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Analytic Scaling Solutions for Cosmic Domain Walls
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A relativistic generalization of a well-known method for approximating the dynamics of topological
defects in condensed matter is constructed, and applied to the evolution of domain walls in a
cosmological context. It is shown that there are self-similar “scaling” solutions, for which one can,
in principle, calculate many quantities of interest without recourse to numerical simulations. Here, the
area density in the scaling regime is calculated in various backgrounds. Remarkably good agreement
with numerical simulations is obtained. [S0031-9007(96)01779-6]

PACS numbers: 98.80.Cq, 11.27.+d, 64.60.Cn

Topological defects formed at a cosmological phasdor the area density of domain walls, in an approximation
transition are one of the two known ways of creatingwhere one neglects the time derivatives of thdield
scale-free primordial density perturbations [1,2]. How-correlation function. The results for walls are encouraging
ever, unlike rival inflation-based models [3], analytic cal-when compared to the numerical simulations [9—-11]. The
culations have not yet made much impact. There do exigesults for strings are more difficult to obtain, and will be
analytic treatments of the defects and Goldstone modgzresented elsewhere [12].
arising from the spontaneous breaking of global symme- Another feature of the theory is that it describes the
tries [4,5], which are exact in the limit of larde, where  behavior of defects formed from initial conditions with a
N is the number of scalar fields, but they remain relativelyslight bias favoring one vacuum over another [10,11]. It
undeveloped. is found that the defects disappear at a conformal time

In this Letter a new technique is outlined which 7, = 7;(U2/{(u%).)"/? whereU = (u) is the initial bias
promises to form the basis of an exact dynamical theoryn the field, and(u?). the initial fluctuations around that
for all topological defects described by a Nambu-Gotovalue. Indeed, part of the motivation for this work was
action. It is based on a method well known in theto account for this behavior observed in some interesting
condensed matter literature: tbhéheory of Ohta, Jasnow, simulations recently carried out by Larsson, Sarkar, and
and Kawasaki [6], and its descendents [7]. In thisWhite [11].
approach, the defects are replaced by a multicomponent The essence of the technique is to replace the walls
scalar field (the ¢” field) specially designed so that its with a real scalar field, which vanishes precisely at the
zeros track the positions of the defects. Although thecoordinates of the wallsx#(o®), where u takes the
equations of motion are nonlinear, when combined withvalues0,..., D and« the value9,...,D — 1. Thus we
a Gaussian ansatz for the field probability distribution,begin with the equatior(X*) = 0. Differentiating once
they are susceptible to a mean-field theory treatment. Onaith respect to the world-volume coordinaie$, we find
can then calculate analytically many important quantities, u _
such as the defect density and correlation functions, purely 9pX"9,u(X) = 0. 1)
from the two-point correlation function of tha field,  Thus the vectop ,u(X) is spacelike normal to the wall.
which is itself calculable. The embedding of thg brane in the background

To apply this theory to cosmic defects, all that isspace-time induces a metric in its world volume,z =
required is to make it relativistically covariant. The g.,(X)d.X*dgX"”, where g,, is the space-time
fictitious field that replaces the defects still has a Gaussiametric. Using the embedding metric we can covari-
ansatz for its probability distribution function, and a antly differentiate (1) by acting with the operator
self-consistent and self-similar solution for the linearized(—y)~"/204(—7)"/?>y*# to obtain
equations of motion can be found. With this in hand, o Y
one can calculate the defect density, using a generalization OX* 9,0 + y*P3aX"0pX"9u0,u =0, (2)
of well-known techniques, although the presence of timevhere [ is the covariant d'Alembertian and
derivatives of theu field correlators complicates the y = dety,g. The defect equations of motion are
procedure somewhat. In principle one could then gd1,2]
on to calculate more or less anything of interest: for @ v
example, in the cosmological context we would like to DX+ Ty BB“XMaBX =0, (3)
know the two-time correlation functions of the cosmic whereI'/, is the affine connection. In Eq. (3) we can
string stress-energy tensor [8]. However, in this Letter wadentify the tensorPl'W = y*P9,X,0X,, which is the
shall content ourselves with calculating the scaling valugangential projector onto the wall. We can replace this
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by g#* — P, whereP,;, = d,ud,u/(du)*. Usingthe correlator ofg,u:
defect equations of motion (3) we may then write , ,
(@pux,n)d,u(x’,n) =My (x —x'[,n). (6)

[(au)zg’“’ — 0*ud"u](0,0,u — Tﬁyapu) =0. (4) ] ) o )
This is the fundamental equation of motion for the fiald A two-point correlator with three derivatives will also be

which replaces the defects. It is actually unnecessary théﬁsefm:
this field has anything to do with the underlying Higgs (9 ,u(x, 17)d,0,u(x', 7)) = vu,(x = x'l.n). (7)
fields, and so it may be called a “fictitious” field. In . - . .

. . When referred to with no explicit spatial variables, the
other approaches, which apply to global defects, the H'gggorrelators are to be taken at zero separation. In this
field ¢ is related to the fictitious field by the nonlinear . id limit. th q il P ' ¢ th
transformationg (x, r) = f(u), wheref solves the static coincident limit, the assumed spatial isotropy of the
defect field equat’ions as 6’1 function of the transversg'smbuuon function dictates their forms. The nonzero
coordinateu [7]. components oM, are

The equations of motion (4) are not easy to solve, Moo = T(n), My = S(0) S , (8)
as they are nonlinear. However, they have the distinct
advantage over the original equations of motion (3) invherem, n =1,....D, and the nonzero components of

that they are local. If one tries to solve (3) directly, oneYurp @€

must include the nonlocal processes of self-intersection ; 1.

and reconnection. In numerical simulations this is very Yooo(n) = ET(W)’ Yomn (1) = _ES(")‘S'""’
time consuming, and involves the introduction of a 1 -

seemingly arbitrary parameter which is the probability ~— Ymoa(1) = > S(1)8mn - 9)

of reconnection. For stiings, this is usually set to 1’We now linearize the equations of motion by taking the

following simulations of the full classical field theory . : ; :
: . Gaussian average, and then find a self-consistent solution
[13]. In the current approach, reconnection happens Wltlfl

probability 1, provided the-field configuration is smooth. or the fieldsu(x, 7). We need the following identities:

This is an essential_ly geometric result. Where two walls ((0u)?0,0,u) = M3, 0,u + 27,,,8" dou, (10)

intersect, the spatial component of the normal to the

surfaceu = 0 changes direction discontinuously. If the

second derivative ol exists, d;u must therefore vanish

along the line of intersection, with no generic requiremenwhereM = M, g"”.

on dou. Hence as the field evolvaschanges sign at the In a flat Friedmann-Robertson-Walker space-time,

intersection point, which means that the walls genericalljthe ~ affine connection is 'y = (8489 + 8189 —

reconnect or intercommute (see Fig. 1). 8.8 (a/a). We can now see that the linearized
In order to solve the nonlinear field equations for  equations of motion have the form

the approach taken in the condensed matter context is w(n)

essentially that of mean-field theory: bilinears in the field i+ /20— v?Viu =0, (12)

u are replaced by their averages. Thus one is assuming n

that the field is a Gaussian random field, and remainwhereu(n) andv depend orD. For Friedmann models,

so throughout its evolution. This seems a good starting@ne can show that

point for the relativistic version as well, although it should .

be borne in mind that the approximation is not well u(m) = =2n(S/S) + a(n)[D = 3(T/9)],  (13)

controlled.

((Qu)*d,u) = Ma,u + 2¢°7 M, ,d,u, (11)

We begin the mean-field theory manipulations by defin- v?=[D - 1-(T/9)]/D, (14)
ing the basic equal-time two-point correlation function:  wherea(n) = na/a.
ux, nux',n) = C(x — x'|,n), (5) In a scaling solution we would expe$tandT to have a

Fglqwer-law behavior withy. Thus, so long as we are not
near a transition in the equation of state of the Universe,
w andv? are constant. Imposing the boundary condition
that u be regular asyp — 0, (12) then has the simple
solution

where the angle brackets denote an average over a s
tially isotropic Gaussian probability distribution function.
We shall also defing/,,, to be the equal-time two-point

i (kvn)r ’

where A, = 2"T(v + Dux(n;), and (1 — w)?/4 = v2.

FIG. 1. The sign of theu field near the intersection of two The f f the initial trut; (k) = | 12
walls. Generically, the sign ofi changes at the intersection € form of (he Initial power Spectru i(k) = ”k(m). .
point as the intersection happens: hence the walls emerge wilf taken to be white noise, which ensures that the field is

their connectivity changed. spatially uncorrelated to begin with.
4496

(1=p)/2+v v
uk<n>=Av(n1) P Lulkvm) g

)¢



VOLUME 77, NUMBER 22 PHYSICAL REVIEW LETTERS 25 NVEMBER 1996

We may now evaluat& /S andv?, and implicitly solve as expected. The full calculation will be detailed
for v. First, we must decide the sign of. It turns elsewhere [12].
out that it is inconsistent to takél — u)/2 = » [one One can show that
way of showing this is to compar€(n) calculated by s 1 (B+1)(B +1+D)2)

explicit differentiation, and by evaluation ¢fiz)]. Thus 5 5 , (22)
C scales asp~?, Sand T as »~?*?, Using standard ¢ 2Bv
integrals of Bessel functions, and defining the parameteand we immediately see that the correct scaling behavior
B =2v — D — 1, we find for the wall area densityA(n) « »~ '] is reproduced.
T (D+2)(D -1 Furthermore, we are able to compute the coefficient,
Kl 2D +2+pB) " (16) fsmd compare_\_/vith numeric_al simulations. The comov-
provided 8 > 0, so that the integrals foB and T are  INg area densities for walls in two- and three-dimensional
defined. To findg, we solve the equation Minkowski space, radiation- and matter-dominated Fried-

mann models are displayed in Table I.
w=pB+D+2=aD[l =3(T/$]+2D +2). The theory seems to work well: scalar field theory
(17 simulat_ions inD = 3 give a Cqm_oving area density of
The radiation-dominateda = 1) and matter-dominated apprommatelyl.S/y in bOth rad.|at|on [10,11] and matter
(a = 2) Friedmann models require a certain amount ofld] eras, which sits nlcely with the calculated values.
algebra; however, Minkowski spackr = 0) has the However, the agreement is partly fortuitous, as there are

simple solution@ = D + 2, giving T/S = (D — 1)/4 probably significant errors in both the theoretical and
andv? = 3(D — 1)/4D. ’ numerical values. ID = 2 the agreement is also good,

Armed with the “mean-field” solution fou(x, 1) we although there is evidence for a small deviation from the

-1 iorinD —

can now calculate anything that can be expressed in ternfd o behavior ||nD = f L9,10].h « beh H

of local functions of the field and its derivatives, provided ON€ May also ask how the network behaves when a
of course that we are able to perform the Gaussiar mall bias is introduced mto_the |n|t|al cc_)ndltlons, that_ is,
integrals involved. In this Letter we content ourselves' {u(x, ;)) = U. In numerical simulations of domain

merely with evaluating the area density, which is givenw_aIIS [10,11], it. is found that even for very small initial_
by biases, for which the walls percolate, the system still

evolves away from the percolating state and eventually
A = ] d? o=y Sp1(x — X(0)). (18) the large walls break up and disappear. Similar behavior
is well known in the study of quenches of condensed

Making the coordinate transformation framt to (o, u) matter systems with a nonconserved order parameter

near the wall, this can be rewritten as [6,14,16,17].
A = 5(u)|oul. (19) The theoretical description of this behavior is fairly
In order to calculate the Gaussian averageZafone takes  straightforward. Introducing a bias into the initial con-
Fourier transforms [6]: ditions alters the Gaussian average of (20)8(n))y =
T'(D/2) dk dP+lg (A(n))exd—U?/2C(n)], where{ A(n)) is the zero bias
(A)=— —55 result from (21). If the system is close to being self-

1+D/2 | 5. 2\D/2
2m 2m ) (g?) similar at some initial timey; when the magnitude of the
% < 9 9 eiq~8L¢+iku>_ (20) bias isU and the fluctuation around that valueGgx»;),

. » HQ_ dq _ one can calculate the timg. at which the defect density
One potential difficulty is thay> can vanish, due to the fals to a fractione~! of its scaling value to be

Lorentzian metric. The equation must therefore formally ) b

be defined by analytic continuation to imaginary time, and ne = ni[U~/2C(n;))]” /7. (23)

an accompanying Wick rotation of the time componentsRecent simulations by Larsson, Sarkar, and White lend
of the Fourier transform variablg“. o ~ support to the above calculations 6fA(n))y and 7.

~ One can show that the correlators involving time deriva{11]. Coulsonet al. [10] did not attempt fits of the correct
tives always appear in the combinatiGiys — C2/CS, form, A « n~'exd—(n/n.)P], to their simulations,
which has the valué in Minkowski space [13]. Neglect-

ing these terms turns out to make only a 10% differencerABLE I. The calculated values of the comoving domain
to the result for the averaged comoving defect area densityall area density in the self-consistent linearized solutiorufor

A(n), which is Values listed are for Minkowski spade = 0), and radiation
T + 1)/2]( S 1/2 and matter-dominated FRW models & 1, 2, respectively).
(Am) = V2= <2wc> p A D=2 A (D =3)
+ O(T/S — C*/CS). (21) 0 167! 197!
In the limit T/S — C2/CS — 0 we recover the original % i:;:};*l 3;:77’1

condensed matter result for domain walls [6,14,15]
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