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Recently Maldacena and Strominger found that the calculation of greybody factors forD ­ 5 black
holes carrying three U(1) charges gives striking new evidence for their description as multiply w
effective strings. Here we show that a similar result holds forD ­ 4 black holes with four U(1)
charges. In this case the effective string may be thought of as the triple intersection of the 5-bra
M theory compactified onT7. [S0031-9007(96)01587-6]
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Recently remarkable progress has been achieve
modeling the Hawking radiation within the string theo
or M-theory context. There exist supersymmetricD ­
5 black holes with a nonvanishing horizon area wh
may be embedded into string theory using intersec
D-branes [1]. Their low-energy dynamics is described
small fluctuations of a long intersection string [2,3].
[2] it was shown how Hawking emission from the nea
extremal black holes takes place in the stringy descript
The model involvesn1 1-branes marginally bound t
n5 5-branes, with some longitudinal momentum alo
the 1-branes carried by left-moving open strings. In
nonextremal case, right movers are also present, so t
left-moving and a right-moving open string may collide
produce an outgoing closed string [2,4]. This mechan
leads to a thermal distribution for the massless outgo
particles [2], as expected of Hawking radiation. T
inverse of this process, which gives the leading or
contribution to the absorption of closed strings, was a
found to be in agreement with the semiclassical grav
up to an overall normalization [5]. More recently, D
and Mathur [6] carefully normalized the leading emiss
and absorption rates, both in semiclassical gravity an
the D-brane picture, and found perfect agreement! T
specific picture used in [6] follows that suggested in [3,
The low-energy dynamics of theD-brane configuration
is captured by a single string with winding numb
n1n5 which is free to vibrate only within the 5-bran
hyperplane.

The calculation of Das and Mathur was carried out
the near-extremal regime

r0 ø rn ø r1, r5 , (1)
where r0 is the radius of the horizon, andrn, r1, r5
are three other radii determined by the charges. V
recently, Maldacena and Strominger [8] generalized
calculation to a less restrictive choice,

r0, rn ø r1, r5 . (2)

The large difference in the scales is necessary to supp
the antibranes [9]. Dropping the restrictionr0 ø rn

allows the left- and right-moving temperatures of t
effective string to be comparable. The calculation
greybody factors in this regime reveals a dependence
0031-9007y96y77(22)y4491(4)$10.00
in

g
y

n.

e
t a

g

r
o
,

in
e
:

ry
e

ss

f
on

TL andTR which provides striking new evidence in fav
of the effective string model ofD ­ 5 black holes.

The purpose of this Letter is to present similar evide
for supersymmetricD ­ 4 black holes with regula
horizons [10,11]. Such black holes may be embed
into string theory (for a treatment of the nonextrem
case, see [12]). In [13–15] it was argued, howev
that it is advantageous to view theseD ­ 4 black holes
as dimensionally reduced configurations of intersec
branes in M theory. A specific configuration usef
for explaining the Bekenstein-Hawking entropy is t
5 ' 5 ' 5 intersection [14]: There aren1 5-branes
in the s12345d hyperplane,n2 5-branes in thes12367d
hyperplane, andn3 5-branes in thes14567d hyperplane.
One also introduces a left-moving momentum along
intersection string (in thê1 direction). If the length of
this direction is L1, then the momentum is quantize
as 2pnKyL1, so that nK plays the role of the fourth
U(1) charge. Upon compactification onT7 the metric
of the 5 ' 5 ' 5 configuration reduces to that of th
D ­ 4 black hole with four charges. Just like in th
D-brane description of theD ­ 5 black hole, the low-
energy excitations are signals propagating along
intersection string. InM theory the relevant states a
likely to be small 2-branes with three holes glued into
three different hyperplanes [14]. As a result, the effec
length of the intersection string isLeff ­ n1n2n3L1. This
fact, together with the assumption that these modes c
central chargec ­ 6, is enough to reproduce the extrem
Bekenstein-Hawking entropyS ­ 2p

p
n1n2n3nK [14].

In our previous paper [16] we showed that this “multip
wound string” model of the four-chargeD ­ 4 black
hole correctly reproduces the Hawking radiation of b
neutral and Kaluza-Klein charged scalars. The calcula
of [16] was performed in the near-extremal regimer0 ø
r4 ø r1, r2, r3, where r0 is the horizon radius while
r1, . . . , r4 are four other radii related to the charges. H
we generalize it to a less restrictive choice of paramet

r0, r4 ø r1, r2, r3 . (3)

As in the work of [8], this relaxes the conditionTR ø TL.
The dependence of the greybody factors onTL andTR is
characteristic of the effective string model.
© 1996 The American Physical Society 4491
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Semiclassical gravity analysis.—We start with the
11-dimensional configuration of three sets of 5-bra
intersecting along a common 1-brane and carrying m
mentum along it. The nonextremal metric of this co
figuration was constructed in [17]. (Our notation diffe
from that in [17] by the replacementsPi ! ri, Q̃ ! r4,
andm ! r0.) Compactifying this metric onT 6 we arrive
at the string inD ­ 5 which has a constant dilaton an
the following metric:

ds2
s5d ­ s f1f2f3d21y3

3

"
2f21

4 h dt2 1 f4

µ
dy 2

Q
r 1 r4

dt

∂2
#

1 s f1f2f3d2y3sh21dr2 1 r2dV2d , (4)

where

fi ­ 1 1
ri

r
, h ­ 1 2

r0

r
. (5)

It is useful to define a hyperbolic angles such that

r4 ­ r0 sinh2 s, Q ­ r0 sinhs coshs . (6)

The quantitiesr4 and Q are comparable to the horizo
radius r0. Therefore s is of order 1. Dimensiona
reduction onS1 from D ­ 5 to D ­ 4 gives a black hole
with four U(1) charges described by the following met
and Kaluza-Klein gauge potentialA0:

ds2
s4d ­ 2f21y2h dt2 1 f1y2

°
h21dr2 1 r2dV2

¢
,

f ­
4Y

i­1

µ
1 1

ri

r

∂
, (7)

A0 ­ Qysr4 1 rd .

For the region of parameters (3), the Bekenstein-Hawk
entropy of this black hole is [17,18]

SBH ­
2p

k
2
4

Ah ­
8p

k
2
4

p
r1r2r3r0 coshs . (8)

Calculation of the Hawking temperature gives [17,18]

1
TH

­ 4p

r
r1r2r3

r0
coshs . (9)

We may write 2
TH

­
1

TL
1

1
TR

, where

1
TL

­ 4p

r
r1r2r3

r0
e2s ,

1
TR

­ 4p

r
r1r2r3

r0
es .

(10)
In the effective string modelTL and TR have the

meaning of left- and right-moving temperatures. Inde
it may be shown that the entropy (8) equalspLeffsTL 1

TRd, which is the entropy of a string of lengthLeff,
carrying massless modes of central chargec ­ 6.

We are interested in studying the propagation of sca
carrying Kaluza-Klein charge in the background of th
charged black hole. This is best viewed as propaga
of scalars in the background of theD ­ 5 string, with the
role of the charge being played by the momentum al
4492
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the stringk4. Thus we substitute the ansatzfst, y, rd ­
e2ivte2ik4yRsrd into theD ­ 5 scalar equation

1p
2gs5d

≠M

µq
2gs5dgMN

s5d ≠N f

∂
­ 0 . (11)

The resulting radial equation is
3Y

i­1

µ
1 1

ri

r

∂ ∑
v2 2 k2

4 1 sv sinhs 2 k4 coshsd2 r0

r

∏
R

1
h
r2

d
dr

hr2 dR
dr

­ 0 . (12)

This is very similar to the radial equation found for t
D ­ 5 black hole [8]. It is again possible to define ne
variables

v02 ­ v2 2 k2
4 , e6s 0

­ e6s sv 7 k4d
v0

, (13)

such that (12) becomes

v02

√
1 1

r0 sinh2 s0

r

!
3Y

i­1

µ
1 1

ri

r

∂
R 1

h
r2

d
dr

hr2 dR
dr

­ 0 , (14)

which describes propagation of a neutral particle
energyv0 near a black hole with the hyperbolic ang
parameters replaced bys0. The absorption cross sectio
may be calculated using the matching method in a ma
similar to [8].

Rather than run through the beautiful matching ca
lation of [8] step by step, we will give only a summa
designed to provide some continuity with the analysis
previous papers [5,6,16]. We will restrict our attention
a neutral scalar of energyv propagating in the black hol
background described by (7), that is to say by unprim
variables. At the end we will recover the general char
case using the primed variables defined in (13).

A variety of radial coordinates are useful in differe
contexts. The ones we will employ are related as follo

z ­ 1 2
r0

r
­ e2r0yu. (15)

This equation can be taken as the definition ofz and u.
The coordinateu is useful because it brings Eq. (14) in
the simple form√

1
u2

d
du

u2 d
du

1
r4

u4
fv2

!
R ­ 0 , (16)

and because the radial flux per unit solid angle is just

F ­
1
2i

µ
Rpu2 d

du
R 2 c.c.

∂
. (17)

The matching calculations that produced the results
[5,6,16] amount essentially to the following: We simpli
(16) in the regions near the horizon (I) and far from
black hole (III) by keeping only the leading term in
smallu or largeu expansion of the termfr4yu4. Modulo
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some technical assumptions, the near and far solutions
then be matched directly onto one another. In the pre
instance, one obtains

RI ­ Aei
p

Pyu, where P ­ v2
4Y

i­1

sri 1 r0d , (18)

RIII ­ a
sinvu

vu
2 b

cosvu
vu

, (19)

and these can be matched by making expansions ofRI and
RIII for large and smallu, respectively. TheS-matrix
elementS0 for reflection of thes wave can be read of
from comparison of (19) to the standard form

R ,
S0eivu 2 e2ivu

vu
, (20)

but a simpler method employed by [8] is to note that
absorption probability is the ratio of two fluxes

1 2 jS0j
2 ­

Fabsorbed

Fincoming
. (21)

Fincoming is computed by applying (17) to the incomin
wave sa 1 ibdie2ivuys2vud at infinity. We consider
only perturbative scattering processes wherejbj ø jaj,
so the leading order result depends only ona. Similarly,
Fabsorbed is computed by applying (17) toRI ­ Aei

p
Pyu

at the horizon. The result for the absorption probability

1 2 jS0j
2 ­ 4v

p
P

jAj2

jaj2
. (22)

The optical theorem converts this probability into a cro
section

sabs ­
p

v2

°
1 2 jS0j

2
¢

­ AhjEj22, (23)

where we have defined the greybody factorE ­ ayA.
The simplicity of the ratio of fluxes method outline

above is thatE can be obtained by matching the limitin
value of RI at largeu with the limiting value ofRIII at
smallu. Of course, one loses all phase information for
reflected wave in this approach, and one must still ch
that a full matching is possible.

Matching (18) and (19) in the manner described yie
E ­ 1 and hencesabs ­ Ah. This most naive matching
scheme fails when one gives up the conditionr0 ø rn be-
cause there are neglected terms in the near region equ
which are of orderr0yrn. Following the approach of [8]
we retain all such terms and exclude only terms of or
r0yri for i ­ 1, 2, 3. The effect on the infalling solution
RI is to introduce a modulating factorFsud: Instead of
(18) we now have

RI ­ Aei
p

PyuFsud . (24)

The boundary conditionsFsud ­ 1 and u2F0sud ­ 0 are
imposed atu ­ 0, soFabsorbed is the same as one wou
calculate from the bare exponential (18).E is read off
as the limiting value ofFsud for large u. Starting from
(16) and neglectingr0yri for i ­ 1, 2, 3, we find thatFsud
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satisfies a hypergeometric equation in the variablez:"
zs1 2 zd

d2

dz2
1 s1 2 zd s1 2 ifa 1 bgd

d
dz

1 ab

#
F

­ 0 , (25)

where the parametersa andb are given by

a ­
v

4pTR
, b ­

v

4pTL
, (26)

and the temperaturesTR and TL are given by (10).
Interestingly, (25) and (26) are identical to the inne
region equations for theD ­ 5 black hole [8], although
z, TL, andTR are defined differently.

Once it is established thatFszd is a hypergeometric
function,E can be read off directly from the asymptotic
of Fszd nearz ­ 1 [8]:

E ­
Gs1 2 ia 2 ibd

Gs1 2 iadGs1 2 ibd
. (27)

The formula for the absorption cross section then becom

sabs ­ Ah
v

2sTL 1 TRd
e

v

TH 2 1

se
v

2TL 2 1d se
v

2TR 2 1d
. (28)

The cross section for the five-dimensional case can a
be written in precisely this form. Asv ! 0, sabs ! Ah

in accord with the general result of [19]. Equation (28
contains even more universal information: It captures t
behavior of the cross section asv is increased to values
that are comparable with the temperatures.

Restoring primes, we obtain for the charged case

sabs ­ 4p2r1r2r3v0 e
v0

T 0
H 2 1

se
v0

2T 0
L 2 1d se

v0

2T 0
R 2 1d

. (29)

To write this expression in terms of physical quantities w
use the formulae [8]

v0

T 0
L

­
v 1 k4

TL
,

v0

T 0
R

­
v 2 k4

TR
,

v0

T 0
H

­
v 2 fk4

TH
, (30)

wheref ­ A0sr0d ­ tanhs is the U(1) potential on the
horizon. Thus for a particle of energyv and chargek4,
the absorption cross section is

sabs ­ 4p2r1r2r3

q
v2 2 k2

4
e

v2fk4
TH 2 1

se
v1k4
2TL 2 1d se

v2k4
2TR 2 1d

.

(31)

From this we may obtain the differential Hawking emis
sion rate

Gs $kd
d3k

s2pd3
­

q
v2 2 k2

4

v
sabs

1

e
v2fk4

TH 2 1

d3k
s2pd3

­ 4p2r1r2r3
v2 2 k2

4

v

3
1

se
v1k4
2TL 2 1d se

v2k4
2TR 2 1d

d3k
s2pd3

. (32)
4493
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Remarkably, this formula is in precise agreement w
the effective string model. Indeed, in [16] it was sho
that this model predicts the leading order Hawking rate

Gs $kd
d3k

s2pd3 ­
k

2
4Leff

4
v2 2 k2

4

v

3
1

se
v1k4
2TL 2 1d se

v2k4
2TR 2 1d

d3k
s2pd3 , (33)

whereLeff ­ n1n2n3L1 andL1 is the length of the circle
around which the string is wound. This rate is due
a left-moving boson and a right-moving boson on
string producing an outgoing scalar, hence the pres
of the two Bose-Einstein distribution factors. The str
effective Lagrangian contains no cubic term coupl
a left-moving fermion and a right-moving fermion
a scalar in the bulk; therefore, there is no addit
contribution containing two Fermi-Dirac distributions.

The radiiri (approximately equal to the chargesQi) are
related to the numbers of 5-branes [14]:

r1 ­
n1

L6L7

µ
k11

4p

∂2y3

, r2 ­
n1

L4L5

µ
k11

4p

∂2y3

,

r3 ­
n1

L2L3

µ
k11

4p

∂2y3

, (34)

whereLi is the range of the coordinateyi . Thus we have

k
2
4Leff

4
­ 4p2r1r2r3 , (35)

where we have usedk2
4 ­ k

2
11y

Q7
i­1 Li. Equation (35)

establishes exact equality between (33), the Hawking
for charged particles calculated in the effective str
model, and (32), the corresponding rate calculated
semiclassical gravity.

In closing we would like to reflect on the significan
of our result. Because theM theory description o
four-dimensional black holes is not as developed as
D-brane description of five-dimensional ones, it see
to us very encouraging to find that the greybody fac
in the four-dimensional case confirm the underly
effective string description which was previously us
in [14,16,18]. We regard (32) as “new data” fro
semiclassical relativity, obtained in the region (3)
parameter space, that supports the claim that black h
in four dimensions admit an effective string description
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