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Critical Conductance and Its Fluctuations at Integer Hall Plateau Transitions
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Under periodic boundary conditions in the transverse direction, we calculate the averaged zero-
temperature two-terminal conductan¢@) and its statistical fluctuatiok(8G)**), for n < 4, at the
critical point of integer quantum Hall plateau transitions. We fimiversalvalues for{(G) = (0.58 =
0.03)e2/h, and {(§G)**y = (e?/h)*"A,,, Where A 465 = 0.081 * 0.005, 0.013 + 0.003, 0.0026 *
0.005, and(8 *+ 2) X 107*, respectively. We also determine the leading finite size scaling corrections
to these observables, and make comparisons with experiments. [S0031-9007(96)01658-4]

PACS numbers: 73.50.Jt, 05.30.—d, 74.20.—z

For macroscopic, disordered, two-dimensional elec- Recently, the experimental four-terminal resistivity;
tronic systems at low temperatures, the metallic behaviohas been studied systematically at the quantum Hall
is only observed near quantum phase transitions. Twbquid to insulator transitions by Shahat al. [10]. They
examples are the superconductor to insulator transitionsoncluded that the critical conductivity tensouisiversal
in amorphous thin films, and the transitions betweerand the value ofp¢, =~ h/e? agrees with the prediction
quantum Hall plateaus [1]. In two spatial dimensions,of KLZ. In addition, significant sample to sample
the conductivity tensoir,, measured in units ot?/h  fluctuations in the critical resistance have been observed
is dimensionless. Under generic conditiofs,,,) (the [10]. Here we note that, in order to measure the true
impurity averaged conductivities) are expected to bep¢, (or o¢.), the temperature has to be low enough so
universal at the quantum critical points [2,3]. that corrections to scaling have faded away, yet it has to

The universal conductance fluctuations of disorderedbe high enough so as to avoid the effects of mesoscopic
mesoscopic metals has attracted tremendous experimentalctuations [11]. More recently, the statistical fluctuation
and theoretical interest in recent years [4]. The samef the two-terminal conductance in the transition regime
gquestion can be asked at the quantum critical pointhias been studied experimentally in mesoscopic samples
mentioned above. Thus “what is the statistical (over théoy Cobden and Kogan who demonstrated the presence of
impurity ensemble) properties of,,, at quantum critical large mesoscopic fluctuations in the conductance [12].
points of two-dimensional systems” is the concern of In this paper, we calculate the ensemble averaged
the present paper. In particular, we concentrate on thawvo-terminal conductance(G) and, for the first time,
transitions between integer quantum Hall plateaus. its fluctuations ((§G)*") at the critical point of the

In an integer plateau transition, the electron conducinteger quantum Hall plateau transitions. In addition,
tivity tensor(o,., o,,) changes fronf0,n)e?/h to (0,n =  we study the finite-size and aspect ratio dependence of
1)e?/h. Concerning these transitions the following con-these quantities. The model we use is the Chalker-
sensus is reached [1,5-8]. (a) When extrapolated to ze@oddington network model [13] and its extension [14],
temperature and infinite sample size, the transitions arand with periodic boundary conditions applied in the
genuine continuous phase transitions withiggle diver-  transverse direction. These models have been shown to
gent length scalé —the quasiparticle localization length. exhibit the correct critical properties of the integer plateau
(b) As the Fermi energ¥Er) moves toward a critical transitions [13—15]. Our findings are summarized as
valueE,, ¢ ~ |Er — E.|”7, with v = 2.3, (c) The char- follows. The conductance of @ X L sample (wheréV
acteristic energy scale-1/¢, thus (the dynamical expo- is the circumference and is the length of the cylinder)

nent)z = 1. exhibits the following scaling behavior:
Based on a Chern-Simons formalism, Kivelson, Lee, and o2
Zhang (KLZ) asserted thdtr,,, o.,) at the(0, n)e?/h — (G) = ;j-"(Lyfe‘Agrel,L‘y"ngm, W/L). Q)

(0,n + 1)e?/h transition is(c¢,, &) = (%,n + %)e2h

[3]. Huo, Hetzel, and Bhatt have numerically computedHere we have used the fact th@y (e?/h) is dimension-

o¢, at the(0,0) — (0, 1)e?/h transition using the Kubo less. In the above( --) denotes the disorder ensemble
formula [9]. Their calculation assumes that the electroni@averagingAg..; andAg;,, are the coupling constants con-
states lie entirely in the lowest Landau level. They havgugate to the relevant and the least-irrelevant operators,
considered several different forms of the impurity potentialrespectively. At the critical pointAg.; = 0. We have
and concluded that=¢, = (0.55 = 0.05)e?/h which is  performed finite-size scaling analysis @). on L X L
consistent with the result of KLZ. samples to extracf (0,0, 1) andy;,. to be(0.58 * 0.03)
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and0.55 = 0.15, respectively. Thus the critical conduc-
tance(G). = (0.58 = 0.03)e’/h. We have also calcu-

Z1 Za
lated the central moment$6G)%*) for n < 4 and have
shown that they exhibit the following scaling behavior,
; 62 2n ’ o
(367 = () Fanll™ Bt L Agis W/L). () . 3,

We have determined the critical moment8G2"), =
(e2/h)* F>,(0,0,1). Forn =1, 2, 3, and 4, the values
of F, are found to be0.081 *= 0.005, 0.013 = 0.003, (a) (b)
0.0026 = 0.005, and(8 * 2) X 107%, respectively. We .
verified the universality of these results and assert that aﬁ:&ésl'cor(rae)s F?chder?oatt'ﬁz ggmﬁnﬂﬁﬂgoﬁegﬁﬂeféagge (Stgagﬁg
higher moments, and hence m_lr_edlstrlputlon function quantum tunneling at a single node of the network.
P(G), are universal at the transition. Since in the rest of
this paper weagnorethe electron-electron interaction, our
conclusions are, at most, relevant to tinéeger plateau
transitions. We also point out that it remainsclear tial at the saddle point. However, in Ref. [14] it was
at present about the relation between the two-terminaghown that introducing randomness dndid not change
conductanceG and the o, derived from the Kubo the universality class (i.e., did not change the localization
formula in a closed system without contacts. length exponenv = 2.33 = 0.03) of the plateau transi-
Let us considemoninteractingelectrons in a strong tion. It turns out that the network model is situated at
magnetic field, and potentials that are smooth on thdhe critical point as long a8 is the same for all nodes
scale of the magnetic length. In this limit the plateau[15]. Invariance under J0rotation selects a particular
transition can be described by “quantum percolation” ofone[# = 6. = In(1 + +/2)] out of the family of critical
semiclassical electron orbits in the Chalker-Coddingtormodels [13,15]. We shall present results for both isotropic
network model [13,14]. The latter consists of a squaresystemg6 = 6.) for which the two-terminal conductance
lattice of potential saddle points at which quantum tunnelalong thex direction (G,,) and they direction (G,,) are
ing between the edges of quantum Hall droplets take placequal, and anisotropic systems (i.6.# 6.) for which
[Fig. 1(a)]. Away from these vertices, the edge electronsG,, # G,,. In the latter case we study the geometric
propagate along the directed links with a fixed chirality setmean,/G Gy,
by the direction of the magnetic field. To account for the We next define the two-terminal conductance. As
random areas of the Hall droplets, the edge electrons ashown in Fig. 1(a), two semi-infinite conducting leads are
cumulate random Bohm-Aharonov phases while traverseonnected to th& X L disordered network. It has been
ing the links of the network. At each saddle point, asshown that linear response theory applied to the combined
shown in Fig. 1(b), there are two incoming and two out-lead-sample-lead system gives the following multichannel
going edges states. The associated probability amplitudewo-terminal conductance [16,17]:

are denoted by ... 4. Because of current conservation, 2 o2 1
1Z,1> + 12| = |Z5)* + |Z4|2. With a choice of gauge, G=—Trtr="> ————. (4)
the quantum tunneling event at each node is then com- h h 5 cosf(yL)
pletely specified by & X 2 transfer matrix, In Eq. (4), ¢ is the transmission matrix through the
Zi\ [P 0 coshd sinhd disordered region, ang; is the ith of the W Lyapunov
<Z3> B < VLS ) < sinhg cosh@) exponents of the Hermitian transfer matrix prod@dtr
ot 0 7 [18]. We note that the validity of Eq. (4) in the absence
X < 0 i¢4>< 4), (3) of time reversal symmetry has been shown in detail by
¢ 2 Baranger and Stone for finite magnetic fields [17].
where ¢; € [0,27) are random phases, amdis a real We now present the results. We have studi&dx

number. Using Eq. (3) as the building block, we construct. systems with periodic boundary conditions in the
the W X W transfer matrix7T; which propagates eigen transverse direction fof. = 8, 16, 32, 48, 64, and 96,
wave functions on a cylinder of circumferengéin the x and for aspect ratioV /L = 1/4, 1/3, 1/2, 1, 2, and 4.
direction. The total transfer matrik for the entireW X  The disorder ensemble consists of at least 3000 samples
L system is given by the matrix produg@t = l_L-Lzl T;. for each (W,L). The distribution functionP(G) is
For the details of transfer matrix calculations, readers argery broad, and the most probable value of the critical
referred to the original work of Chalker and CoddingtonconductanceG, ;ypicai is, although close t®.5¢2/h, not
[13]. Here we merely emphasize a few important points.sharply defined. For isotropic systems (i@.= 6.) the

In general, the tunneling parametgiin Eqg. (3) should averaged critical conductan¢é(L)). for L X L samples
be a random variable, depending on the local potenis shown in Fig. 2. To extract the asymptotic valge.
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0.55 ——

ports the conclusion that disorder is an irrelevant per-
turbation at the critical point. In addition, we have also
considered anisotropic critical models for whiéh+ 6..

In this case, using the procedures described above, we
have calculated the conductan¢es,) and({G,,) (periodic

] boundary conditions are always imposed in the transverse
] directions). The results are summarized in Table I. Al-
though the critical values diG,,). and(G,,). depend on

the amount of anisotropy, their geometric me#@,.G,,
does not. The latter stays close to the valug®@f. ob-
tained for the isotropic system. Thus we conclude that
there exists ainiversalcritical two-terminal conductance

r 1 (G)e = (0.58 = 0.03)e?/h.

030 ittt The fact that our value fo(G). deviates fromo ¢, =

20 40 60 80 100 120 1, o X
L 5(e?/h) asserted by KLZ is, as far as we can see, real.

FIG. 2. The finite-size dependence of the critical conductancyowever’. as was pointed out at the l_Jeglnnlng of this
at the isotropic critical point. The solid line is the fit to Paper, it is not clear how the two-terminal conductance
the scaling form in Eqg. (5) in the text withG). = (0.58 = relates to the conductivity tensor derived from the Kubo
0.03)e*/h and yi, = 0.55 = 0.15. The inset shows the be- formula in systems without contacts.
?(%golr gf 8h0eog;)(n(guzt)§nceglutﬁtuatlons, which Q'Vl(_@%ft’f)zﬂ = We now turn to the central moments of the critical con-
difnensTon}- . ¢*/h)” and the same renormalization group ,tance described by the scaling forms given in Eq. (2).
" In the inset of Fig. 2 we plotF, = ((6G)?)./(e*/h)?

for the isotropic network (i.e.f = 6.) as a function

and the exponent;, at the critical point, we expand Of the system size fo. X L samples. Following a

0.50

045 |

<G(L)>[e*/h]

<(3G)*(L)>[e*h]

0.35

the scaling function in Eq. (1) according $6(0,x,1) =  similar finite-size scaling analysis as given in Eq. (5),
F(0,0,1) + F'(0,0, )x for small x. Thus, for large We extract J5(0,0,1) = 0.081 = 0.005 and the same
system size., we should have yir = 0.55 = 0.15 to be the renormalization group

_ Vi dimension of the leading irrelevant operator. The
<G(L)>C - <G>C + T’(Os O’ I)Agan Y ’ (5) .
where(G), — F(0.0.1)¢2/h. From the data shown in dependence of(8G)?). on the degree of anisotropy

; . (i.,e., 8 # 6.) is shown in Tablel. Thus we con-
Fig. 2, we obtain(0,0,1) = 0.58 £ 0.03 and yir = qe ((6G)*). = (0.081 *+ 0.005) (¢?/h)*>. Repeating
0.55 = 0.15. We have also studied the aspect-ratio

the procedure for the fourth and the sixth moments
1(:iir)1VOI/L) dependence dfG).. In the context of Eq. (1) we gives the results((6G)*). = (0.013 = 0.003) (¢2/h)*,

((6G)%). = (0.0026 *+ 0.005) (¢?/h)®, and with less
F0,0,W/L) = cre " (W/L), (6)  accuracy((8G)®). = (8 = 2) X 107*(¢2/h)®. In Fig. 3,
with ¢; = 0.72 = 0.03 andc, = 0.22 = 0.02. The ex- we present the data obtained for even-integer, as well as
ponential factor is a precursor to the conductance behawdd-integer and noninteger, central moments. Thie
ior in a quasi-one-dimensional system with>> W. order moments interpolate betwegé G)"), = avetn’

In order to verify the universality ofG). and to check at small n and {((8§G)"). = bn# at large n, where
that the —y;, is indeed the renormalization group di- (a,v,u, b, 8) = (0.80,0.28,0054,4.65,4.18) are all
mension of the least-irrelevant operator, we have studiedniversal constants. The smallbehavior shows that
network models with various forms of node parameter disthe critical conductance obeys a log-normal distribution.
order corresponding to random distributionséfalues On the other hand, the largebehavior, indicative of a
with the same mediaf\.. The results are consistent within broad distribution, is purely empirical. The latter should
the error bars with those obtained above. This further supbe contrasted to the behavior in mesoscopic disordered

TABLE I. Ensemble-averaged conductances and conductance fluctuations at the critical points of the igbtrogio and the
anisotropic(d # 6.) models. The units are? /h for G and(e?/h)? for (§G)?. Error estimates in the last digits are given in paren-
thesis.

0 Gxx ny vV Gxx ny (anx)z (any)2 vV (6Gxx)2(5ny)2
0. 0.58(3) 0.58(3) 0.58(3) 0.081(5) 0.081(5) 0.081(5)
0.84 0.64(3) 0.53(3) 0.58(3) 0.081(5) 0.084(5) 0.082(5)
0.80 0.75(3) 0.47(3) 0.59(3) 0.080(5) 0.086(3) 0.082(4)
0.75 0.88(3) 0.43(3) 0.62(4) 0.075(5) 0.083(5) 0.079(5)
0.70 1.04(3) 0.30(3) 0.56(4) 0.079(6) 0.079(5) 0.079(6)
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FIG. 3. The behavior of theith order central moments of

the conductance distribution which interpolates between the
exponential and the power-law behaviors (dashed lines) in the

small and large: limits as described in the text.

metals, where thg2 + ¢) expansion in the diffusive
regime predicts nonuniversal moments for langi9].

We now compare our results with experimental find-

ings. This comparison must be made under ths-

claimer that, so far, the understanding of the effects of
Coulomb interaction on the critical properties of the in-
First,

teger plateau transition is still incomplete [20].
we assumehat the two-terminal conductang€), is the

four-probe o€, measured experimentally. Second, from

data before publication. Z.W. acknowledges the support
of Research Corporation.
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