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Anyons and Chiral Solitons on a Line
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We show that excitations in a recently proposed gauge theory for anyons on a line in fact do not obe
anomalous statistics. On the other hand, the theory supports novel chiral solitons. Also we construc
field-theoretic description of lineal anyons, but gauge fields play no role. [S0031-9007(96)01685-7]
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A (nonrelativistic) field theoretic description for th
quantum mechanics of planar particles with unconve
tional statistics—anyons—makes use of a Chern-Sim
gauge field in a second quantized formalism. Recen
there has appeared in these pages an article offerin
similar description for particles on a line [1]. Howeve
the claimed results are incorrect; apparently inattention
signs has led to error.

In this Letter, we analyze the model of Ref. [1]. W
present an alternative nonrelativistic field theory, whi
succeeds in describing lineal anyons, but is not a ga
theory. Finally we show that the model of Ref. [1
though failing to achieve its announced goal, posses
an interesting and novel soliton structure.

(A) A nonrelativistic gauge field theory that lead
to planar anyons is the nonlinear Schrödinger equat
gauged by a Chern-Simons field and governed by
Lagrange density

Ls211d ­
1

4k
eabgAaFbg 1 ih̄Cps≠t 1 iA0dC

2
h̄2

2m

2X
i­1

js≠i 1 iAidCj2 2 V srd , (1)

r ; CpC .

Here C is the Schrödinger quantum field, giving ris
to charged bosonic particles after (second) quantizat
Am possesses no propagating degrees of freedom
can be eliminated leaving a statistical Aharanov-Boh
interaction between the particles.V describes possible
nonlinear self-interactions, e.g.,V srd ~ r2 for the cubic
Schrödinger equation.

When analyzing the lineal problem, it is natural to co
sider a dimensional reduction of (1), by suppressing
pendence on the second spatial coordinate and renam
A2 as smcyh̄2dB. In this way one is led to aB-F gauge
theory, described by the Lagrange density

Ls111d ­
1

2k
BemnFmn 1 ih̄Cps≠i 1 iA0dC

2
h̄2

2m
js≠x 1 iAxdCj2 2

mc2

2h̄2 B2r 2 V srd .

(2)
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Herek ; sh̄2ymcdk is dimensionless. (We retain physi-
cal constants:c is the light velocity, which plays no role in
the following.) Eliminating theB andAm fields decouples
them completely, in the sense that the phase ofC may
be adjusted so that the interactions of theC field are
solely determined byV , and particle statistics remain un-
affected [2].

[We observe here an interesting pattern: dimension
reduction of Ls211d in (1) and V ~ r2, with respect
to space,results in a completely integrable system on
s1 1 1d-dimensional space-time: the nonlinear, cubi
Schrödinger equation. On the other hand, reduction wi
respect totime results in a completely integrable system
in two spatial dimensions (provided the cubic nonlinearit
is of definite strength): the Liouville equation [3].]

In order to make the vector potentialAm and theB field
dynamically active, thereby allowing theC particles to
interact even in the absence ofV , we include a kinetic
term for B, which could be taken in the Klein-Gordon
form. However, we prefer a simpler expression that de
scribes “chiral” Bose fields, propagating in only one direc
tion, whose Lagrangian density is proportional to6 ÙBB0 2

yB0B0 [4] (dot/prime indicate differentiation with respect
to time/space). Herey is a velocity and the consequent
equations of motion for this kinetic term (without further
interaction) are solved byB ­ Bsx 6 ytd (with suitable
boundary conditions at spatial infinity), describing propa
gation with velocity7y. Note that ÙBB0 is not invariant
against a Galileo transformation, which is a symmetry o
Ls111d and ofB0B0: performing a Galileo boost onÙBB0 with
velocity ỹ gives rise toỹB0B0, effectively boosting they
parameter byỹ. Consequently one can drop theyB0B0

contribution to the kineticB Lagrangian, thereby selecting
to work in a global “rest frame.” Boosting a solution in
this rest frame then produces a solution to the theory wi
a B0B0 term.

In view of the above, we choose theB-kinetic Lagrange
density to be

LB ­ 6
1
h̄

ÙBB0 (3)

and the total Lagrange density is

L ­ LB 1 Ls111d . (4)
© 1996 The American Physical Society
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It is still possible to remove theAm and B fields by
a Hamiltonian reduction as described in Ref. [5], and
phase redefinition ofC. Once this is done, one is lef
with the Lagrangian

L ­
Z

dx ih̄Cp ÙC 2 H , (5)

H ­
h̄2

2m

Z
dx PpP , (6)

P ; s≠x 6 ik2rdC . (7)

For simplicity,V has been omitted.
Quantization is straightforward:C and Cp are conju-

gates; when the Hamiltonian is taken in the form (6
which is Hermitian butnot normal ordered, one de
rives the following Schrödinger equation for the two-bod
wave functioncst; x1, x2d:

cst; x1, x2d ;
1

p
2

k0jCst, x1dCst, x2d j2l , (8a)

ih̄≠tc ­
h̄2

2m

Ω∑
1
i

≠x1 6 k2dsx1 2 x2d
∏2

1

∑
1
i

≠x2 6 k2dsx2 2 x1d
∏

2
æ
c . (8b)

This is the theory presented in Ref. [1]. It is in th
subsequent analysis that the author goes wrong:
claims that the interaction with the “vector potentia
6h̄k2dsx1 2 x2d can be removed by redefining the wav
function c with a step-function phasec ­ c̃e7ik2usx12x2d.
But this is incorrect: A phase redefinition can remove t
potential from the “1” kinetic term or from the “2” kinetic
term, but not from both. Indeed removing thed function
in one term inserts it with thesamesign in the other term.
This is as it should be: We have already remarked that
theory is not Galileo invariant. More specifically, a two
body vector potential is Galileo invariant only if it is an od
function [6], while thed function in (8) is even. Certainly
one cannot transform a Galileo-noninvariant equation t
noninteracting, Galileo-invariant one.
e
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We may solve Eq. (8). The theory is time- and spac
translation invariant, so one can separate the time a
center-of-mass coordinates

cst; x1, x2d ­ e2isEty h̄deisPy h̄d sx11x2dy2usx1 2 x2d . (9)

The wave function for relative motion satisfies

1
m

Ω
2h̄2≠2

x 1

∑
P
2

6 h̄k2dsxd
∏

2
æ
usxd ­ Eusxd . (10)

The presence of the total momentumP vividly demon-
strates the absence of Galileo invariance. Explicit so
tion requires regulating thed function, to give meaning to
dsxddsxd. Once this is done, one finds a free odd solutio

u2sxd ­ sin kx, h̄2k2 ­ mE 2 P2y4 $ 0 , (11a)

while the even solution reads

u1sxd ­ sin kjxj ; (11b)

i.e., there is total reflection withp phase shift, and no
transmission. Evidently the odd solution sees no pote
tial, while the even one moves in an effective potential

Veffectivesxd ­
P2

4m
1

2h̄2

m
dsxd
jxj

. (12)

Note that the coupling strengthk has disappeared. Al-
ternatively, we may recognize the wave functions (11
and (11b) as solutions to the Schrödinger equation w
a d-function potential, in the limit that its strength be
comes infinite. Both from (10) and (12) we see that th
interaction is repulsive and there are no bound states; s
however, Sec. C below.

(B) The gauge theoretic model of Ref. [1] fails to
describe particles with arbitrary statistics. We now giv
a quantum field theory that does the job, but it is not
gauge theory.

The quantum mechanical description is well known [7
It makes use of the scale-invariant1yx2 potential, which
may also be represented with the help of an exchan
operatorR in a “covariant” derivative [8]. The two-body
equation reads
ih̄≠tcst; x1, x2d ­
h̄2

2m

∑µ
1
i

≠x1 1
in

x1 2 x2
R

∂
2

1

µ
1
i

≠x2 1
in

x2 2 x1
R

∂
2
∏

cst; x1, x2d , (13)
.
u

y

al,
te
n

whereRfsx1, x2d ­ fsx2, x1d. Hence acting on even wav
functions (13) gives

ih̄≠tc ­
h̄2

2m

∑
2≠2

x1
2 ≠2

x2
1

2nsn 2 1d
sx1 2 x2d2

∏
c . (14)

(A similar expression is gotten with odd wave functions
Note that the covariant derivatives in (13) commute, b
the interaction cannot be removed, since it is equival
to (14).

For a field-theoretical description of the many-bod
problem, we use a Lagrangian and Hamiltonian as in (
(6) with
)
t

nt

),

Pst, xd ­

∑
≠x 1 n

Z
dy

1
x 2 y

rst, yd
∏

Cst, xd . (15)

This is not a gauge-covariant derivative; being reR
dy rst, ydysx 2 yd is not a gauge connection. No

the Hamiltonian (6) isnot normal ordered, but one ca
reorderH: with P given by (15), one finds

H ­
h̄2

2m

µ Z
dx Cp0C0 1 nsn 2 1d

3
Z

dx dy
: rst, xdrst, yd :

sx 2 yd2

∂
. (16)
4407
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This is precisely the field theoretic description of (14
[The term involving sixC fields vanishes by symmetry,
provided no attention is paid to singularities at coincide
pointsxi ­ xj. If a principal value prescription is posited
one would use the identityP 1

x2y P
1

x2z 1 2 permutations
­ p2dsx 2 yddsx 2 zd and H would acquire the addi-
tion h̄2

2m
n2p2

3

R
dx : r3st, xd :, which leads to three-body

d-function interactions~ dsxi 2 xjddsxi 2 xkd that may
be ignored when the singular coincident-point behavior
wave functions is specified.]

(C) We now return to the model of Ref. [1] and examin
it as a classical field theory. The equation of motion th
follows from (5)–(7) reads

ih̄≠tC ­ 2
h̄2

2m
s≠x 6 ik2rd2C 6 h̄k2jC , (17)

where the currentj is given by

j ­
h̄

2im
fCps≠x 6 ik2rdC 2 Cs≠k 7 ik2rdCpg

(18)

and satisfies a continuity equation withr:

Ùr 1 j0 ­ 0 . (19)

Next we redefine theC field by

Cst, xd ­ e7ik2
Rx

dyrst,yd
cst, xd (20)

(the lower limit is immaterial, as it affects only the phas
of c) so that

ih̄≠tcst, xd 6 h̄k2
Z x

dy Ùrst, ydcst, xd

­ 2
h̄2

2m
c 00st, xd 6 h̄k2jst, xdcst, xd . (21)

But the integral on the left side may be evaluated with th
help of (19), and taken to the right, leading to our fina
equation, which is a Schrödinger equation with acurrent
s jd nonlinearity:

ih̄≠tc ­ 2
h̄2

2m
c 00 6 2h̄k2jc ,

j ­
h̄

2im
scpc 0 2 ccp0d .

(22)

This is to be contrasted with the familiar nonlinea
Schrödinger equation, where the nonlinearity involves t
charge densitysrd:

ih̄≠tc ­ 2
h̄2

2m
c 00 2 lrc . (23)

Equation (22) is similar to “derivative nonlinear Schrö
dinger equations” [with nonlinearity≠xsrcd or r≠xc].
But unlike these, our equation apparently is not com
pletely integrable [9]. [If instead of omittingV srd from
(2), as we have done here, we chooseV srd ­
2

1
2

h̄2k4

m r3, Eq. (17) acquires the extra term2 3
2

h̄2k4

m r2C
4408
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and becomes an integrable nonlinear Schrödinger eq
tion with nonlinearity72i h̄2k4

m r≠xC [10]. However, the
solitons are no linger chiral.]

Influenced by the known solutions to (23), we seek
one-soliton solution to (22) of the form

c ­ e2isvt2kxdpr . (24)

With (24)

j ­ yr, y ;
h̄k
m

, (25)

so that our Eq. (22) coincides with (23) whenl is set
equal to72h̄k2y. For positivel, (23) possesses a single-
soliton solution. In our case72h̄k2 always has a definite
sign, depending on the initial choice of sign in (3). The
(22) also possesses a single-soliton solution, providedy

is chosen so that72h̄k2y is positive. It is seen that the
soliton of the Schrödinger equation (22), with a curren
nonlinearity, always moves in one direction (determined b
the sign ofy)—it is a chiral soliton. This is in contrast to
the usual Schrödinger equation (23), with a charge-dens
nonlinearity, whose solitons can move on a line in bot
directions.

Henceforth, for definiteness, we take the lower sign an
k . 0; then the soliton solution exists for positivey, and
takes the profile

csoliton ­ 6eismyy h̄d sx2utd 1
k

s
h̄

2my

a

coshasx 2 ytd
.

(26)

Here u ; wyk and a2 ; sm2y2yh̄2d s1 2 2uyyd . 0,
which is required to be positive, i.e.,u , yy2.

The soliton’s dynamical parameters may be evaluat
as follows. Setting

N ­
Z

dx r , (27a)

we find

Nsoliton ­
h̄a

k22my
­

1
k2 s1 2 2uyyd1y2. (27b)

The field energy, in terms of the rephased fieldc is

E ­
h̄2

2m

Z
dx cp0c 0 (28a)

and with the solution (26) one has

Esoliton ­
1
2 My2, (28b)

where

M ­ mNs1 1
1
3 k4N2d . (29)

The field momentum has an unconventional form, owin
to the lack of Galileo invariance

P ­
Z

dx smj 1 h̄k2r2d (30a)
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Psoliton ­ My . (30b)

We see from these expressions, which imply

Esoliton ­
y

2
Psoliton , (31)

that the soliton’s characteristics are those of a nonre
tivistic particle of massM, moving with velocityy and
composed ofN “constituents.” While the phase veloc
ity u is arbitrary, the group velocityy must be positive
and exceed2u.

Wheny is negative there exists a “kink” solution

ckink ­ 6eismyy h̄d sx2utd 1
k

s
h̄

2mjyj
b tanhbsx 2 ytd ,

(32)

where nowb2 ­ 2sm2y2y2h̄2d s1 1 2uyjyjd . 0, which
must be positive, i.e.,u , yy2. ckink interpolates between
the two “vacua”

cvacuum ­ 6eismyy h̄d sx2utd b

k

s
h̄

2mjyj
. (33)

Becauseckink does not fall off at large distances, the kink’
dynamical characteristics, corresponding to (27a)–(30
diverge. But if the kink’s energy and momentum ar
defined by subtracting the corresponding vacuum valu
one may still establish the relation

Ekink ­
y

2
Pkink . (34)

Semiclassical quantization of our solutions remains
open problem. We note that the solutions are neith
static nor periodic; hence new quantization techniqu
need to be developed. Here we observe the followin
If in the quantum theory one replaces the Hamiltonia
(6) by its normal ordered version, there are no infinitie
in the consequentN-body quantum mechanical problem
The two-body equation, for relative motion, reads inste
of (10)∑

2
h̄2

m
≠2

x 1
P2

4m
2

P
m

h̄k2dsxd
∏

usxd ­ Eusxd . (35)

Unlike (10), this possesses a bound state, with

E ­
P2

4m
s1 2 k4d , (36)

providedPym is positive. If Pym is taken proportional
to y, this condition is the same as that for the existence
the soliton. So we suspect that there is a relation betwe
the classical soliton and quantum bound states.

Justification for this conjecture may be seen from th
following argument. If in (36) we substitute (28b) an
(30b) we get
la-

-

s
b),
e
es,

an
er
es
g.
n
s
.
ad

of
en

e
d

M ­
2m

1 2 k4
. (37)

On the other hand, if Eq. (29) is to be modified in the sam
way that one-loop quantum effects modify formulas for the
cubic Schrödinger equation [11], we should replace (29) b

Msemiclassical ­ mN 1
1
3 mk4sN3 2 Nd . (38a)

For N ­ 2 this gives

Msemiclassical ­ 2ms1 1 k4d , (38b)

which agrees with (37) at “weak coupling,” i.e., small
k. Although explicit solutions of theN-body quantum
Schrödinger equation are not known forN . 2, one may
establish perturbatively ink that (38a) is consistent with
the quantum bound states. Details will be presente
elsewhere.
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