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Isotropic Turbulence: Important Differences between True Dissipation Rate
and Its One-Dimensional Surrogate
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The one-dimensional surrogate (1D) of energy dissipation rate has often been used in place of the
true one in investigations of the Kolmogorov refined similarity hypothesis and the multifractal nature
of isotropic turbulence. Direct numerical simulations, reported here, show that the use of the 1D
surrogate can lead to fundamental changes in statistics. The conditional and unconditional probability
densities of the Kolmogorov variable built from the true dissipation are never bimodal and always
nearly Gaussian. [S0031-9007(96)01772-3]

PACS numbers: 47.27.Gs, 05.40.+j, 05.70.Ln

Many experimenters have measured the so-called pseof ¢’ over a line of lengthr across whichAu, is measured.
dodissipation rates’ = 15v(9u/dx)> (v: kinematic vis- These PDF’s appear to be bimodal for smadind gradu-
cosity, du/dx: longitudinal velocity gradient), that is the ally become more Gaussian mafcreases. These data in
one-dimensional (1D) surrogate of energy dissipation rat&ig. 1 are the computation f&®, ~ 160; nine cases of
€ in isotropic turbulence. This is done instead of measurare plotted ranging from 1.16 to 298 Kolmogorov lengths
ing e directly because it is hard to measure all the simul-n, so that the inertial range covergn = 18.58 and 37.2,
taneous components of the strain tensor. In most casesdr/n = 9.28 is just at the end of it.
discussions of intermittency exponents have been basedNote that the inertial range in the DNS of Wang
on observations of the surrogaté with the use of the etal.[11], who treat forced isotropic turbulence by
Taylor hypothesis. In particular, it is to be remarked thatFourier spectral method, startsraty = 10, corresponding
several current important ideas on the fine structure of turto kn = 0.3 wherek is the wave number. This rather
bulence, such as the multifractal distribution of dissipation
in space [1] and the bimodality of conditional probability T I —
density functions (PDF) for a small scale range [2] of the (a) 10% (b)
Kolmogorov variable in the refined similarity hypothesis ;
(RSH) [3], have been established by analysis basesf.on __107%

However, the true may give important different results. &} { X107
This possibility has already been pointed out [4-7]. Here ™ 10 Ay
we compare results obtained by constructinigand &’ i ]
from two direct numerical simulations (DNS) of fully N L. . 107
developed, decaying isotropic turbulencerat~ 100 [8] 1075
andR, ~ 160 [9]. HereR, is a Taylor-scale Reynolds
number. The grid sizes were 128nd 512, respectively. 10% ——
The method of calculation was described in [10].

(d)

g

First we show in Fig. 1(a) the unconditional PDF's of /;: 1o =
the Kolmogorov variablev defined by the RSH [3] for & fg“ 107
various fixed scales = ! =
Aur _ v(rsr)1/3’ (1) &, 107 ‘.‘ ElO : :
where Au, is longitudinal velocity increment across dis- F g dn=232 .""; { 10—s§ |
tancer, and e, is € averaged over a domain of scale 1075 0 5 2

We take the domain as a cube with sidebetween the
centers of opposite faces of which tha, is measured.v FIG. 1. The unconditional PDS’f ob for variousr for (a)
is normalized by its root mean square. These PDF'’s havi€ true dissipation and (b) its 1D surrogatgy = 1.16, 2.32,

. 4,64, 9.29, 18.58, 37.2, 74.3, 149, and 298. rig increases,
Skeyvness atmost0.3 butare very close to Gau§S|an, with the line moves to the outside. The conditional PDF s/dfor
a slightr dependence. In contrast, we show in Fig. 1(b), /;,'— 2 33 for several values of (djre,)"”* and (d)(rel)"/3.

the corresponding results with the surrogate dissipatfon As (rs/)!/3 increases, the line moves to the inside. The dotted
used in place of,. Inthis case’ is defined as the average lines denote the standard normal PDF.
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small value ofr/n at the end is common to existing DNS 10° 10F
of isotropic turbulence. . -
The bimodality seen in Fig. 1(b) is very similar to that 2 . A
of the conditional PDF’s of for the surrogate dissipation, £ \_%10
which were depicted in detail by Stolovitzkst al. [2] ?: | %
based on the experimental observation of real turbulence 107
in an atmospheric surface layer with, ~ 1500 and [ /7 =9.29 ]
2000. Since we are interested in the existence or non- - S/ 2
existence of bimodality, first we show the conditional
PDF’s of v for ¢, and &/ for a smallr (r/n = 2.32) L T @
in Figs. 1(c) and 1(d). It is evident that there is no ~ ]
bimodality found in the conditional PDF's of for e, % -~ Lo
even for such a smatlfor any(re,)'/>. The PDF hardly < %
depends or(re,)'/3. On the other hand, that faf, is ;?: &
clearly bimodal and strongly depends ¢ne’)'/3; the 104
more bimodal for the largewre’)'/3. Al lines are drawn . ,‘/,”z“‘; R |
- J

for a value zone ofre,)'/? or (re)'/? which is one of v
the octad made by dividing the whole zone between the " ditional s ofy f _ ‘
maximum and minimum ofr¢,)!/3 or (rs’,)l/3 into eight FIG. 2. The conditional PDF's ofv for r/n = 9.29 for

| part v wh h h Hicient bseveral values of (ajre,)'* and (b)(re’)'/?, and these for
equal parts, only when each zone nhas a sullicient nUmbel, .- ¢ 5¢ tor several values of (dye,)!/? and (d)(re)!/>.

of data points to draw a line. Ruggedness of lines meangs (,»/)1/3 increases, the line moves to the outside in both (b)
that the data number is relatively small, and it happengnd (d). The dotted lines denote the standard normal PDF.
usually when(re,)!/? or (r&’)'/? is large but also when

it is very small for larger. In Fig. 1(d), however, we L . o
notice that the transition pattern of the conditional PDFV for the true dissipation against/» in Fig. 3. An
with (re’)!/3 is the reverse of what was presented in [2]2PPreciable dependence of the kurtosisrde seen even
and resembles persistent casef the process treated in " the inertial range (shown by arrows in Fig. 3). The
[12]. As (r&.)'/? increases, the line moves from outsidefrend of the kurtosis decreasing asdecreases in the

. r ’ . . . . .
to inside. This pattern implies the fractional Brownian Inertial range is clearly seen also in the experiments for

motion with Hurst numbeH > % being consistent with Ry =550 [14] and Ry = 7200 [15]. This may reveal
the fact thatAu, ~ r for r — 0 due to analyticity: a small gap between reality and the RSH that assumes

whenced — 1. the perfect independence of the PDFwobf bothr and

We show the same comparisons fofy = 9.29 and (re,)'”* in the inertial range.
18.58 in Fig. 2. Figures 2(a) and 2(c) identify the ten- By the wa3y, we ng)te' that t_he gnsemble_ayerage of un-
dency which appeared in Fig. 1(c) and the more Gaussiaﬁ'—ormal'_zed”  say{v?), in the |nert|al.range is just around
ization of the PDF but holding a skewness. In Fig. 2(b)~ - which roughly approximates 5 in the Kolmogorov
we can see that the conditional PDF fdrstill keeps the theory [16]:
_bimodalit_y f_or smaller(r_sjﬁ)1/3, but thg transition pattern (Audy = _%r<81*>~ (2)
is now similar to that in [2]. That is, these PDF's re- ] ] 13
semble anantipersistent cas§l2] corresponding to the Note thatv is almost independent ofre.)” for the
fractional Brownian motion with < 1/2, as is expected true dls_S|pat|on. This may |nd_|cate a limit of §|mulat|on
in the inertial range. Figure 2(d) has the same trend, bf the ideal state(R, — o) which can be achieved by
the conditional PDF’s for Iargefrs;)m are closer to our DNS turbulence. On the other hand, noting that
Gaussian. Ags increases beyond the values shown here,
we have made sure that the conditional PDF for the true
dissipation approaches to more Gaussian irrespectively of |
(re,)'/3, while that for the surrogate does so considerably — «|
depending orre’)'/? even in the inertial range (faster for
larger(re’)!/3) just as is presented in [2]. i
Thus it is natural to conclude that the bimodality is o4
peculiar to the PDF ofv for the surrogate dissipation, - L b

L 3 L
100 107 102 109 10! 10°

and that the PDF ob for the true dissipation may be o U

?S?ﬁmed ?S nearly Sgui&&:ﬂ for ad\{\;!de rgnbgle(dbl\%n FIG. 3. (a) Skewness and (b) kurtosis of PDF woffor the
o the scale ofy) and is hardly conditioned bfre,)""”, true dissipation against/n for R, ~ 160 (solid line) and

but slightly dependent on[13]. For reference, we show g, ~ 100 (dotted line). The inertial range of each case is in
the skewness and kurtosis of the unconditional PDF obetween the arrows.
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(Au?y = (v2)(?/?)r?/3, we obtained about 2.7 as the value
of (v?) in the inertial range. After multiplying it by
;—31“*1(1/3) [17], we have the Kolmogorov constaft,

for our turbulence as 2.1, the same value as in [10]. The
intermittency effect for(¢2/?) is negligible here. This
rather high value ofCx is common to current DNS's of
turbulence.

Stolovitzky and Sreenivasan [12] succeeded in deriv-
ing theoretically the conditional PDF af for the surro-
gate by utilizing the special analytical relationshipX,
andre’ established using the 1D common functiary dx
and with some assumptions. That is bimodal for small
and approaches to Gaussian for largen rather excel- 2 2'0 1'0 : (') : 1'0 : 2'0
lent agreement with their experimental observation using . ) q
the surrogate, but without any skewness. We can under- ) . . .

s the soufce of appearance of the bmodalty very wefl 4, ComParon o genealeed dimensinso, The
from their theory, and have actually reconfirmed it in oUrihose for R, ~ 100 by crosses, and(g) for the trinomial
DNS only whene! replacess,. However, the PDF of  generalized Cantor set model by open trianglg3((q) + 2

for the true dissipation is not really bimodal all the way for the p model is indicated by the dashed line, the average
down tor ~ 7 but nearly Gaussian, in contrast. On the?"(q) + 2 for the 1D surrogate dissipation fa, ~ 100 by

: ‘L P _closed diamonds, and the She-Leveque model by the solid
other hand, RSH is originally based on the similarity con line, which almost overlaps with closed circles, crosses, and

cept employing the true dissipation. Therefore it is natppen triangles foy = 0. Open squares indicate the average
ural to understand the statistics Afu, as a joint result p®(g) + 2 when the box counting is done for the inertial-

of the nearly Gaussian statistics @fand the proper sta- range lengthL/8 in place ofL.

tistics of (re,)!/3, as in literature mentioned in Ref. [13].

Stolovitzky et al’s theory of v hardly contributes to this are plotted by closed circles and crosses fgr~ 160
even in the inertial range. Indeed it is a problem that theand 100, respectively. These are close to each other,
PDF ofv in their theory is not skewed in the inertial range, suggesting the robustness bfg) of the multifractal of
since there is no other source to produce the real skewneggssipation measure in the 3D space.

of th_e PDF ofAu, in the relation (1). The crucial dynamic To demonstrate how reliable the scaling bfg) by

role in turbulence of the skewness was well described bythe box counting for a deterministic multifractal [18] is,
Kolmogorov [16]. As a result, it must be difficult to gen- we add Fig. 5 in which |['E‘(Eri)/EL)q]l/(q71) (where

erate rgaﬂu, based on their theory. . . E, = g,r%) is plotted against lxr/L). There we can

In Fig. 4, we compare the generalized dimensiongae 5 004 scaling exist for a much wider than the
D(g)'s obtained for the surrogate measure and for thg,oria| range. See [20] for the detailed investigation of
true dissipation measure. Here we understand that th&qing with 29 plotted points straightly aligned inside the

form(?r hgives a muItifracta: in thg_ l.D SP";‘]C? (or (611) 1Djnertial range forR, ~ 100. The scaling of the averaged
cut of the 3D space). So let us distinguish it/ag)" D(g)(V is shown in the same figure by open symbols in
from D(q) in the 3D space. Since we have many I'neScomparison.

of total lengthL (in the x direction) in the DNS box of Thus we can conclude that there is a non-trivial

;[_urbublen(;]e, \éve can get mamy(%)“;’s calcula;]ted in ((el\)/,ery difference inD(q) between the surrogate and the true
ine by the box counting method [18]. Thes®q)')'s  gisination. Only forlg| < 3 both D(g)'s are almost

scatter jUSF as wildly as in the experimerjt by Meneveay.,incigent. we may understand that thenodel extracted
and Sreen_lvasan [19]. Then, together' with these authogs, D(g)™ will play a good role in treating a nature of
who contrived thep model by(l?veragmg the scattered y y lence relevant to only low-order momentslof, in
data, we may consider th(q)"") averaged over all of 0" inenial range. This fact, actually found in Fig. 1 in

2 1) — . .
1287 D(g)"'s forle\ 100 as the most .'s|gn|f|canp [21], is now reconfirmed by the additional data obtained
Our averagedD(q)!V is shown by closed diamonds in by the higher-resolution device.

the Figure. Thep model [1] is indicated by the dashed g inomial generalized Cantor set model [22] was

line. Open squares show the case wherss replaced o wived to improve the previously published 3D bino-

by the inertia{-range lengtih./8. Note that we have set \ia| cantor set model [21]. The intermittency exponents
D(g) = D(q)V + 2 as the 3D version of the multifractal ¢+t model is expressed as

[1]. From the figure we may judge that our DNS supports

thep model substantially as expected, only if the surrogate w(g) = loga(v1B? + vaM? + v3CY), 3)
is treated in the 1D space. On the other hand,Nkg)'s  where A =1.45214, B=1.32284, M =1.04693, C =
for the true dissipation (by the 3D box counting method)0.62732, v, = 0.326569, vy = 0.346863 and
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100 low as compared with that by experiment, the present re-

| e ¢+t 8 ¢ sult indicates a need to reconsider any induction based
102 AR | o g=2501D) only on the knowledge from the 1D surrogate dissipation.
- | e, | g;'l_%gg We thank Bob Kraichnan for his useful advice and
%\ - , o I qil(z)ggg T. Satoh for his computational assistance.
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