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Angular Momentum of Supersymmetric Cold Rydberg Atoms
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Semiunitary transformation is applied to discuss supersymmetrization of cold Rydberg atoms. In the
limit of vanishing kinetic energy the lowest angular momentum of the supersymmetric cold Rydberg
atom is37/2. A possible experimental verification is suggested. [S0031-9007(96)00109-3]
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Recently Baxter [1] showed that cold Rydberg atoms Cold Rydberg atom—The Lagrangian of the cold
can play an interesting role of realizable analogs of ChernRydberg atom with an atomic dipolé in electric and
Simons theory [2,3]. By choosing an atomic dipole of magnetic field is [1]

a cold Rydberg atom in Qlectric and magnetic field, and L = %MR,-R,- i %ge,-jR,-Rj _ %KR,-R,-, )

by an appropriate experimental arrangement the motion R

of the dipole is constrained to be planar and rotationallywhereM is the mass of the dipole, the electric fidldacts
symmetric, the Rontgen interaction takes on the form of aadially in the x-y plane,E; ~ —R; (i = 1,2), and the
Chern-Simons term [3]. By placing the dipole in a strongconstant magnetic fiel# aligns thez axis. The constant
magnetic field and in an appropriate optical trappingparametersy and K are proportional to the magnitude
field, the elimination of the kinetic energy term in the of the dipole moment and, respectively, magnetic and
Lagrangian could be achieved physically and Baxter [1klectric field dependente;; = —ex; = 1; €)1 = €3 =
showed that the canonical angular momentum spectrum. |n (1) the second ternége,;,-R,R,- takes on the form of

changes from one consisting of integers to one consistinghe Chern-Simons interaction. The Hamiltonian obtained
of positive half integers; thus in principle an experimentalfrom (1) is

verification of the Chern-Simons feature of fractional | 2k
angular momentum is allowed. H=— (P,- + ieinj) + —R;R;
Reference [4] showed evidence for a phenomenological M 2 2
supersymmetry in atomic physics. In SS QM the term 1 1 1 )
“supersymmetry” has nothing to do with spins at all, its - ﬁplpi + ﬁgeiiPin + EMQ RiR:,  (2)

meaning is just as that SS QM is represented by a pair of . P B
bosonic Hamiltonian& - andH ;. which are superpartners \;V:grtf]et?; cl?gr(l)glcal momentum, = MR; — 3g€iR;,
of the SS Hamiltonia#t/, = H- & H.,and SS chargé;, q y

0!, andH; satisfy SS algebra [5]. QO = (g*/4M* + K/M)">. (3)

In SS QM the form of the problem must be truly one |, (3) the dispersive “mass’ terma/2M comes from the

dimensional. For the one-dimensional system there is nBresence of the Chern-Simons term. By changing the
room to define the angular momentum; one cannot dis\'/ariablesR- P. to '
1y 1

cuss the relation of spectra of angular momenta between

the system and its superpartner. For the case of two-  Xa = (MQ/20,)'?R, — (1/2MQ w,)"/*P,,
dim_ensional Rydberg atoms angulqr momentum can be X, = (MQ/20,) 2R, + (1/2MQw,) 2P, , (43)
defined as an exterior product. This system can be re-

duced into two uncoupled one-dimensional systems, thus ~ Pa = (@a/2MQ)'?Py + (MQw,/2)'*R,,

the supersymmetriza_tion of its Hamiltonian and angular Py = (w,/2MQ)2P) — (MQwy/2)?R,, (4D)
momentum can be simultaneously performed by a semi-

unitary transformation (SUT) which will be defined later. Where

This for the first time allows in principle a verification of we =0+ g/2M, w, =Q — g/2M, (5)
the relation of spectra of angular momentum between
system and its superpartner. The results show that in t
limit of vanishing kinetic energy the angular momentum
spectrum of the SS cold Rydberg atom changes from on
consisting of integers to one consisting of positive half Ay = (120,)'?d/dX s + (wa/2R)?X,,
integers, with the lowest angular momentG/2; SUT . 1/2 1/2
destroys the lowest angular momentum state VjtB of Al =—=(1/20,) P/ dXa +(0a/20)' X,
the cold Rydberg atom. (¢ =a,b); (6)

e Hamiltonian is rewritten in the form of two uncoupled
armonic oscillators of unit mass and of frequencigs
gnd wy. Define
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the Hamiltonian (2) becomes vut =1, vtu=ataah'a=9. (16)
1 —_ — —_ —_ _
H=H, + Hy, Hy=lo.AlA, + 3) Notice thatA+A¢r(z '—E} )¢1(1 ), E(() '—0, E\ >0 for
(@ = a.b). (7) =1 so AtA is semipositive definite andAtA)™!
_ _ _ ’ o is singular. Thus we cannot use the operator identi-
If |nn) is an eigenfunction off, with eigenvaluet, = ties f(AA1)A = Af(AtA) andAt F(AAT) = F(ATA)AT; the
hwa(ne + 1/2) (@ = a,b), |na,np) = Ina)lnp) is an  operatorQ defined in (16) is not a unit operator. The op-
eigenfunction oH with eigenvalue eratorU defined in (15) which satisfies (16) is called semi-
Epon = hoa(ng + 3) + hoy(n, + 3), unitary [7]. Under this SUTH - is transformed intd7 -,
(ngvny = 0,1,2,...). (8) H. = UH-U". (17)
In two dimensions the canonical angular momentum ig(iorrespondingly;pr(z:) is transformed in'Ede,(f).+Notice
defined as an exterior product which is a scalar thatUyy = 0, Ulﬂ,(1+)1 = [E£+)1]‘1/2A¢,(1+)1 = :p,g ), with
J = €RiP; =1J4 — Jp, eigenvaluesE;(fr) = E,;)l (n=0,1,2,...). The ground

(+) (=) (=) . .
_ t 1 _ energy E, ' = E; ~ > 0; here E, ~ = 0 disappears in
Jo = h(AzAa +3) (a =ab). © e spectrum off,. Thus the SUT transforms the-)
BecausdH,J] = 0, Jis a constant of motion, antland  system into its superpartner systefw), which fully
H have common eigenfunctions,, n,). Notice thatJ, covers the results of SS QM.
andJ, have zero-point angular momentuiyi2. Because The operatoQ defined in (16) satisfies
of the cancellation ofi/2 between modesa and b, the
/ Q> =0. [Q.H]=0. (18)

eigenvalues of are integer multiples of,
. _ . _ Q is a projection operator, and its eigenvalug$q =
Jneny = Blta = np). - (nanp = 0.1,2,..).  (10) 0,1) are good quantum numbersQ and H_ have
SS QM—In one-dimensional SS QM a quantum sys-common eigenfunctions. Becaughj, = 0, Q¢ ;) =
tem is described by a pair of related bosonic Hamlltonlansgb,(ﬁ)l, we denote i) = [0,0), |¢n+)1> —n+ LD (n=

H- andH [5]: 0,1,2,...), which are common eigenstates &f- and

o — R d* VL) 1y Q The Hilbert spaceH is divided into two subspaces
S ) =L (11) H, and H,, consisting of eigenstatel®,0) and |n +

(=) 1, 1) with, respectively, eigenvalueg= 0 and 1,H =
Suppose the ground—s_tate wave funct@% (x) = olx) Hy ® H,. In the basis0.0y and|n + 1.1) Q = I —
of H_ is knpwn, consider only unbroken supersymmetrylo’ 0)(0,0], thus in the #{, subspace the operatdd
corresponding to a normalizable ground statg and reduces to a unit operator and the SUT reduces to a

adjust the ground-state energ)(f) = 0. Introducing the  ynitary transformation.

superpotential?’ (x) = —(/1/v/2)0/4o (a prime denotes  Now we compare a unitary transformation and a
d/dx), we haveV.(x) = W(x) = (1/¥2)W'(x). The  SUT. In quantum mechanics a unitary operator maintains
HamiltoniansH - can be factorized as all the physical properties of a quantum system. The
H_ = ATA, H, = AAT, (12)  situation is different for SUT. The main reason is that
SUT is a singular operator which readily appears in the

where structure of the projectoQ defined in (16). Because
hod hod of such singularities, SUT only partly maintains physical

A= V2 dx + W), AT = _ﬁ dx + W), properties of theg—) system. For example, it maintains

_ the complete relation oﬁb[), but does not maintain

[A,AT] = V2RW'(x). (13)  the orthogonality and normalization af ', and only

The eigenfunctionﬂ;,(f) andlp,(f) of H_ andH.,, respec- partly maintains the eigenvalues &f_. However, in

el ih ei | sEH dE(+) lated b the subspaceH; the SUT behaves just like a unitary
tlvey,(l/;nt e|?envaue n - andkn - are related by transformation. SUT transforms the-) system defined

En ' = Enl)l , (14a) in the full Hilbert space/{ into the (+) system defined

) _ () qm12 4, 0) _ in the subspacéH |, destroys the ground state Hf, but
Yn [Enai] FAda (0= 0.1.2...). (14D)  \1aintains all other physical properties of the) system
We find that the superpartner HamiltoniaAds and H - in the subspacé{,. This explains the legitimacy of the
can be related by a SUT [6]. Consider the operatolapplications of SUT to SS QM.

AAt. BecauseAatyl” = ESVulY B >0 (n = Supersymmetrization of cold Rydberg atomdlsing
0,1,2,...), AAT is positive definite, we can define SUT we can thoroughly study the supersymmetrization
aah-1)2 b atiaat-1/2 of cold Rydberg atoms. fle Hamiltonian (7) has two
U= (AAT)"/7A, U = AT(AAT) . (15)  modesa and b. We define the potentialV_(X) =

U andU' satisfy S wcar(G0EX2 — 3hw,), with the HamiltonianH— and
45
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the angular momenturd_ represented byi, and A}
defined in (6),

H_.=H_,+ H_,, H_,=loAlA, ® I,

H_, = howpl, ® AZA}, s (19)
Jo=Jog—Jop, J-u=hAlA, +3) ®1,
Ty = hl, ® (AJA, + 1), (20)

Because of the cancellation of the angular momenta
between modes and b the angular momenta and
J+ have the same spectrujﬁ) =h(ng, —ny) = ]nﬂ n, =
any integer multiple ofi. The (+) system still has the
same lowest eigenvalue as the) systemj(()I)) = j(()I)) =0.

Now we consider the interesting limit cag¢ — 0
discussed by Baxter [1]. In this case there are constraints
which should be carefully considered. The first equation

wherel, and I, are unit operators in the Hilbert spacesof (2) shows that the limit casé/ — 0 requires the

H, and H,, respectively, corresponding to modas
and b. The common eigenstates ¢f—- and J_ are

|na, np)— = |ng) Inp) with, respectively, eigenvalues
ESDh = Fwang + Rapny,
];(1( = h(ng + %) — h(n, + %)
(ng,np, = 0,1,2,..)). (21)
SUT is defined as
U=u,eU, U'=UeU,
= (AaAD) A, UL = Al (AAD)7?
(¢ = a,b), (22)
with
vut =1, vtu =0, (23)
where
0=0.®0Q Qu=AlAAD) A0 # 1,

(¢ = a,b).
Under SUT (22)H_ andJ_ are transformed into

(24)

H,=UH-U'=H,,+H.,, Hi,=hw,AAl ® I,
Hip = iwpl, ® ApAL, (25)
Jy =UI-UY = Jiy — Jis,
Tia = h(AAl @ T, + 21, ® 1),
Top = K(l, ® ApA} + 31, ® 1), (26)

Correspondingly, under SUT (22, n;)— is trans-
formed into Uln,,ny,)—. Notice that U|0,0)_ =0,
U|0,np)— =0, and U|n,,0)— = 0 which shows that the

states|0,0)—, |0,n,)-, and |n,,0)— are destroyed by
SUT Thus |ng, np)+ =Ulng +1,np +1)_ =
[Enﬂ+1En +1] VAulng + )= ® Aplny + 1)= (ng,np =
0,1,2,..). The common eigenstates df, and J.
are |na,nh>+ =Uln, + 1,n, + 1)_ with, respectively,
eigenvalues

E;(zjlzb hw,(ng + 1) + hop(n, + 1),

(+ 3 3

Joih = H(na + 3 = By + )

(ng,np =0,1,2,...). (27)
For the (+) system the ground stat,0), has energy
E(()I))zh(waanh):zﬁQ. Here the states|0,0)_,
|0, np)—, and |na,0>_ of H_ with energy Ej, =0,
E((),n;, Awpny, andEn 3) hw,n, disappear.

46

constraints
Ci = Pl' + gEinj/Z =0

We observe that the Poisson brackifs, C;} = ge;; #
0 [8], so that the Dirac brackets can be determined [9]

{R1,Pi}p = {R2,P2}p = z
{Ri,R2}p = —1/g, {P,Pa}p = —g/4. (29)

Other Dirac brackets oR; and P; are zero. The Dirac
brackets ofC; with any variablesR; and P; are zero;
thus (28) are strong conditions in the sense of Dirac
which can be used to eliminate the dependent variables.
Choosing the independent variabl&®;, P,), (28) fixes
the dependent variablés = —2P,/g, P, = gR;/2. In
the reduced phase space of the independent variables
(Ry, P1) the Hamiltonian (2) has the structure of a one-
dimensional harmonic oscillator
H= 2—KP2 + lKR2
g2 2
According to (29) the quantization condition of the
independent variables i§R;,P] = ih/2. Set R, =
q/\2, P, = p/\/—which leads tdg, p] = ik. Introduce
V_(q) = —m w?q® — %ﬁw where the effective mass*
and the frequency) are

m* = g*/2K,

(28)

(30)

w=K/g. (31)
Define
A = (h/2m*w)"?d/dq + (m"w/2)'q,
AT = —(1/2m* ®)'*d/dg + (m"w/20)'*q; (32)

we obtain from (30)

H = 20?¢® — m'hw)] = hwAtA
(33)
with eigenvalues
ES) = nho (n=0,1,2,..). (34)
Observe that if we rewrite (30) asd = (P} +

miwiRY)/2m, where the effective massiy = g2/4K

and the frequency, = 2K /g, we find that the frequency

w of (31) differs from that of the conventional harmonic
oscillator by a factor ofl /2. This is the representation of
the well-known fact that reduction to the reduced phase
space alters the symplectic structure [9].
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In the limit M — 0 the angular momentum is
J- = gRiR;/2 = h(ATA + J). (35)
The spectrum of — is a positive half-integer multiple of,

A = B+ D, n=0,1,2,..). (36)

the relation of angular momenta between the system
and(+) system. It is interesting to exploit further possible
applications of SUT in physics. (2) In the limit of vanish-
ing kinetic energy the lowest angular momentum of the SS
cold Rydberg atom i8//2. The suggested possible ex-

] ) ) perimental verification provides a crucial test of the idea
Comparing (33), (35) with (19), (20), we see that in theys gg QM.

limit M — 0 when the modd disappears, only the mode
a is maintained [1]. UsincA and AT defined in (32) we
constructU = (AAT)"1/24 which is a SUT. With such
a SUT, H_ in (33) andJ- in (35) are simultaneously
transformed into their superpartners

H, = UH_UT = hwAAT,

T = UI-Ut = R(aAt + ), (37)
with, respectively, spectra [3]
E = hon + 1),
=R +3/2)(n=0,1,2,..).  (38)

Comparing with the spectrum df_, the spectrum of ; is
also a positive half integer @, but starting fron8/7/2, the
lowest angular momentury2 of J_ is destroyed by SUT.
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