltagesVTd. The different
curves correspond to different temperatures. Inset: The dif
ential conductance vs temperature for a value ofVT marked by
the arrow.
4613
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FIG. 4. Differential conductance of a2 mm long wire in a
25 nm quantum well vs top-gate voltagesVTd. The different
curves correspond to different dc biases. Inset: Differen
conductance vs dc bias. The different curves correspond
different side-gate voltages and hence different density of
edge modes. The differential conductance is fitted to a po
law sdIydV  c 1 AV

p
dcd. The value ofp for each of the

densities is noted.

conductance at any given temperature. The inset to Fi
contains the temperature dependence of the lowest pla
for a fixedVT (marked by an arrow in Fig. 3).

A similar increase is observed in the nonlinear diffe
ential conductancesdIydV d shown in Fig. 4. dIydV is
directly measured by superimposing an ac signal on
dc bias sVdcd. Again, the plateaus rise rigidly with dc
bias, suggesting no dependence on wire density. At s
ficiently large biasesdIydV even exceedsGQ. However,
the dc conductancesIyV d remains belowGQ throughout
the entire range of dc bias studied.

Our findings can be summarized as follows: (1) T
wire conductance is quantized in equal steps that differ
producibly from the universal value by as much as 25
i.e., GsVTd  Ngs2e2yhd, whereg , 1. (2) The conduc-
tance plateaus are flat implying insensitivity to electr
density. They remain flat at elevated temperatures and
biases. (3) The wire conductance approaches the uni
sal values as the temperature increases. (4) The no
ear differential conductance increases with increasing b
and even exceeds the universal value of2e2yh. The dc
conductance approaches2e2yh. (5) The behavior summa
rized above is observed in all 15 wire samples we stud

We discuss now three different theoretical models
an attempt to explain our results. In the first model w
assume noninteracting electrons both in the wire and
the contact regions. Landauer’s formula in the abse
of disorder and, hence, for ideal transmission probabi
predicts conductance quantization, namely,G  NGQ.
Reduced conductance of our wires may then arise fr
a nonideal electron transmission [8]. Two experimen
observations speak against such a possibility. The ob
vation of flat plateaus implies energy independent tra
mission probability; a very unlikely possibility. Also, th
observed strong temperature dependence rules out
4614
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an unlikely interpretation. It is a very general ingred
ent of any noninteracting theory that for an energy in
pendent transmission probability the conductance is
temperature independent [8]. This is in contradiction w
experiment.

The second model considers the role ofe-e interactions
in the wire. In Luttinger liquid theory interaction effec
in an infinite wire reduce the conductance to below2e2yh
[3,4]. However, for afinitewire without disorder,coupled
to Fermi liquid (noninteracting) leads,the predicted con
ductance is always2e2yh [11–13]. Therefore, within this
framework, one must invoke disorder in order to expl
the lower conductance [7]. Such a situation was rece
studied theoretically by Maslov [14] and experimentally
Taruchaet al. [15] who found the conductance to decrea
from 2e2yh in a power law fashion asT ! 0. Moreover,
the zero temperature conductance is expected to be
and to decrease with increasing wire length, qualitativ
agreeing with the data in the insets of Figs. 2 and 3. H
ever, in Maslov’s theory as in Luttinger liquid theory
general [4] both the strength of thee-e interactions and
the scale of the temperature dependence are determin
the electron density; in contradiction with the observed
plateaus and the conductance steps of equal height. T
fore,e-e interactions in a finite disordered wire can acco
only for a subset of the experimental observations.

The assumption of Fermi liquid behavior in the lea
underlying Maslov’s model, is not necessarily met
our experiment. The cleaved edge overgrowth geo
try forces the electrons against the cleavage plane c
ing 1D edge states along theentire edge: in the wire as
well as in the 2DEG. Since these edge states are
of the leads, non-Fermi liquid behavior may indeed ex
Exact modeling of such a system is beyond our abil
However, we can evaluate some aspects of the lead
figuration and compare the implications with experime
We therefore consider a third model which associa
the reduced conductance with the competition betw
the scattering from the 2DEG to the edge modes and
backscattering in them. Electron transport through
wire should be viewed as a sequential process of sca
ing from the 2DEG into the edge states, proceeding al
the edge modes while coupled to the 2DEG, entering
traversing the wire, exiting the wire, and preceding alo
the edge modes on the opposite side of the wire until
ing scattered out into the other 2DEG contact. The 2D
states and the edge modes are orthogonal, and the F
energy in the edge statess.20 meVd far exceedsEF in
the 2DEGsø10 meVd. Therefore, the momenta of ele
trons at the Fermi level in both systems are highly dispa
and electron transfer between them requires a scatte
process involving an impurity or defect along the edge

We model this transport by taking a Boltzmann a
proach. For simplicity we consider only one mode alo
the edge and in the wire. We define the local den
of right and left movers in this mode asnRsxd and
nLsxd, respectively, and introduce two phenomenologi
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scattering rates. The first is the edge mode backs
tering rate per unit lengthGBS which scatters a right
mover into a left mover and vice versa. The seco
coefficient G2D describes the scattering rate per un
length between the 2DEG and either the right or l
movers. The steady-state Boltzmann equation for
right movers in contact with the 2DEG to the right of th
wire is yR

≠nR

≠x  n2D
R G2D 1 nLGBS 2 nRsG2D 1 GBSd,

where yR is the velocity of the right movers (also
equal to the Fermi velocity,y) and n2D

R is the effective
density of the 2DEG to the right of the wire [16]. Simila
equations can be written for the left movers and f
both movers in contact with the 2DEG to the left o
the wire. Solving this set of equations for the curre
through the wire, defined asI  eyfnRsLd 2 nLs2Ldg,
yields I  eysn2D

R 2 n2D
L dy

p
1 1 2GBSyG2D and hence

G  GQy
p

1 1 2GBSyG2D. Therefore, the conductanc
of the system is indeed lower than the universal o
Note that in the absence of backscattering the predic
conductance isGQ. Since such a coupling between a wi
and the equilibrating reservoirs has not been conside
in the literature, it is unclear whether the conductan
in this case should be the universal one or the redu
value expected for the case on an infinite wire [3,4]. Th
model can be easily extended to account for more th
one mode. However, the only way to generically obta
conductance steps of equal height is to assume that
modes are completely uncoupled from each other and
the scattering rates associated with each mode are
same. The different density in each of the edge mo
make this possibility highly unlikely.

A qualitative understanding of the temperature and
bias dependence may be obtained in this model by c
sidering the effect of interactions on the scattering rat
Luttinger liquid theory predicts [4] that backscatterin
along the entire edge is enhanced at low temperatures
gesting a largerGBS. Also, scattering from the 2DEG
into the edge modes is suppressed at low temperatures
to the vanishing of the tunneling density of states, su
gesting a smallerG2D. Therefore, the conductance is e
pected to decrease as the temperature is lowered which
qualitative agreement with the measurements. This
duced conductance innot due to interactions within the
wire. In fact, we assume the perfect transmission throu
the wire not to be altered by interactions provided the sc
tering mean free path exceeds the wire length. Theref
the conductance should also not depend on wire density
is observed in experiment. Furthermore, the conducta
is expected to depend on the electron density in the e
modes which can be varied by the side gateS as is indeed
found to be the case. The inset to Fig. 4 shows the diff
ential conductance of the wire at fixedVT at the center of
the last plateau for various side-gate voltagesVS . Clearly,
the differential conductance increases significantly with
bias. An empirical fit,dI

dV  c 1 AV
p
dc yieldsp  1.2 for

the high density case increasing continuously top  2.2
at the lowest measured edge mode density. Such a be
at-
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ior is in qualitative agreement with Luttinger liquid theor
Lower densities are expected to generate larger interac
effects manifested through larger powers of the dc b
or temperature [4,5,14]. Two important results, howev
are not explained by this Boltzmann-transport model. T
first is the observed dependence of plateau value on
length (see inset to Fig. 2). Since the reduced conducta
is a result of the coupling between the edge states and
2DEG it is unclear why increasing the wire length su
presses it. The second observation is the apparently fi
conductance at zero temperature. Since the edge m
are effectively infinite, Luttinger liquid theory [4] predict
thatG2D ! 0 with decreasing temperature and hence z
conductance. This behavior is clearly not observed, s
gesting the onset of coherence between the 2DEG and
edge modes at low temperatures.

It appears that our experimental data on quanti
conductance in high quality quantum wires cannot
understood within existing models of either noninteract
or interacting electrons in 1D.
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