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Anyons and Chiral Solitons on a Line

U. Aglietti,! L. Griguolo,' R. Jackiw! S.-Y. Pi2 and D. Seminara
ICenter for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307

’Department of Physics, Boston University, Boston, Massachusetts 02215
(Received 19 June 1996

We show that excitations in a recently proposed gauge theory for anyons on a line in fact do not obey
anomalous statistics. On the other hand, the theory supports novel chiral solitons. Also we construct a
field-theoretic description of lineal anyons, but gauge fields play no role. [S0031-9007(96)01685-7]

PACS numbers: 71.10.Pm, 05.30.—d

A (nonrelativistic) field theoretic description for the Herex = (h?/mc)% is dimensionless. (We retain physi-
quantum mechanics of planar particles with unconveneal constantse is the light velocity, which plays no role in
tional statistics—anyons—makes use of a Chern-Simonthe following.) Eliminating the andA , fields decouples
gauge field in a second quantized formalism. Recentlghem completely, in the sense that the phasélomay
there has appeared in these pages an article offeringlee adjusted so that the interactions of tirefield are
similar description for particles on a line [1]. However, solely determined by, and particle statistics remain un-
the claimed results are incorrect; apparently inattention taffected [2].
signs has led to error. [We observe here an interesting pattern: dimensional

In this Letter, we analyze the model of Ref. [1]. We reduction of L+ in (1) and V « p2, with respect
present an alternative nonrelativistic field theory, whichto space,results in a completely integrable system on
succeeds in describing lineal anyons, but is not a gaugd + 1)-dimensional space-time: the nonlinear, cubic
theory. Finally we show that the model of Ref. [1], Schrddinger equation. On the other hand, reduction with
though failing to achieve its announced goal, possessegspect tatime results in a completely integrable system
an interesting and novel soliton structure. in two spatial dimensions (provided the cubic nonlinearity

(A) A nonrelativistic gauge field theory that leads is of definite strength): the Liouville equation [3].]
to planar anyons is the nonlinear Schrodinger equation, In order to make the vector potenti&), and theB field
gauged by a Chern-Simons field and governed by thedynamically active, thereby allowing th# particles to

Lagrange density interact even in the absence ©f we include a kinetic
| term for B, which could be taken in the Klein-Gordon
Loy = e €PYALFp, + iV (9, + iAg)V form. However, we prefer a simpler expression that de-
K

) scribes “chiral” Bose fields, propagating in only one direc-
h? ) 2 tion, whose Lagrangian density is proportionatt@B’ —
~ o ; |(0; + iAW" = V(p), (1) vB'B’ [4] (dot/prime indicate differentiation with respect
. ' to time/space). Here is a velocity and the consequent
p =¥ equations of motion for this kinetic term (without further

Here ¥ is the Schrodinger quantum field, giving rise interaction) are solved by = B(x + wvr) (with suitable
to charged bosonic particles after (second) quantizatiofoundary conditions at spatial infinity), describing propa-
A, possesses no propagating degrees of freedom; gation with vglocnyiv. Notg thatBB’ is not invariant
can be eliminated leaving a statistical Aharanov-Bohndainst a Galileo transformation, which is a symmetry of
interaction between the particlesv describes possible L +1)and ofB’B": performing a Galileo boost aBB’ with
nonlinear self-interactions, e.g/,(p) « p? for the cubic  velocity & gives rise tov B'B’, effectively boosting the
Schrédinger equation. parameter bys. Consequently one can drop the&’B’
When analyzing the lineal problem, it is natural to con-contribution to the kineti@ Lagrangian, thereby selecting
sider a dimensional reduction of (1), by suppressing deto work in a global “rest frame.” Boosting a solution in
pendence on the second spatial coordinate and renamifi@gs rest frame then produces a solution to the theory with
A, as(mc/R?)B. In this way one is led to #-F gauge aB'B’ term.
theory, described by the Lagrange density In view of the above, we choose tekinetic Lagrange
density to be

1
L = —Be*'F,, + iiV*(9; + iAy)¥ .
() = 50 BE Fuy + iRY7(0; + ido) Ly==1pp 3)
h? 5  mc? d
- %l(ax +iA)Y]" - S Bp —V(P).  and the total Lagrange density is
(2) L =Lp+ Loty 4)
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It is still possible to remove the, and B fields by We may solve Eq. (8). The theory is time- and space-
a Hamiltonian reduction as described in Ref. [5], and bytranslation invariant, so one can separate the time and
phase redefinition off. Once this is done, one is left center-of-mass coordinates
with the Lagrangian

Yt x1,x0) = e EMIEIDOED 2y (0 — x5).(9)
L= f dx inV*¥ — H (5) The wave function for relative motion satisfies
2 € — K292 + L hik?8(x) ’ u(x) = Eu(x). (10)
H=-- dx IT°11, (6) m x 2 '
m
=0, +i’p)V. ) The presence of the total momentm_’nvividly demqn—
strates the absence of Galileo invariance. Explicit solu-
For simplicity, V has been omitted. tion requires regulating th& function, to give meaning to

Quantization is straightforward? and ¥* are conju-  §(x)8(x). Once this is done, one finds a free odd solution
gates; when the Hamiltonian is taken in the form (6), : 9.2 )
which is Hermitian butnot normal ordered, one de- u-(x) = sin kx, h°k” =mE — P7/4=0, (11a)
rives the following Schrodinger equation for the two-bodywhile the even solution reads
wave functiony (r; x1, x):

us(x) = sinklx|; (11b)
1
Y(t;x1,x7) = E@W(t,m)‘l’(l,m) 12), (8a) i.e., there is total reflection withr phase shift, and no
transmission. Evidently the odd solution sees no poten-
. B2 (1 » 2 tial, while the even one moves in an effective potential
iho = m — 0y, £ k°6(x1 — x2) ) ,
miL 1 P 2h° 6(x
Veffcctive(x) = — + — Q . (12)
4m m x|

2
+ [L Ay, k28(x, — xl):| }zp (8b)
! Note that the coupling strengtk has disappeared. Al-

This is the theory presented in Ref. [1]. It is in the ternatively, we may recognize the wave functions (11a)
subsequent analysis that the author goes wrong: Hend (11b) as solutions to the Schrédinger equation with
claims that the interaction with the “vector potential” a §-function potential, in the limit that its strength be-
+hKk>8(x; — x2) can be removed by redefining the wave comes infinite. Both from (10) and (12) we see that the
function ¢ with a step-function phasg = Je*< =% interaction is repulsive and there are no bound states; see,
But this is incorrect: A phase redefinition can remove thehowever, Sec. C below.
potential from the “1” kinetic term or from the “2” kinetic (B) The gauge theoretic model of Ref. [1] fails to
term, but not from both. Indeed removing theunction  describe particles with arbitrary statistics. We now give
in one term inserts it with theamesign in the other term. a quantum field theory that does the job, but it is not a
This is as it should be: We have already remarked that thgauge theory.
theory is not Galileo invariant. More specifically, a two- The quantum mechanical description is well known [7]:
body vector potential is Galileo invariant only if it is an odd It makes use of the scale-invariahtx? potential, which
function [6], while thes function in (8) is even. Certainly may also be represented with the help of an exchange
one cannot transform a Galileo-noninvariant equation to @peratorR in a “covariant” derivative [8]. The two-body

noninteracting, Galileo-invariant one. | equation reads
BT 1 j 2 1 ' 2
iho i (t; x1,x2) = —K— dy, + = R) + <—. Oy + — R) }ﬂ(t;chz), (13)
2m\ i X1 — X3 i Xo — X1

whereRf (x;,x,) = f(x2,x;). Hence acting on even Wavle (t, x) = [ax + V] dy Lp(,,y)}p(t’ x). (15)
functions (13) gives X =y

K2 2v(v — 1)

ihop = _[_9)2(1 B ai n }p. (14) This is not a gauge-covariant derivative; being real,

2m (x1 — x2)2 [dyp(t,y)/(x — y) is not a gauge connection. Note

(A similar expression is gotten with odd wave functions.)t€ Hami.ltonir?n (6) isnot normal ordf.ered, but one can
Note that the covariant derivatives in (13) commute, buf €rderf: with Il given by (15), one finds

the interaction cannot be removed, since it is equivalent 2 A
to (14). H = %<[ dxV'v' + v(v — 1)
For a field-theoretical description of the many-body
problem, we use a Lagrangian and Hamiltonian as in (5), v /’ drdy p(t,x)p(t,y) :> (16)
(6) with (x —y)2 '
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This is precisely the field theoretic description of (14).and becomes an integrable nonlinear Schrédinger equa-

[The term involving six¥ fields vanishes by symmetry, tion with nonlinearity¥2i % 3, ¥ [10]. However, the

provided no attention is paid to singularities at coincidentsplitons are no linger chiral.]

pointsx; = x;. Ifa principal value prescription is posited,  |nfluenced by the known solutions to (23), we seek a

one would use the identit?xlva%Z + 2 permutations one-soliton solution to (22) of the form

,: 7725();2; y)8(x —31) and H vyould acquire the addi- W = e—i(wt—kx)\/ﬁ (24)

tion 5 5~ [dx : p3(t,x) :, which leads to three-body

é-function interactionss 6(x; — x;)8(x; — x) that may With (24)

be ignored when the singular coincident-point behavior of ) k

wave functions is specified.] J =P, v= (25)
(C) We now return to the model of Ref. [1] and examine

it as a classical field theory. The equation of motion thaS® that our E2q. (22) coincides with (23) whenis set
follows from (5)—(7) reads equal tox2hk“v. For positivel, (23) possesses a single-

) soliton solution. In our cas@2/i«? always has a definite
iho,W = _ﬁ_(ax + ii2p)P2 W * iV (17) sign, depending on the initial cho!ce of sigr_1 in (3). Then
2m (22) also possesses a single-soliton solution, proviged
is chosen so thak2/ix?v is positive. It is seen that the
soliton of the Schrédinger equation (22), with a current
. h . .9 — .2 % nonlinearity, always moves in one direction (determined by
= — -+ — ’
1= 2im (V0 = i p)W = W0 = ik p) W] the sign ofv)—it is a chiral soliton. This is in contrast to
(18)  the usual Schrédinger equation (23), with a charge-density
nonlinearity, whose solitons can move on a line in both

where the current is given by

and satisfies a continuity equation wish

. ., directions.
p+Jj=0. (19) Henceforth, for definiteness, we take the lower sign and
Next we redefine thd” field by k > 0; then the soliton solution exists for positive and
W(r,x) = i [ P gy ) (20) takes the profile
(the lower limit is immaterial, as it affects only the phase Ysoliton = iei(mv/h)(xfut)l h @ .
of ¢) so that sonton k \ 2mv cosha(x — vt)

(26)

Here u = w/k and a? = (m*v*/F*>) (1 — 2u/v) > 0,
which is required to be positive, i.e,< v /2.

ihop(t,x) + ﬁK2]xdy p(t,y)(t, x)

2
__¥ " (t,x) + Ecj(, )t x). (21) The soliton’s dynamical parameters may be evaluated
2m as follows. Setting
But the integral on the left side may be evaluated with the
help of (19), and taken to the right, leading to our final N = f dxp, (27a)
equation, which is a Schroédinger equation witwarent _
() nonlinearity: we find
h? ha 1
ihd iy = “om J" * 2EK . Nioliton = oy F(l — 2u/v)'% (27b)
22
) h . . The field energy, in terms of the rephased figlis
J = S = ). % phased 1o
1 hz ®/ g/
This is to be contrasted with the familiar nonlinear E= om ] dx i (282)
Schrddinger equation, where the nonlinearity involves the
charge density p): and with the solution (26) one has
1 2
h? Esoliton = 3Mv~, 28b
ihdp = —— " — Apyp. (23) lit 2 (28b)
2m where
Equation (22) is similar to “derivative nonlinear Schro- M = mN(l + %K4N2)_ (29)

dinger equations” [with nonlinearity,(p) or pd,¥]. . . .
But unlike these, our equation apparently is not Com_The field momentum has an unconventional form, owing

pletely integrable [9]. [If instead of omitting/(p) from  tO the lack of Galileo invariance

(2), .as we have done here, we Ch00%€(4p) = . -
— 1K 53 Eq. (17) acquires the extra terms - p2w P = f dx (mj + hk"p”) (30a)
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giving with (26) M= 2m (37)
T A
Pyotiton = M . (30b) I«
On the other hand, if Eq. (29) is to be modified in the same
way that one-loop quantum effects modify formulas for the
cubic Schrédinger equation [11], we should replace (29) by

We see from these expressions, which imply

v
Esoliton = 7 Psoliton , (31) X
) o M emiclassical = mN + ng4(N3 - N) (383)
that the soliton’s characteristics are those of a nonrela-
tivistic particle of mass\, moving with velocityv and  For N = 2 this gives
composed ofV “constituents.” While the phase veloc-

ity u is arbitrary, the group velocity must be positive Memictassicat = 2m(1 + &%), (38b)
and exceeQu. ] ) ) )
Whenv is negative there exists a “kink” solution which agrees with (37) at “weak coupling,” i.e., small
| - g hA_\.I(t]lhough expl;_cn solutlortlsl,( of theﬂ\gbodzy guantum
e i(mu/R) (x—ur) L _ chrédinger equation are not known f¥r> 2, one may
Yok = e k \ 2m|v| B tanhBlx = vr), establish perturbatively ir that (38a) is consistent with
(32) the quantum bound states. Details will be presented
] elsewhere.
where nows? = —(m?v?/2h%) (1 + 2u/|v|) > 0, which

o . This work is supported in part by funds provided by
must be positive, i.eu < v/2. ¢iin interpolates between he .S, Department of Energy (DOE) under Contracts

the two “vacua” No. DE-FC02-94ER40818, No. DE-FG02-91ER40676,
_ 8 s and by INFN (Instituto Nazionale di Fisica Nucleare,
Pyacoum = Te'V/ ””""“”7 bl (33)  Frascati, Italy).

Because/yi, does not fall off at large distances, the kink’s
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Semiclassical quantization of our solutions remains an 1996, propose a different, dynamically motivated reduc-
open problem. We note that the solutions are neither g‘)”j WE_'Ch 'egdsst\‘(”g? (P:ﬁlogeRro-SuLtgﬁeL[IazngdBQnofgegl).o.
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