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Front Propagation and Local Ordering in One-Dimensional Irreversible
Autocatalytic Reactions
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We consider the irreversiblé + B — 2A autocatalytic reaction via Monte Carlo simulations in 1D.
Contrary to mean-field-type predictions, the simulations show that only a unique, stable front propagates.
Its structure is time independent and the spatial correlations turn out to be universal functions of the
dimensionless interparticle distances. These findings are due to the discrete character (particles) of the
model and to the 1D topological constraints. The temporal changes of the averaged front form stem
from velocity fluctuations and are not a sign of unstable propagation. [S0031-9007(96)01642-0]

PACS numbers: 82.20.Mj, 05.40.+j, 82.65.—i

Reaction kinetics in low dimensions were extensivelyapproach is not suitable for distinguishing between insta-
investigated in the last two decades since they differ sigbilities and statistical fluctuations.
nificantly from the situation in high-dimensional spaces, In Ref. [6] theA «— 2A scheme was used to model the
and thus violate strongly the classical kinetics schemereversibleA + B < 2A reaction. This scheme veils the
based on the mass-action law [1,2]. Remarkably, suckole of theB particles, since (in contrast to their discrete
violations did not find much attention in the society of nature) it implies that their distribution is uniform at
scientists dealing with problems of front propagation inall times. Here, however, we focus on tireeversible
autocatalytic reactions. autocatalytic reactiod + B — 2A in 1D. This reaction

The autocatalytid + B < 2A conversion (where both is the simplest model for infection spreading, by which
direct and back reactions follow the bimolecular schemejirreversibly infected)A particles infect at first encounter
can be described in the mean-field limit by the quadratidhe healthyB particles. As we show, this reaction gives
Fisher equation [(11.31) of Ref.[3]], whose solution rise to a universal, parameter-free behavior, determined by
fronts may propagate with different velocities here the the discrete nature of the particles. Contrary to the mean-
initial conditions determine whether a certain velocity isfield predictions, the reaction front retains its microscopic
attained [3]. We note that a mean-field-type descriptiorform under propagation and its velocity is only slightly
is not appropriate in low dimensions/ & 1 and 2) fluctuating. We present here the results of extensive
where the reaction term shows a strong dependenddonte Carlo simulations of the system and compare them
on correlation functions up to high orders [4,5]. Thewith the mean-field predictions.
reactionA + B < 2A was investigated analytically and In our simulations we start from a one-dimensional
via Monte Carlo simulations in Refs. [6,7], where basedattice of lengthZ. = 10* which is initially randomly filled
on ensemble-averaged quantities, in 1D and 2D strongith B particles whose concentrationds At the left end
deviations from mean-field-type behavior were detected. of the system we place axparticle. All particles perform

On the other hand, an ensemble-averaged approach tetlendom walks on the lattice and the particle to move next
only part of the story since it disregards the local orderings chosen at random. Whenever Amarticle encounters
of the particles, an aspect which is of great importance ira B particle the reaction takes place immediately and the
low dimensions. Such local ordering aspects were investiB particle is relabeled. In this way the front propagates.
gated in detail for the reactioms + A — 0,A + A — A,  During the simulations we monitor the position of the
and A + B— 0 [8-20]. Especially the last reaction front (i.e., the position of the rightmogt particle) and
shows nontrivial large-scale spatial structures (clustersthe distributionspas and pp of the distances from tha
due to fluctuation effects [13—20]; these findings lay out-at the front to its left and right nearest neighbors. We
side the classical kinetics scheme and need for their undew as one Monte Carlo step (MCS) the time during
derstanding much more elaborated theories and extensiwvghich each particle has performed on the average one
numerical studies. Note that the microscopic descriptioomove. The overall simulation time was chosen to be
of the front structure requires the knowledge of the locak,x = 3 X 10* MCS; the results were averaged over
ordering of theA andB patrticles near the front. On the 1000 realizations of the process.
other hand, the distribution of the front positions under en- The only parameters of our one-dimensional problem
semble averaging provides a macroscopic picture. Thes@e the particle concentratian (which provides a scale
two points of view correspond to significantly different for the mean interparticle distanck = ¢~') and the
experimental situations and are known to lead to stronglyliffusion coefficientD, which together withh defines the
different results in the case of + B — 0 reactions in characteristic time scale of the problem,= A?>/D =
1D; see Refs. [19,20]. In general an ensemble-averagelfc>D. The lack of further parameters in this simple
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1D A + B — 2A model renders dimensional analysis dimensionless combination

a very useful tool. Consider as an example the front ew?(r)

velocity: The average time necessary for the rightmost B = o1 x cD/v (2)
A particle (say, thenth particle, whose positiorx is
roughly x = nA) to react with the leftmosB is given
by the characteristic time = A?/D needed to diffuse
through the mean interparticle distance. On reactio
the mean front position moves to= (n + 1)A. Thus
the front’s velocityr behaves ag « D/ = ¢D. The
dimensionless combination

is then time independent.

The results of our numerical simulations for= 0.025,
¢ = 0.05, andc¢ = 0.1 support these assertions and lead
o o = 1.05 and B = 3.57; the uncertainties correspond
to the last decimal digit. Note that takingas unit length
and 7 as unit time we have a parameter-free, universal
situation; this is an extremely interesting feature of the

_ v (1) A + B — 2A reaction in 1D considered here.
“= D Since theB value is bounded (the velocity fluctuations
is thus the most important dimensionless parameter of thare finite) » is sharply defined. Moreover, on a micro-
system. scopic scale the front (being localized at the rightn?gst

The front velocity is inevitably fluctuating. We have is sharp and of limited width (somex2 We stress that
determined numerically the positiongr) of the front, the increase of the front width under ensemble averaging
from which we obtainedr(r) as well asw(z), the is due thevelocityfluctuations and is not connected to any
dispersion of the front's position. We find that is  instability of propagation (cf. Refs. [6,7]).
constant and thab? grows ast (cf. Ref. [6]). In Fig. 1 The structure of the front region is characterized by the
we present forr = 5000 and ¢ = 0.1 the cumulative distance distributionp,p (between the leftmod and the
normalized distribution function of the front positions, rightmostA) and p44 (between the rightmosA and its
F({) = N(x; < {w + vt)/N, whereN(x; < x) is the nextA neighbor to the left). We find numerically that
number of realizations (out dfl simulations) for which  the distribution of distances between all other particles is
the actual front position:, is less thanx. This form indistinguishable from an exponential (the Hertz distribu-
obtained by simulations is compared in Fig. 1 to thetion in 1D), which is of no surprise when remembering
cumulative normal Gaussian. As is evident by inspectionthat the reaction consists in a pure renaming of particles.
the agreement is excellent. Thus the non-Markovian aspects are felt in to@oste-

The parameter dependency of the front width can béiori paa and pap; the distributions of theéB-B distances
visualized as follows: The squared dispersigt{r) of the ~ area priori, while the A-A distances other than the one of
front positions at time is of the order ofo2n(r), whereo  paa “forget” the reaction (renaming) stage quickly.
is the dispersion of the front displacement per step and The probability distributiong sz and p44 for different
n is the mean number of steps within Now n(r) « values of concentrationsc & 0.025, 0.05, and 0.1) are
t/T = ¢2Dt and o, being a length, scales with= ¢~ '; shown in Figs. 2 and 3. Figure 2 presents the dependency
hence w2(¢) « Dt, independent of concentration. The of the value p(¢) =c™'pap(x) on the scaled distance
& = cx; Fig. 3 presents the same for the functiédi®) =
¢ 'paa(x). The results fall on master curves, a fact which
stresses the scaling and parameter-free nature of the model.

We continue by analyzing continuous-medium descrip-
tions of the reaction. In the standard Fisher approximation
[3] the evolution of the particles’ concentrations is based
on reaction-diffusion equations. For example one has for
the B particles

d
—cp = DAcpg — kcacg = DAcp — kep(c — cp).

at
3

Here we used that, + cg = ¢ = const, which also
implies dca/dt = —adcp/dt. Equation (3) leads to a
stable front propagation [3], as long as the front’s velocity
{ exceeds the value, = 2/kD. For irreversible reactions
on contact we have to require that— oo in order to
FIG. 1. The cumulative distribution function of the front forbid the occurrence d8 particles on the left side of the

positions F(¢) shown as a function of = (x; — »v1)/o(t).  front. The front structure given by Eq. (3) is then abrupt.

The values are obtained at= 5000 MCS in N = 5000 M t — o impli »- in the Fish ict
realizations of a system withc = 0.1. The dashed line MOr€OVer,k — < implies v, — <, In the Fisher picture

corresponds to the” cumulative distribution function of thethis would mean that no stable propagation is possible,
Gaussian distribution' () = [1 + erf(£)]/2. clearly a contradiction to our numerical findings.
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0.5 — The boundary conditions aggx — ») = ¢ andg(xy) =
] 0 at the instantaneous front positian. Now the motion
0.4} - of the front is a relay race, during which the rightmost posi-

tion passes from one particle to another. The front motion
can be viewed as a drift with an averaged velogitpn
which a random process with zero mean is superimposed.
For the analysis we now focus on the drift and assume that
the front moves with a constant velocity Turning to
a description in the coordinate frame moving withand

0.3

p(§)

0.2

0.1p T introducing both the dimensionless density) = g(x)/c
1 and the dimensionless length varialdle= cx, we obtain
0.0 : : from Eq. (4)
0 5 10 5
E —n — ven' = Dc?n”, (5)
at

FIG. 2. p(¢), the distribution of distances between the right- Where the primes mean differentiation with respectto
most A and the leftmosB particles. The concentrationis ~ The boundary conditions are now(0) = 0 andn(+w) =
given through crosses (0.025), triangles (0.05), and squares In a stationary situation the time derivative vanishes, so

(0.1). The dashed line is the result of the mean-field theory ividi i
Eq. (10). that dividing both sides of Eq. (5) gD we have

n' = —an’, (6)

The classical kinetic scheme is a preaveraged approaghhere« = »/cD, as introduced above. The solution of

which neglects ordering on length scales comparable tgq_ (6) for the given boundary conditions reads
the interparticle distance and (as stated above) does not

apply in 1D, where the structure of the depletion zones n(€) =1- e, (1)

near the reactants is of great importance. We hencg;., gives the density oB particles to the right of the

consider anather megn-field approximation WhiCh Ca%ront. Equation (6) also describes the concentration pro-
account for the formation of a depletion zone; it follows gio of the A particles to the left of the front. Now the

Smoluchowski’'s approach to classical kinetics [21,22]. boundary condition isi(—2) = 1, which leads automat-
In the Smoluchowski picture the irreversible reaCtionicaIIy (note the prefactor ofr) to’n(g) — | = const for
takeg place due to the diffus_ive flux _prarticles tqwards ¢ < 0. Thisimplies an exponential (Hertz) distribution of
the rightmostA. - This flux is described by a diffusion all AAdistances, including the one between the rightrAost

equation for the correlation functiog(x, ), which is the particle and its left neighbor. Th¢) = ¢! paalx) =
probabi!ity density to find 8. particle (not nepessarily the expl— &) is independent ok, a fact corroborated by Fig. 3.
next-neighbor one) at the distancérom the rightmost: Note that for any value of the condition of the equal-

ad ity of the particle fluxes to the leftj- = vcn(—0)] and
5,8 = Das. (4) {0 the right[ j» = Dc2(3/9€)n(+0)] of the boundary is
identically fulfilled (due to the fact thatc = Dc?a); thus

in the Smoluchowski (continuous) picture the velocity of
the front is not fixed: Each propagation velocity has its
own front form. This parallels the situation described by
the Fisher equation in higher dimensions, and leads to the
stable propagation of fronts with different forms. Con-
trary to this prediction, our numerical simulations show
that only one stable front propagation mode occurs in 1D.
The value ofy and the corresponding front forn(¢) are
then well defined.

Although the mean-field approximation does not lead
to a unigue value ofr, we can obtain fromn(¢)
analytically the p,p distribution (of nearest-neighbor
A-B pairs) quite well, provided that the actual value
of v is known otherwise (i.e., from simulations). As
f stated above, the distributions of distances between the

FIG. 3. Same as in Fig. 2, but now for the distributié¢) neighboringB particles are of Hertz type. This implies

of distances between the rightmdsparticle and its nearesé) ~ that the probability density:(n) to find aB particle at
neighbor to the left. the (dimensionless) distanagto the right of the leftmost

6(¢)
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B particle is constantm(n) = 1. Evidently, forp <0 *Also at P.N. Lebedev Physical Institute of the Academy
one hasn(n) = 0. The values ofi(¢) andp(¢) are then of Sciences of Russia, Leninsky Prospekt 53, Moscow
connected via the integral equation: 117924, Russia.
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