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Isotropic Turbulence: Important Differences between True Dissipation Rate
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The one-dimensional surrogate (1D) of energy dissipation rate has often been used in place o
true one in investigations of the Kolmogorov refined similarity hypothesis and the multifractal nat
of isotropic turbulence. Direct numerical simulations, reported here, show that the use of the
surrogate can lead to fundamental changes in statistics. The conditional and unconditional proba
densities of the Kolmogorov variable built from the true dissipation are never bimodal and alw
nearly Gaussian. [S0031-9007(96)01772-3]

PACS numbers: 47.27.Gs, 05.40.+j, 05.70.Ln
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Many experimenters have measured the so-called ps
dodissipation raté 0 ­ 15ns≠uy≠xd2 (n: kinematic vis-
cosity, ≠uy≠x: longitudinal velocity gradient), that is the
one-dimensional (1D) surrogate of energy dissipation ra
´ in isotropic turbulence. This is done instead of measu
ing ´ directly because it is hard to measure all the simu
taneous components of the strain tensor. In most ca
discussions of intermittency exponents have been ba
on observations of the surrogaté0 with the use of the
Taylor hypothesis. In particular, it is to be remarked th
several current important ideas on the fine structure of t
bulence, such as the multifractal distribution of dissipatio
in space [1] and the bimodality of conditional probabilit
density functions (PDF) for a small scale range [2] of th
Kolmogorov variable in the refined similarity hypothesi
(RSH) [3], have been established by analysis based on´0.

However, the trué may give important different results.
This possibility has already been pointed out [4–7]. He
we compare results obtained by constructing´ and ´0

from two direct numerical simulations (DNS) of fully
developed, decaying isotropic turbulence atRl , 100 [8]
and Rl , 160 [9]. Here Rl is a Taylor-scale Reynolds
number. The grid sizes were 1283 and 5123, respectively.
The method of calculation was described in [10].

First we show in Fig. 1(a) the unconditional PDF’s o
the Kolmogorov variabley defined by the RSH [3] for
various fixed scalesr:

Dur ­ ysr´r d1y3 , (1)

whereDur is longitudinal velocity increment across dis
tancer, and ´r is ´ averaged over a domain of scaler.
We take the domain as a cube with sider, between the
centers of opposite faces of which theDur is measured.y
is normalized by its root mean square. These PDF’s ha
skewness at most20.3 but are very close to Gaussian, with
a slight r dependence. In contrast, we show in Fig. 1(
the corresponding results with the surrogate dissipation´0

r
used in place of́ r . In this casé 0

r is defined as the average
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of ´0 over a line of lengthr across whichDur is measured.
These PDF’s appear to be bimodal for smallr and gradu-
ally become more Gaussian asr increases. These data in
Fig. 1 are the computation forRl , 160; nine cases ofr
are plotted ranging from 1.16 to 298 Kolmogorov length
h, so that the inertial range coversryh ­ 18.58 and 37.2,
andryh ­ 9.28 is just at the end of it.

Note that the inertial range in the DNS of Wan
et al. [11], who treat forced isotropic turbulence b
Fourier spectral method, starts atryh > 10, corresponding
to kh ­ 0.3 where k is the wave number. This rathe

FIG. 1. The unconditional PDS’f ofy for various r for (a)
the true dissipation and (b) its 1D surrogate;ryh ­ 1.16, 2.32,
4.64, 9.29, 18.58, 37.2, 74.3, 149, and 298. Asryh increases,
the line moves to the outside. The conditional PDF’s ofy for
ryh ­ 2.32 for several values of (c)sr´r d1y3 and (d)sr´0

rd1y3.
As sr´0

r d1y3 increases, the line moves to the inside. The dott
lines denote the standard normal PDF.
© 1996 The American Physical Society
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small value ofryh at the end is common to existing DNS
of isotropic turbulence.

The bimodality seen in Fig. 1(b) is very similar to tha
of the conditional PDF’s ofy for the surrogate dissipation
which were depicted in detail by Stolovitzkyet al. [2]
based on the experimental observation of real turbulen
in an atmospheric surface layer withRl , 1500 and
2000. Since we are interested in the existence or n
existence of bimodality, first we show the conditiona
PDF’s of y for ´r and ´0

r for a small r sryh ­ 2.32d
in Figs. 1(c) and 1(d). It is evident that there is n
bimodality found in the conditional PDF’s ofy for ´r

even for such a smallr for any sr´rd1y3. The PDF hardly
depends onsr´r d1y3. On the other hand, that foŕ0r is
clearly bimodal and strongly depends onsr´0

rd1y3; the
more bimodal for the largersr´0

rd1y3. All lines are drawn
for a value zone ofsr´rd1y3 or sr´0

rd1y3 which is one of
the octad made by dividing the whole zone between t
maximum and minimum ofsr´rd1y3 or sr´0

rd1y3 into eight
equal parts, only when each zone has a sufficient num
of data points to draw a line. Ruggedness of lines mea
that the data number is relatively small, and it happe
usually whensr´r d1y3 or sr´0

rd1y3 is large but also when
it is very small for larger. In Fig. 1(d), however, we
notice that the transition pattern of the conditional PD
with sr´0

rd1y3 is the reverse of what was presented in [
and resembles apersistent caseof the process treated in
[12]. As sr´0

rd1y3 increases, the line moves from outsid
to inside. This pattern implies the fractional Brownia
motion with Hurst numberH .

1
2 , being consistent with

the fact that Dur , r for r ! 0 due to analyticity;
whenceH ! 1.

We show the same comparisons forryh ­ 9.29 and
18.58 in Fig. 2. Figures 2(a) and 2(c) identify the ten
dency which appeared in Fig. 1(c) and the more Gaussi
ization of the PDF but holding a skewness. In Fig. 2(
we can see that the conditional PDF for´0

r still keeps the
bimodality for smallersr´0

rd1y3, but the transition pattern
is now similar to that in [2]. That is, these PDF’s re
semble anantipersistent case[12] corresponding to the
fractional Brownian motion withH , 1y2, as is expected
in the inertial range. Figure 2(d) has the same trend,
the conditional PDF’s for largersr´0

rd1y3 are closer to
Gaussian. Asr increases beyond the values shown he
we have made sure that the conditional PDF for the tr
dissipation approaches to more Gaussian irrespectively
sr´rd1y3, while that for the surrogate does so considerab
depending onsr´0

rd1y3 even in the inertial range (faster fo
largersr´0

rd1y3) just as is presented in [2].
Thus it is natural to conclude that the bimodality

peculiar to the PDF ofy for the surrogate dissipation
and that the PDF ofy for the true dissipation may be
assumed as nearly Gaussian for a wide range ofr (down
to the scale ofh) and is hardly conditioned bysr´rd1y3,
but slightly dependent onr [13]. For reference, we show
the skewness and kurtosis of the unconditional PDF
t
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FIG. 2. The conditional PDF’s ofy for ryh ­ 9.29 for
several values of (a)sr´r d1y3 and (b) sr´0

r d1y3, and these for
ryh ­ 18.58 for several values of (c)sr´r d1y3 and (d)sr´0

rd1y3.
As sr´0

r d1y3 increases, the line moves to the outside in both (
and (d). The dotted lines denote the standard normal PDF.

y for the true dissipation againstryh in Fig. 3. An
appreciable dependence of the kurtosis onr is seen even
in the inertial range (shown by arrows in Fig. 3). Th
trend of the kurtosis decreasing asr decreases in the
inertial range is clearly seen also in the experiments f
Rl ­ 550 [14] and Rl ­ 7200 [15]. This may reveal
a small gap between reality and the RSH that assum
the perfect independence of the PDF ofy of both r and
sr´rd1y3 in the inertial range.

By the way, we note that the ensemble average of u
normalizedy3, sayky3l, in the inertial range is just around
21, which roughly approximates2 4

5 in the Kolmogorov
theory [16]:

kDu3
rl ­ 2

4
5 rk´rl . (2)

Note that y is almost independent ofsr´r d1y3 for the
true dissipation. This may indicate a limit of simulation
of the ideal statesRl ! `d which can be achieved by
our DNS turbulence. On the other hand, noting th

FIG. 3. (a) Skewness and (b) kurtosis of PDF ofy for the
true dissipation againstryh for Rl , 160 (solid line) and
Rl , 100 (dotted line). The inertial range of each case is
between the arrows.
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rl ­ ky2l k´2y3

r lr2y3, we obtained about 2.7 as the valu
of ky2l in the inertial range. After multiplying it by
55
27 G21s1y3d [17], we have the Kolmogorov constantCK

for our turbulence as 2.1, the same value as in [10]. T
intermittency effect fork´2y3

r l is negligible here. This
rather high value ofCK is common to current DNS’s of
turbulence.

Stolovitzky and Sreenivasan [12] succeeded in der
ing theoretically the conditional PDF ofy for the surro-
gate by utilizing the special analytical relationship ofDur

andr´0
r established using the 1D common function≠uy≠x

and with some assumptions. That is bimodal for smalr
and approaches to Gaussian for largerr in rather excel-
lent agreement with their experimental observation usi
the surrogate, but without any skewness. We can und
stand the source of appearance of the bimodality very w
from their theory, and have actually reconfirmed it in ou
DNS only when´0

r replaceś r . However, the PDF ofy
for the true dissipation is not really bimodal all the wa
down tor ø h but nearly Gaussian, in contrast. On th
other hand, RSH is originally based on the similarity co
cept employing the true dissipation. Therefore it is na
ural to understand the statistics ofDur as a joint result
of the nearly Gaussian statistics ofy and the proper sta-
tistics of sr´r d1y3, as in literature mentioned in Ref. [13]
Stolovitzky et al.’s theory ofy hardly contributes to this
even in the inertial range. Indeed it is a problem that t
PDF ofy in their theory is not skewed in the inertial range
since there is no other source to produce the real skewn
of the PDF ofDur in the relation (1). The crucial dynamic
role in turbulence of the skewness was well described b
Kolmogorov [16]. As a result, it must be difficult to gen
erate realDur based on their theory.

In Fig. 4, we compare the generalized dimensio
Dsqd’s obtained for the surrogate measure and for t
true dissipation measure. Here we understand that
former gives a multifractal in the 1D space (or a 1D
cut of the 3D space). So let us distinguish it asDsqds1d

from Dsqd in the 3D space. Since we have many line
of total lengthL (in the x direction) in the DNS box of
turbulence, we can get manyDsqds1d’s calculated in every
line by the box counting method [18]. TheseDsqds1d’s
scatter just as wildly as in the experiment by Meneve
and Sreenivasan [19]. Then, together with these auth
who contrived thep model by averaging the scattere
data, we may consider theDsqds1d averaged over all of
1282 Dsqds1d’s for Rl , 100 as the most significant.
Our averagedDsqds1d is shown by closed diamonds in
the Figure. Thep model [1] is indicated by the dashed
line. Open squares show the case whereL is replaced
by the inertial-range lengthLy8. Note that we have set
Dsqd ­ Dsqds1d 1 2 as the 3D version of the multifractal
[1]. From the figure we may judge that our DNS suppor
thep model substantially as expected, only if the surroga
is treated in the 1D space. On the other hand, theDsqd’s
for the true dissipation (by the 3D box counting method
4550
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FIG. 4. Comparison of generalized dimensionsDsqd. The
DNS values for Rl , 160 are indicated by closed circles,
those for Rl , 100 by crosses, andDsqd for the trinomial
generalized Cantor set model by open triangles.Ds1dsqd 1 2
for the p model is indicated by the dashed line, the averag
Ds1dsqd 1 2 for the 1D surrogate dissipation forRl , 100 by
closed diamonds, and the She-Leveque model by the so
line, which almost overlaps with closed circles, crosses, an
open triangles forq $ 0. Open squares indicate the averag
Ds1dsqd 1 2 when the box counting is done for the inertial-
range lengthLy8 in place ofL.

are plotted by closed circles and crosses forRl , 160
and 100, respectively. These are close to each oth
suggesting the robustness ofDsqd of the multifractal of
dissipation measure in the 3D space.

To demonstrate how reliable the scaling ofDsqd by
the box counting for a deterministic multifractal [18] is,
we add Fig. 5 in which lnfSisE

sid
r yELdqg1ysq21d (where

Er ­ ´rr3) is plotted against lnsryLd. There we can
see a good scaling exist for a much wider than th
inertial range. See [20] for the detailed investigation o
scaling with 29 plotted points straightly aligned inside th
inertial range forRl , 100. The scaling of the averaged
Dsqds1d is shown in the same figure by open symbols i
comparison.

Thus we can conclude that there is a non-trivia
difference in Dsqd between the surrogate and the tru
dissipation. Only forjqj , 3 both Dsqd’s are almost
coincident. We may understand that thep model extracted
from Dsqds1d will play a good role in treating a nature of
turbulence relevant to only low-order moments ofDur in
the inertial range. This fact, actually found in Fig. 1 in
[21], is now reconfirmed by the additional data obtaine
by the higher-resolution device.

The trinomial generalized Cantor set model [22] wa
contrived to improve the previously published 3D bino
mial Cantor set model [21]. The intermittency exponen
for that model is expressed as

msqd ­ logAsn1Bq 1 n2Mq 1 n3Cqd , (3)

where A ­ 1.45214, B ­ 1.32284, M ­ 1.04693, C ­
0.62732, n1 ­ 0.326569, n2 ­ 0.346863 and
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FIG. 5. fSisEsid
r yELdqg1ysq21d vs ryL and fSisE0sid

r y
E0

Ldqg1ysq21d vs ryL. The main box of sideL for the
case ofRl , 160 is split into 8n subboxes of sider ­ Ly2n;
n runs from one to seven, avoiding the dissipation rang
Dsqd was determined as the slope of the best-fit line for th
seven points for eachq rather than for the three in the inertial
range indicated by the arrows, just as done in [8], since th
scaling is so well observed much beyond the inertial range.
comparison,fSisE0sid

r yE0
Ldqg1ysq21d averaged over 1282 samples

vs ryL to calculate the averagedDs1dsqd are plotted by open
symbols. Ds1dsqd was determined as the slope of the best-fi
line for six points in the figure similarly. This process is
mathematically equivalent to the averaging 1282 Ds1dsqd’s
separately calculated from each sample.

n3 ­ 0.326569. The generalized dimensions are
simply related with the intermittency exponents like
Dsqd ­ 2msqdysq 2 1d 1 3 [23]. The Dsqd obtained
from (3) is indicated by open triangles in Fig. 4 in
excellent agreement with the DNS in the entire region
We add in the figure the She-Leveque model [24] whic
has intermittency exponents:

msqd ­ 2qy3 2 2f1 2 s2y3dqg . (4)

This model, indicated by the solid line, is remarkably
close to our DNS and the trinomial generalized Canto
set model only forq $ 0. But it blows up even more
rapidly for q , 0 than the lognormal model [3]; it is well
known that the lognormal model yields the straight line
tangent to both Cantor set models atq ­ 0 [8,21] when
the same value ofms2d is taken. This suggests that the
She-Leveque model has a weakpoint in describing th
multifractal nature of weak dissipation.Dsqd’s for many
other models were compared in [25].

In conclusion, we disclosed important differences be
tween the true dissipation rate and its 1D surrogate
isotropic turbulence, by treating the PDF ofy and the
multifractal nature of dissipation on the basis of our DNS
data. Chenet al. [26] addressed no qualitative difference
between both in the treatment of conditional average
jDur j, but they did not analyze such detailed features a
treated here. On the other hand, Wanget al. [11] found
a large difference in some aspect related to RSH betwe
both. Our result makes the detail of the difference muc
clearer. Even though theRl reached by the DNS is still
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low as compared with that by experiment, the present
sult indicates a need to reconsider any induction bas
only on the knowledge from the 1D surrogate dissipatio
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