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We consider the irreversibleA 1 B ! 2A autocatalytic reaction via Monte Carlo simulations in 1D
Contrary to mean-field-type predictions, the simulations show that only a unique, stable front propa
Its structure is time independent and the spatial correlations turn out to be universal functions
dimensionless interparticle distances. These findings are due to the discrete character (particles
model and to the 1D topological constraints. The temporal changes of the averaged front form
from velocity fluctuations and are not a sign of unstable propagation. [S0031-9007(96)01642-0]
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Reaction kinetics in low dimensions were extensive
investigated in the last two decades since they differ s
nificantly from the situation in high-dimensional space
and thus violate strongly the classical kinetics schem
based on the mass-action law [1,2]. Remarkably, s
violations did not find much attention in the society
scientists dealing with problems of front propagation
autocatalytic reactions.

The autocatalyticA 1 B $ 2A conversion (where both
direct and back reactions follow the bimolecular schem
can be described in the mean-field limit by the quadra
Fisher equation [(11.31) of Ref. [3] ], whose solutio
fronts may propagate with different velocitiesn; here the
initial conditions determine whether a certain velocity
attained [3]. We note that a mean-field-type descript
is not appropriate in low dimensions (d ­ 1 and 2)
where the reaction term shows a strong depende
on correlation functions up to high orders [4,5]. Th
reactionA 1 B $ 2A was investigated analytically an
via Monte Carlo simulations in Refs. [6,7], where bas
on ensemble-averaged quantities, in 1D and 2D str
deviations from mean-field-type behavior were detecte

On the other hand, an ensemble-averaged approach
only part of the story since it disregards the local order
of the particles, an aspect which is of great importance
low dimensions. Such local ordering aspects were inve
gated in detail for the reactionsA 1 A ! 0, A 1 A ! A,
and A 1 B ! 0 [8–20]. Especially the last reactio
shows nontrivial large-scale spatial structures (cluste
due to fluctuation effects [13–20]; these findings lay o
side the classical kinetics scheme and need for their
derstanding much more elaborated theories and exten
numerical studies. Note that the microscopic descript
of the front structure requires the knowledge of the lo
ordering of theA andB particles near the front. On th
other hand, the distribution of the front positions under e
semble averaging provides a macroscopic picture. Th
two points of view correspond to significantly differe
experimental situations and are known to lead to stron
different results in the case ofA 1 B ! 0 reactions in
1D; see Refs. [19,20]. In general an ensemble-avera
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approach is not suitable for distinguishing between ins
bilities and statistical fluctuations.

In Ref. [6] theA $ 2A scheme was used to model th
reversibleA 1 B $ 2A reaction. This scheme veils th
role of theB particles, since (in contrast to their discre
nature) it implies that their distribution is uniform a
all times. Here, however, we focus on theirreversible
autocatalytic reactionA 1 B ! 2A in 1D. This reaction
is the simplest model for infection spreading, by whic
(irreversibly infected)A particles infect at first encounte
the healthyB particles. As we show, this reaction give
rise to a universal, parameter-free behavior, determined
the discrete nature of the particles. Contrary to the me
field predictions, the reaction front retains its microscop
form under propagation and its velocity is only slight
fluctuating. We present here the results of extens
Monte Carlo simulations of the system and compare th
with the mean-field predictions.

In our simulations we start from a one-dimension
lattice of lengthL ­ 104 which is initially randomly filled
with B particles whose concentration isc. At the left end
of the system we place anA particle. All particles perform
random walks on the lattice and the particle to move ne
is chosen at random. Whenever anA particle encounters
a B particle the reaction takes place immediately and
B particle is relabeledA. In this way the front propagates
During the simulations we monitor the position of th
front (i.e., the position of the rightmostA particle) and
the distributionspAA andpAB of the distances from theA
at the front to its left and right nearest neighbors. W
view as one Monte Carlo step (MCS) the time durin
which each particle has performed on the average
move. The overall simulation time was chosen to
tmax ­ 3 3 104 MCS; the results were averaged ov
1000 realizations of the process.

The only parameters of our one-dimensional proble
are the particle concentrationc (which provides a scale
for the mean interparticle distancel ­ c21) and the
diffusion coefficientD, which together withl defines the
characteristic time scale of the problem,t ­ l2yD ­
1yc2D. The lack of further parameters in this simp
© 1996 The American Physical Society
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1D A 1 B ! 2A model renders dimensional analys
a very useful tool. Consider as an example the fr
velocity: The average time necessary for the rightm
A particle (say, thenth particle, whose positionx is
roughly x ­ nl) to react with the leftmostB is given
by the characteristic timet ­ l2yD needed to diffuse
through the mean interparticle distance. On reac
the mean front position moves tox > sn 1 1dl. Thus
the front’s velocityn behaves asn ~ Dyl ­ cD. The
dimensionless combination

a ­
n

cD
(1)

is thus the most important dimensionless parameter o
system.

The front velocity is inevitably fluctuating. We hav
determined numerically the positionsxstd of the front,
from which we obtainednstd as well as wstd, the
dispersion of the front’s position. We find thatn is
constant and thatw2 grows ast (cf. Ref. [6]). In Fig. 1
we present fort ­ 5000 and c ­ 0.1 the cumulative
normalized distribution function of the front position
Fsz d ­ Nsxf , z w 1 ntdyN, where Nsxf , xd is the
number of realizations (out ofN simulations) for which
the actual front positionxf is less thanx. This form
obtained by simulations is compared in Fig. 1 to t
cumulative normal Gaussian. As is evident by inspect
the agreement is excellent.

The parameter dependency of the front width can
visualized as follows: The squared dispersionw2std of the
front positions at timet is of the order ofs2nstd, wheres

is the dispersion of the front displacement per step
n is the mean number of steps withint. Now nstd ~

tyt ­ c2Dt ands, being a length, scales withl ­ c21;
hence w2std ~ Dt, independent of concentration. Th

FIG. 1. The cumulative distribution function of the fro
positions Fsz d shown as a function ofz ­ sxf 2 ntdysstd.
The values are obtained att ­ 5000 MCS in N ­ 5000
realizations of a system withc ­ 0.1. The dashed line
corresponds to the cumulative distribution function of t
Gaussian distribution,Fsz d ­ f1 1 erfsz dgy2.
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dimensionless combination

b ­
cw2std

nt
~ cDyn (2)

is then time independent.
The results of our numerical simulations forc ­ 0.025,

c ­ 0.05, andc ­ 0.1 support these assertions and lea
to a ­ 1.05 and b ­ 3.57; the uncertainties correspon
to the last decimal digit. Note that takingl as unit length
and t as unit time we have a parameter-free, univer
situation; this is an extremely interesting feature of t
A 1 B ! 2A reaction in 1D considered here.

Since theb value is bounded (the velocity fluctuation
are finite)n is sharply defined. Moreover, on a micro
scopic scale the front (being localized at the rightmostA)
is sharp and of limited width (some 2l). We stress that
the increase of the front width under ensemble averag
is due thevelocityfluctuations and is not connected to an
instability of propagation (cf. Refs. [6,7]).

The structure of the front region is characterized by t
distance distributionspAB (between the leftmostB and the
rightmost A) and pAA (between the rightmostA and its
next A neighbor to the left). We find numerically tha
the distribution of distances between all other particles
indistinguishable from an exponential (the Hertz distrib
tion in 1D), which is of no surprise when rememberin
that the reaction consists in a pure renaming of particl
Thus the non-Markovian aspects are felt in thea poste-
riori pAA and pAB; the distributions of theB-B distances
area priori, while theA-A distances other than the one o
pAA “forget” the reaction (renaming) stage quickly.

The probability distributionspAB andpAA for different
values of concentrations (c ­ 0.025, 0.05, and 0.1) are
shown in Figs. 2 and 3. Figure 2 presents the depende
of the value rsjd ­ c21pABsxd on the scaled distance
j ­ cx; Fig. 3 presents the same for the functionusjd ­
c21pAAsxd. The results fall on master curves, a fact whic
stresses the scaling and parameter-free nature of the mo

We continue by analyzing continuous-medium descr
tions of the reaction. In the standard Fisher approximat
[3] the evolution of the particles’ concentrations is bas
on reaction-diffusion equations. For example one has
theB particles

≠

≠t
cB ­ DDcB 2 kcAcB ­ DDcB 2 kcBsc 2 cBd .

(3)

Here we used thatcA 1 cB ­ c ­ const, which also
implies ≠cAy≠t ­ 2≠cBy≠t. Equation (3) leads to a
stable front propagation [3], as long as the front’s veloc
exceeds the valuenc ­ 2

p
kD. For irreversible reactions

on contact we have to require thatk ! ` in order to
forbid the occurrence ofB particles on the left side of the
front. The front structure given by Eq. (3) is then abrup
Moreover,k ! ` implies nc ! `; in the Fisher picture
this would mean that no stable propagation is possib
clearly a contradiction to our numerical findings.
4463
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FIG. 2. rsjd, the distribution of distances between the righ
most A and the leftmostB particles. The concentrationc is
given through crosses (0.025), triangles (0.05), and squ
(0.1). The dashed line is the result of the mean-field theo
Eq. (10).

The classical kinetic scheme is a preaveraged appro
which neglects ordering on length scales comparable
the interparticle distance and (as stated above) does
apply in 1D, where the structure of the depletion zon
near the reactants is of great importance. We he
consider another mean-field approximation which c
account for the formation of a depletion zone; it follow
Smoluchowski’s approach to classical kinetics [21,22].

In the Smoluchowski picture the irreversible reactio
takes place due to the diffusive flux ofB particles towards
the rightmostA. This flux is described by a diffusion
equation for the correlation functiongsx, td, which is the
probability density to find aB particle (not necessarily the
next-neighbor one) at the distancex from the rightmostA:

≠

≠t
g ­ DDg . (4)

FIG. 3. Same as in Fig. 2, but now for the distributionusjd
of distances between the rightmostA particle and its nearest (A)
neighbor to the left.
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The boundary conditions aregsx ! `d ­ c andgsxf d ­
0 at the instantaneous front positionxf . Now the motion
of the front is a relay race, during which the rightmost po
tion passes from one particle to another. The front mo
can be viewed as a drift with an averaged velocityn on
which a random process with zero mean is superimpo
For the analysis we now focus on the drift and assume
the front moves with a constant velocityn. Turning to
a description in the coordinate frame moving withn and
introducing both the dimensionless densitynsxd ­ gsxdyc
and the dimensionless length variablej ­ cx, we obtain
from Eq. (4)

≠

≠t
n 2 ncn0 ­ Dc2n00, (5)

where the primes mean differentiation with respect toj.
The boundary conditions are nowns0d ­ 0 andns1`d ­
1. In a stationary situation the time derivative vanishes
that dividing both sides of Eq. (5) bycD we have

n00 ­ 2an0, (6)

wherea ­ nycD, as introduced above. The solution
Eq. (6) for the given boundary conditions reads

nsjd ­ 1 2 e2aj , (7)

which gives the density ofB particles to the right of the
front. Equation (6) also describes the concentration p
file of the A particles to the left of the front. Now th
boundary condition isns2`d ­ 1, which leads automat
ically (note the prefactor ofa) to nsjd ­ 1 ­ const for
j , 0. This implies an exponential (Hertz) distribution
all AAdistances, including the one between the rightmoA
particle and its left neighbor. Thususjd ­ c21pAAsxd ­
exps2jd is independent ofa, a fact corroborated by Fig. 3

Note that for any value ofn the condition of the equal
ity of the particle fluxes to the leftf j2 ­ ncns20dg and
to the rightf j1 ­ Dc2s≠y≠jdns10dg of the boundary is
identically fulfilled (due to the fact thatnc ­ Dc2a); thus
in the Smoluchowski (continuous) picture the velocity
the front is not fixed: Each propagation velocity has
own front form. This parallels the situation described
the Fisher equation in higher dimensions, and leads to
stable propagation of fronts with different forms. Co
trary to this prediction, our numerical simulations sho
that only one stable front propagation mode occurs in
The value ofn and the corresponding front formnsjd are
then well defined.

Although the mean-field approximation does not le
to a unique value ofn, we can obtain fromnsjd
analytically the pAB distribution (of nearest-neighbo
A-B pairs) quite well, provided that the actual val
of n is known otherwise (i.e., from simulations). A
stated above, the distributions of distances between
neighboringB particles are of Hertz type. This implie
that the probability densitymshd to find a B particle at
the (dimensionless) distanceh to the right of the leftmos
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B particle is constant:mshd ­ 1. Evidently, for h , 0
one hasmshd ­ 0. The values ofnsjd andrsjd are then
connected via the integral equation:

nsjd ­ rsjd 1
Z j

0
msj 2 hdrshddh

­ rsjd 1
Z j

0
rshddh , (8)

an expression of Ornstein-Zernike form, whose solutio

rsjd ­
a

1 2 a
se2aj 2 e2jd , (9)

which in the limiting casea ! 1 gives

rsjd ­ je2j . (10)

As our simulations givea ø 1, we compare in Fig. 2 the
numerical findings to Eq. (10). Note that the agreem
is good and that here, as well as in Fig. 3, no fitting p
cedure is involved. The small but statistically significa
deviations can be traced to the fact that it takes some
for the newly createdA particle to lose memory of its cre
ation next to an already existingA.

We conclude by summarizing our findings: We an
lyzed both numerically and analytically the irreversib
A 1 B ! 2B autocatalytic reaction in 1D. The simula
tions show that the front propagates with a stable velo
n, given by Eq. (1) witha > 1. The microscopic front
form does not change with time; the corresponding d
tributions are universal functions of the dimensionless
terparticle distances. Analytically the continuous-medi
approximation does not fix the value ofn, but reproduces
quite well the properties of the local ordering, provid
that n is known by other means (say from simulation
the (inevitable) statistical fluctuations ofn from realiza-
tion to realization give rise to the (reported) growth of t
apparent (ensemble-averaged) front width with time.

The support of the DFG, of the Fonds der Chemisc
Industrie, and of EC Grant No. CHRX-CT93-0354
gratefully acknowledged.
s

t
-

e

y

-
-

n

*Also at P. N. Lebedev Physical Institute of the Academ
of Sciences of Russia, Leninsky Prospekt 53, Mosc
117924, Russia.

[1] A. Blumen, J. Klafter, and G. Zumofen, inOptical
Spectroscopy of Glasses,edited by I. Zschokke (Reidel
Dordrecht, 1986), p. 199.

[2] R. Kopelman, Science241, 1620 (1988).
[3] P. Gray and S. K. Scott,Chemical Oscillations and

Instabilities(Clarendon Press, Oxford, 1990), p. 300 ff.
[4] V. N. Kuzovkov and E. A. Kotomin, Rep. Prog. Phys.51,

1479 (1988).
[5] H. Schnörer, V. Kuzovkov, and A. Blumen, Phys. Re

Lett. 63, 805 (1989).
[6] C. R. Doering, M. A. Bruschka, and W. Horsthemk

J. Stat. Phys.65, 953 (1991).
[7] J. Riordan, C. R. Doering, and D. ben-Avraham, Phy

Rev. Lett.75, 565 (1995).
[8] P. V. Elyutin, J. Phys. C17, 1867 (1987).
[9] S. J. Parus and R. Kopelman, Phys. Rev B39, 889 (1989).

[10] C. R. Doering and D. ben-Avraham, Phys. Rev. Lett.62,
2563 (1989).

[11] P. Argyrakis and R. Kopelman, Phys. Rev. A41, 2114
(1990);41, 2121 (1990).

[12] P. Alemany and D. ben-Avraham, Phys. Lett. A206, 18
(1995).

[13] D. Toussaint and F. Wilczek, J. Chem. Phys.78, 2642
(1983).

[14] I. M. Sokolov, JETP Lett.44, 67 (1986).
[15] I. M. Sokolov and A. Blumen, Phys. Rev. A43, 6545

(1991).
[16] F. Leyvraz and S. Redner, Phys. Rev. Lett.66, 2168

(1991).
[17] F. Leyvraz and S. Redner, Phys. Rev. E46, 3132 (1992).
[18] R. Reigada, F. Sagués, I. M. Sokolov, J. M. Sancho, a

A. Blumen, Phys. Rev. E53, 3167 (1996).
[19] M. Araujo, H. Larralde, S. Havlin, and H. E. Stanley

Phys. Rev. Lett.71, 3592 (1993).
[20] B. P. Lee and J. Cardy, Phys. Rev. E50, R3287 (1994).
[21] M. Smoluchowski, Z. Phys. Chem.92, 129 (1917).
[22] S. O. Rice, inDiffusion-Limited Reactions,Comprehensive

Chemical Kinetics Vol. 25 (Elsevier, Amsterdam, 1985)
4465


