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The dimensional crossover in a s@mearest-neighbor Heisenberg antiferromagnet is discussed as it
is tuned from a two-dimensional square lattice, of lattice spaajrtgwards a spin chain by varying the
width L, of a semi-infinite stripL, X L,. For integer spins and arbitrafy,, and for half integer spins
with L, /a an arbitrary even integer, explicit analytical expressions for the zero temperature correlation
length and the spin gap are given. For half integer spins Bnth an odd integer, it is argued
that thec = 1 behavior of the SU(2) Wess-Zumino-Witten fixed point is squeezed out as the width
L, — =; herec is the conformal charge. The results specialized te % are applied to spin-ladder
systems. [S0031-9007(96)01673-0]

PACS numbers: 75.10.Jm

One-dimensional quantum antiferromagnets haveé(3) nonlinears model, which is in the broken symmetry
many unusual properties. For example, nearest-neighb@hase in its ground state [6]. (The possible existence
Heisenberg spin chains with half-integer spins are gaplessf topological terms was considered and discarded by a
but those with integer spins are generically gapful [1].number of authors [8].) The corresponding elementary
Many properties such as these can be understood from thexcitations are weakly interacting Goldstone modes,
correspondence of the spin chain tolat 1)-dimensional that is spin waves. This low energy, long wavelength
O(3) nonlineawr model, augmented by a term in the actionmodel is essentially geometrical and is almost entirely
that contributes a phase factei’? to the path integral determined by symmetry [9] regardless of whether or
whered = 27§, Sis the spin and is an integer winding not the magnitude of the spin is large. The two needed
number. For integer sping = 0 mod2w), the phase phenomenological constants are the spin wave velocity
factor is unity, but for half-integer spirs = = mod2#),  and the spin stiffness constant. In principle, experiments
itis (—1)2. This leads to the crucial difference betweencan determine these constants, and there is no need to rely
the integer and the half-integer spins. Although the exisen a presumed larg8expansion.
tence of the gap in the model with= 0 can be seenin a It is an intriguing question to ask how a two-
variety of ways [2], the model witld = 7 is more subtle dimensional system would evolve if we began with a strip
[3]. Foré = =, the short distance behavior is dominatedL, X L, and continuously tuned the system by varying
by two weakly interacting goldstone modes. These ar¢he width L,, with L, kept infinitely large. Would it
correctly described by the perturbative renormalizatiorapproach the one-dimensional limit, and if so, how would
group analysis that is impervious to the existence of theve recover the sensitivity to the topological angle
0 term. In the language of conformal field theory, theThis would be of only theoretical, albeit considerable
system is in the proximity of an infrared unstable fixedinterest, if it were not for experiments on spin ladders
point corresponding to conformal charge= 2. Atshort  [10] in which § =% systems of varying width are
distances, there is no distinction between integer and halexplored. The purpose of the present paper is an attempt
integer spins, and the system appears gapful. Howeveto clarify this crossover and to determine the evolution of
on longer scales theé = 7 model flows tok = 1SU(2)  the excitation spectrum.

Wess-Zumino-Witten model [SU(2WVZW], correspond- It has been argued [11,12] that spin ladders corre-
ing to ac = 1 massless theory. Indeed all critical theoriesspond to an effectivél + 1)-dimensional O(3) nonlin-

in two dimensions must belong to a conformally invariantear o model with thed parameter given by = 27n;S,
fixed point. wheren, is the number of legs. Thus f6r = 3, the sys-

The two-dimensional Square-lattice, neareSt'neigthfem is gapfu| for even-|eg ladders and gap|ess for odd-
Heisenberg antiferromagnet is entirely different. It isjeq ladders in accord with experiments [10]. There are
rigorously known that the ground state is Néel orderectomplimentary theoretical and numerical approaches to
for § =1 [4], but no such proofs exist fo§ = 1/2.  the |adder systems that are outside the scope of the rea-
Nonetheless, the numerical evidence for an ordered grounshning in this paper [13]. However, the crossover prob-
state forS = 3 is strong [5]. Moreover, the assumption of lem stated above has not been fully elucidated, although
an ordered ground state has yielded predictions [6] that ali¢ was anticipated [12] that, when approached along the
confirmed in neutron scattering experiments [7]. Hencesequence of even-leg ladders, the gap must collapse ex-
forth, I shall assume that this is also a solved problem, angonentially with the increasing width of the system. In
the correct low energy theory is @ + 1)-dimensional the present paper | shall show precisely how this happens
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and derive a formula that can be checked. At first sight g
the approach to the two-dimensional limit along the odd
sequence appears to be simple because they are gapless.
However, this is not so because the two-dimensional prob-
lem, which is insensitive to topology, is described by two
Goldstone modes; it cannot be a straightforward extension
of thec¢ = 1 fixed point of the SU(2) WZW model.

Gapped spin liguid

The Euclidean action of the O(N) quantum nonlinear ¢ Cep Aot
o model, in which one of the dimensions is singled out
and is of finite extent, is L
S pO (B Néel line
— = —Y[ drf d¥ 1y
h 21 Jo
L 5\ Dimensionally reduced
N 1 {00 mensionally
xf dx1|:(aMQ)2 + —2(—> } @)
0 c ot 0
where the indexu runs over all the spatial dimensions, 1 e
throughd. The extent of the imaginary time dimension, L
Bh, tends to infinity as the temperatufe= 1/kz B tends FIG. 1. The crossover phase diagramdir= 2.

to zero. We shall impose a periodic boundary condition
along the direction 1; the remaining spatial directions
will be assumed to be infinite in extent. The staggeredes of the gapped and critical spin liquid regimes are
order parameter field of the antiferromagné, is an exceedingly complex and are beyond the scope of the
N-component unit vector field, which is a function of present paper.
(7,x1, %2, ...,xq); the spinS antiferromagnet corresponds ~ The region of the phase diagram for which we can make
to N = 3. The parametep’ is the bare spin stiffness precise predictions is the dimensionally reduced region.
constant at the spatial cutoff ! of the model, and the In this region, the system is in the Néel ordered state
parametec is the spin wave velocity on the same scale. Iwhen L = «, or g, = 0. WhenL # «, the system is
shall focus on the zero temperature behavior and repogquivalent to a dimensionally reduced effective+ 1)-
results of a “Lorentz” invariant analysis; therefore, thedimensional model with no long range order. This can
spin wave velocity will not renormalize. be seen from the renormalization group equations [6]. At
The action atl’ = 0 is interesting. The extents in all first, with increasing length scalg,rapidly decreases and
directions, except,, are infinite; along; we have a peri- &L increases slowly, that is, the system appears more and
odic boundary condition. The physical probleniat= 0  more ordered. Subsequently, increases rapidly, bug
is, therefore, isomorphic to a problem at finite “tempera-decreases very slowly, thereby breaking up the order at
ture,” where the temperature-like variablesis = fic/L. longer length scales and resulting in the reduction from
With proper identifications of the parameters, iidenti- (2 + 1) to (1 + 1) dimensions. The effective coupling
cal to that solved in Ref. [6]. Let us define two dimen- constant to be used in tHé¢ + 1)-dimensional model is

sionless bare coupling constants: easily calculated to be
FeAd! 1 L ki
8= ——5— = =l 1+ L) |, 3)
Ps @) Eeff hic 27 Lp;
d—2 . . . . .
) = hicA _ wherep; is the fully renormalized macroscopic spin stiff-
Lp? ness constant & = 0 of the square-lattice spi§-anti-

The energy-like parametef plays the role of the dimen- ferromagnetic Heisenberg moddl, = <, L, = <) [14].
sionless temperature-like coupling constant in Ref. [6],ThiS definition can be made more explicit if we recall that
andgy is the same as that defined previously. ps = JS*Z, and hic = 2+/2JSaZ., whereJ is the ex-
The renormalization group equations can be simplychange constang is the lattice spacingZ, and Z. are
read off from Ref. [6]. The crossover phase diagram,the renormalization factors [15]. We can now write
in d = 2, constructed from these equations is shown in 2 Z, L 1 -1
Fig. 1, merely for orientation. The three distinct regions gott = {(\/EZ ); +— In(AL)} )
had to be renamed, as the present analysis corresponds ¢
to T = 0. The regions previously named “renormalized Therefore, for largglL/a) the input bare coupling con-
classical,” “quantum critical,” and “quantum disordered” stant to the effectivél + 1)-dimensional model is greatly
are now renamed to be “dimensionally reduced,” “criti- reduced from its valug2/S) of a spin chain. This is
cal spin liquid,” and “gapped spin liquid,” respectively. due to increased order at short distances, concommitant of
With simple transcriptions, the physical pictures of thethe quasi two-dimensional nature of the model with finite
crossover boundaries are the same as before. The analyidth L.
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For integer spins and for even-leg ladders with half-be ¢/8 = 0.34. In addition, the constant which was
integer spins the description of the dimensional crossoveasreviously known to be only of order unity is determined
is conceptually complete. The system is massive aneb bed = %
its mass gap should be calculated with the effective It is interesting to rewrite Eq. (5) in terms of the
coupling derived above. | shall make more preciseJosephson correlation length of the= o (2 + I)-
predictions later. The case of odd-leg ladders with half-dimensional O(3) nonlineas model [6], which is given
integer spins requires further clarification. Because alby ¢; = fic/p,. This length separates the short distance
possible topological terms were dropped in faet 1)-  critical behavior from the long distance Goldstone behav-
dimensional model, the masslessness of the dimensionaligr. In terms of¢; the correlation length takes the simple
reduced system could not be recovered. Even in théinite-size scaling form

presence of sufficiently strong local Néel order, the proof e
of the nonexistence of the topological termdn=2is &= — (—J>e2””§’[1 — 2(&/2mL) + 0(&,/2wL).
correct strictly when the number of spins along bdéth 8 \27

and L, are even. For an odd number of rows alahg (6)
but L, = o, a topological tern27iSQ remains [8]. If For spinS square-lattice Heisenberg antiferromagrigt,
we wish, we can rewrite it a8wiSQn, by realizing that is given by [15]
the topological angle is' only defineq modulerz_ It has . (2\/§Zc>
been never fully explained why this odd-chain case is &1 = a (7)

. ) = o SZ
physically irrelevant; in fact it is not, as we shall see. ps
Imagine that we include such a term in our action [16]. Because of Lorentz invariance, the spin gajs simply
For finite L, this should, in principle, render the model A = 7ic/é. Note again that the spin wave velocity does
massless in the sense of= 1, not in the sense of a not renormalize, and this relation does not have any
Goldstone phase. However, thhe= 1 behavior will be  corrections (cf. below). Specializing H= % we get
difficult to see when./a is large. The reason is that the 0.682(L/a)
effective coupling constant derived in Eq. (4) will be very (5/")5 = 0.499¢™ [1 - 0734(a/L)], (8)
small, and the perturbative renormalization group, which
is impervious to the topological term, will be valid upto ~ (A/J)1 = 3.347¢ 0082/ — 0.734(a/L)]7". (9)

very long distances until the running coupling constantrpe field theory analysis presumes that a continuum theory

becomes of order unity for the system to crossover s gpplicable in both directions, and therefore the expres-

¢ = 1 SU(2); WZW model. [The crossover length scale gjgns in Egs. (8) and (9) cannot be accurate(fofa) ~

yviII be of the order of the_ cor_relati_on length given b_elow 1. Moreover, these expressions, obtained with a peri-

in Eq. (8).] Thus the region in which the= 1 behavior  ygic poundary condition, are likely to be different from

is seen is squeezed out &s— «, and all we see iS hose obtained from other boundary conditions, such as

the Goldstone phase. Conversely whigfu is of order  {he gpen boundary condition, especially whgria) ~ 1.

unity, thec = 1 feature should be visible. It is important Nonetheless if we take/a = 4 corresponding to four-leg

to keep in mind that thed = 7= model itself is not ladders, we getA/J): = 0.268 and(&/a): = 6.23. For

conformally invariant in(1 + 1) dimensions; it has a L/a = 6we get(A/f)l — 0.064 and(£/a): = 262

nontrivial 8 function and an associated mass gap. To compare numérical .results with Eopen béundary
Using Ref. [6] it is possible to write down by inspec- condition annéL are available ’forL/a — 4 and 6

tion the expression for the correlation lengttin our O(3) According to Ref.yf19], we have, fdt/a = 4, (A/J): _

model defined on a strip for which, = =, L, = L. It - _ ?
is important to note that the dimensionally reduced ef 0190, and (§/a); = 5-6. According to Ref. [20], we

fective (1 + 1)-dimensional model has “Lorentz” invari- Nave, forL/a =4, (A/J): = 0.160, and(¢/a); = 10.3.
ance; integrating out the, modes does not destroy the From the same work, we have, fé/a = 6, (A/J)1 =
proportionality between the imaginary time and thedi-  0.055. The value for the correlation length fér/a = 6
rections. There is, therefore, one and only one correlatiofs not given explicitly. However, a simple extrapolation

length [17]. The result fo€ is yields a value close to 30. From Ref. [21], we have, for
. hic 27 p,sL L/a =4,(A/J): = 0.17;for L/a = 6, (A/J)1 = 0.05.
£ = 3272w C) (27”)?)9)(?( e Note that the gaps should be inversely proportional to

is fic, wherec is thetwo-dimensional spin wave velocity,
2mpsL 2mpsL which is unrenormalized to the accuracy of the present

From strong coupling simulations, the quanttty C was  calculation. This proportionality is automatically satisfied

estimated in Ref. [6] to be between 0.01 and 0.013. Thigor the analytical expressions given in this paper and

makes the overall numerical prefactor between 0.27 andhould be a good check on the numerical work.

0.35. Since then an asymptotically exact expression has Based on the simple observation that 7at= 0 the

been derived [18], and the exact prefactor is known taspin-Ssquare-lattice Heisenberg model of finite width can
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be mapped onto & + 1)-dimensional O(3) nonlinear [11] D.V. Khveshchenko, Phys. Rev. 5, 380 (1994).
o model with a finite dimension, | have provided a the-[12] G. Sierra, J. Phys. &9, 3299 (1996). . .
ory for crossover in spin ladders. Explicit analytical ex- [13] For a review, see E. Dagotto and T. M. Rice, ScieBcé,

pressions for the correlation length and the spin gap were
obtained by transcribing the results in Ref. [6]. The agree[14]
ment with numerical calculations is very good considering
the difference in the boundary conditions employed. The
analytical expressions show precisely that the crossover to
the two-dimensional limit is approached exponentially as
the number of legs in the ladder system is increased. The
extension of the present theory to anisotropic coupling angi5]
to finite temperature should be straightforward. | hope to
return to these extensions in the future.
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