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Semiunitary transformation is applied to discuss supersymmetrization of cold Rydberg atoms.
limit of vanishing kinetic energy the lowest angular momentum of the supersymmetric cold Ry
atom is3h̄y2. A possible experimental verification is suggested. [S0031-9007(96)00109-3]
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Recently Baxter [1] showed that cold Rydberg ato
can play an interesting role of realizable analogs of Che
Simons theory [2,3]. By choosing an atomic dipole
a cold Rydberg atom in electric and magnetic field, a
by an appropriate experimental arrangement the mo
of the dipole is constrained to be planar and rotationa
symmetric, the Röntgen interaction takes on the form o
Chern-Simons term [3]. By placing the dipole in a stro
magnetic field and in an appropriate optical trappi
field, the elimination of the kinetic energy term in th
Lagrangian could be achieved physically and Baxter
showed that the canonical angular momentum spect
changes from one consisting of integers to one consis
of positive half integers; thus in principle an experimen
verification of the Chern-Simons feature of fraction
angular momentum is allowed.

Reference [4] showed evidence for a phenomenolog
supersymmetry in atomic physics. In SS QM the te
“supersymmetry” has nothing to do with spins at all,
meaning is just as that SS QM is represented by a pa
bosonic HamiltoniansH2 andH1 which are superpartner
of the SS HamiltonianHs  H2 © H1, and SS chargeQs,
Qy

s , andHs satisfy SS algebra [5].
In SS QM the form of the problem must be truly on

dimensional. For the one-dimensional system there is
room to define the angular momentum; one cannot
cuss the relation of spectra of angular momenta betw
the system and its superpartner. For the case of t
dimensional Rydberg atoms angular momentum can
defined as an exterior product. This system can be
duced into two uncoupled one-dimensional systems, t
the supersymmetrization of its Hamiltonian and angu
momentum can be simultaneously performed by a se
unitary transformation (SUT) which will be defined late
This for the first time allows in principle a verification o
the relation of spectra of angular momentum betwee
system and its superpartner. The results show that in
limit of vanishing kinetic energy the angular momentu
spectrum of the SS cold Rydberg atom changes from
consisting of integers to one consisting of positive h
integers, with the lowest angular momentum3h̄y2; SUT
destroys the lowest angular momentum state withh̄y2 of
the cold Rydberg atom.
0031-9007y96y77(1)y44(4)$10.00
s
n-
f
d
on
ly
a

g
g

]
m

ng
l
l

al

s
of

no
is-
en
o-
be
e-
us
r
i-

.

a
he

ne
lf

Cold Rydberg atom.—The Lagrangian of the cold
Rydberg atom with an atomic dipoled in electric and
magnetic field is [1]

L 
1
2 M ÙRi

ÙRi 1
1
2 geijRi

ÙRj 2
1
2 KRiRi , (1)

whereM is the mass of the dipole, the electric field$E acts
radially in the x-y plane,Ei , 2Ri (i  1, 2), and the
constant magnetic field$B aligns thez axis. The constan
parametersg and K are proportional to the magnitud
of the dipole moment and, respectively, magnetic a
electric field dependent.e12  2e21  1; e11  e22 
0. In (1) the second term1

2 geijRi
ÙRj takes on the form of

the Chern-Simons interaction. The Hamiltonian obtain
from (1) is

H 
1

2M

√
Pi 1

g
2

eijRj

!2

1
K
2

RiRi


1

2M
PiPi 1

1
2M

geijPiRj 1
1
2

MV2RiRi , (2)

where the canonical momentumPi  M ÙRi 2
1
2 geijRj ,

and the frequency

V  sg2y4M2 1 KyMd1y2. (3)

In (3) the dispersive “mass” termgy2M comes from the
presence of the Chern-Simons term. By changing
variablesRi, Pi to

Xa  sMVy2vad1y2R1 2 s1y2MVvad1y2P2,

Xb  sMVy2vbd1y2R1 1 s1y2MVvbd1y2P2 , (4a)

Pa  svay2MVd1y2P1 1 sMVvay2d1y2R2,

Pb  svby2MVd1y2P1 2 sMVvby2d1y2R2 , (4b)

where

va  V 1 gy2M, vb  V 2 gy2M , (5)

the Hamiltonian is rewritten in the form of two uncouple
harmonic oscillators of unit mass and of frequenciesva

andvb. Define

Aa  sh̄y2vad1y2dydXa 1 svay2h̄d1y2Xa,

Ay
a  2sh̄y2vad1y2dydXa 1 svay2h̄d1y2Xa

sa  a, bd ; (6)
© 1996 The American Physical Society
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the Hamiltonian (2) becomes

H  Ha 1 Hb, Ha  h̄vasAy
aAa 1

1
2 d

sa  a, bd . (7)

If jnal is an eigenfunction ofHa with eigenvalueEna


h̄vasna 1 1y2d sa  a, bd, jna, nbl ; jnal jnbl is an
eigenfunction ofH with eigenvalue

Ena ,nb
 h̄vasna 1

1
2 d 1 h̄vbsnb 1

1
2 d,

sna, nb  0, 1, 2, . . .d . (8)

In two dimensions the canonical angular momentum
defined as an exterior product which is a scalar

J  eijRiPj  Ja 2 Jb ,

Ja  h̄sAy
aAa 1

1
2 d sa  a, bd . (9)

BecausefH, Jg  0, J is a constant of motion, andJ and
H have common eigenfunctionsjna, nbl. Notice thatJa

andJb have zero-point angular momentum̄hy2. Because
of the cancellation ofh̄y2 between modesa and b, the
eigenvalues ofJ are integer multiples of̄h,

jna ,nb  h̄sna 2 nbd, sna, nb  0, 1, 2, . . .d . (10)

SS QM.—In one-dimensional SS QM a quantum sy
tem is described by a pair of related bosonic Hamiltonia
H2 andH1 [5]:

H6  2
h̄2

2
d2

dx2 1 V6sxd . (11)

Suppose the ground-state wave functionc
s2d
0 sxd ; c0sxd

of H2 is known, consider only unbroken supersymme
corresponding to a normalizable ground statec0 and
adjust the ground-state energyE

s2d
0  0. Introducing the

superpotentialW sxd  2sh̄y
p

2 dc 0
0yc0 (a prime denotes

dydx), we haveV6sxd  W2sxd 6 s1y
p

2 dW 0sxd. The
HamiltoniansH6 can be factorized as

H2  AyA, H1  AAy, (12)

where

A 
h̄

p
2

d
dx

1 W sxd, Ay  2
h̄

p
2

d
dx

1 W sxd,

fA, Ayg 
p

2h̄W 0sxd . (13)

The eigenfunctionsc
s2d
n andc

s1d
n of H2 andH1, respec-

tively, with eigenvaluesE
s2d
n andE

s1d
n are related by

E
s1d
n  E

s2d
n11 , (14a)

c
s1d
n  fEs2d

n11g21y2Ac
s2d
n11 sn  0, 1, 2, . . .d . (14b)

We find that the superpartner HamiltoniansH2 and H1

can be related by a SUT [6]. Consider the opera
AAy. BecauseAAyc

s1d
n  E

s1d
n c

s1d
n , E

s1d
n . 0 sn 

0, 1, 2, . . .d, AAy is positive definite, we can define

U  sAAyd21y2A, Uy  AysAAyd21y2. (15)

U andUy satisfy
is

-
s

y

r

UUy  I , UyU  AysAAyd21A ; Q . (16)

Notice thatA1Ac
s2d
n  E

s2d
n c

s2d
n , E

s2d
0  0, E

s2d
n . 0 for

n $ 1, so AyA is semipositive definite andsAyAd21

is singular. Thus we cannot use the operator ide
tiesfsAAydA  AfsAyAd andAyfsAAyd  fsAyAdAy; the
operatorQ defined in (16) is not a unit operator. The o
eratorU defined in (15) which satisfies (16) is called sem
unitary [7]. Under this SUTH2 is transformed intoH1,

H1  UH2Uy. (17)

Correspondingly,c
s2d
n is transformed intoUc

s2d
n . Notice

thatUc0  0, Uc
s2d
n11  fEs2d

n11g21y2Ac
s2d
n11  c

s1d
n , with

eigenvaluesE
s1d
n  E

s2d
n11 sn  0, 1, 2, . . .d. The ground

energy E
s1d
0  E

s2d
1 . 0; here E

s2d
0  0 disappears in

the spectrum ofH1. Thus the SUT transforms thes2d
system into its superpartner systems1d, which fully
covers the results of SS QM.

The operatorQ defined in (16) satisfies

Q2  Q, fQ, H2g  0. (18)

Q is a projection operator, and its eigenvaluesq sq 
0, 1d are good quantum numbers.Q and H2 have
common eigenfunctions. BecauseQc0  0, Qc

s2d
n11 

c
s2d
n11, we denotejc0l  j0, 0l, jc

s2d
n11l  jn 1 1, 1l sn 

0, 1, 2, . . .d, which are common eigenstates ofH2 and
Q. The Hilbert spaceH is divided into two subspace
H0 and H1, consisting of eigenstatesj0, 0l and jn 1

1, 1l with, respectively, eigenvaluesq  0 and 1,H 
H0 © H1. In the basisj0, 0l and jn 1 1, 1l Q  I 2

j0, 0l k0, 0j, thus in the H1 subspace the operatorQ
reduces to a unit operator and the SUT reduces t
unitary transformation.

Now we compare a unitary transformation and
SUT. In quantum mechanics a unitary operator mainta
all the physical properties of a quantum system. T
situation is different for SUT. The main reason is th
SUT is a singular operator which readily appears in t
structure of the projectorQ defined in (16). Because
of such singularities, SUT only partly maintains physic
properties of thes2d system. For example, it maintain
the complete relation ofc

s2d
n , but does not maintain

the orthogonality and normalization ofc
s2d
n , and only

partly maintains the eigenvalues ofH2. However, in
the subspaceH1 the SUT behaves just like a unitar
transformation. SUT transforms thes2d system defined
in the full Hilbert spaceH into the s1d system defined
in the subspaceH1, destroys the ground state ofH2, but
maintains all other physical properties of thes2d system
in the subspaceH1. This explains the legitimacy of the
applications of SUT to SS QM.

Supersymmetrization of cold Rydberg atoms.—Using
SUT we can thoroughly study the supersymmetrizat
of cold Rydberg atoms. The Hamiltonian (7) has two
modes a and b. We define the potentialV2sXd P

aa,bs 1
2 v2

aX2
a 2

1
2 h̄vad, with the HamiltonianH2 and
45
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a

defined in (6),

H2  H2a 1 H2b , H2a  h̄vaAy
a Aa ≠ Ib ,

H2b  h̄vbIa ≠ A
y
b Ab , (19)

J2  J2a 2 J2b , J2a  h̄sAy
aAa 1

1
2 d ≠ Ib ,

J2b  h̄Ia ≠ sAy
bAb 1

1
2 d , (20)

whereIa and Ib are unit operators in the Hilbert spac
Ha and Hb, respectively, corresponding to modesa
and b. The common eigenstates ofH2 and J2 are
jna, nbl2  jnal jnbl with, respectively, eigenvalues

E
s2d
na ,nb  h̄vana 1 h̄vbnb ,

j
s2d
na ,nb  h̄sna 1

1
2 d 2 h̄snb 1

1
2 d

sna, nb  0, 1, 2, . . .d . (21)

SUT is defined as

U  Ua ≠ Ub , Uy  Uy
a ≠ U

y
b ,

Ua  sAaAy
ad21y2Aa , Uy

a  Ay
asAaAy

ad21y2

sa  a, bd , (22)

with

UUy  I , UyU  Q , (23)

where

Q  Qa ≠ Qb , Qa  Ay
asAaAy

ad21Aa fi Ia

sa  a, bd . (24)

Under SUT (22),H2 andJ2 are transformed into

H1  UH2Uy  H1a 1 H1b , H1a  h̄vaAaAy
a ≠ Ib ,

H1b  h̄vbIa ≠ AbA
y
b , (25)

J1  UJ2Uy  J1a 2 J1b ,

J1a  h̄sAaAy
a ≠ Ib 1

1
2 Ia ≠ Ibd ,

J1b  h̄sIa ≠ AbA
y
b 1

1
2 Ia ≠ Ibd , (26)

Correspondingly, under SUT (22)jna, nbl2 is trans-
formed into Ujna, nbl2. Notice that Uj0, 0l2  0,
Uj0, nbl2  0, and Ujna, 0l2  0 which shows that the
states j0, 0l2, j0, nbl2, and jna, 0l2 are destroyed by
SUT. Thus jna, nbl1  Ujna 1 1, nb 1 1l2 
fEs2d

na11E
s2d
nb11g21y2Aajna 1 1l2 ≠ Abjnb 1 1l2 sna, nb 

0, 1, 2, . . .d. The common eigenstates ofH1 and J1

are jna, nbl1  Ujna 1 1, nb 1 1l2 with, respectively,
eigenvalues

E
s1d
na ,nb  h̄vasna 1 1d 1 h̄vbsnb 1 1d ,

j
s1d
na ,nb  h̄sna 1

3
2 d 2 h̄snb 1

3
2 d

sna, nb  0, 1, 2, . . .d . (27)

For the s1d system the ground statej0, 0l1 has energy
E

s1d
0,0  h̄sva 1 vbd  2h̄V. Here the statesj0, 0l2,

j0, nbl2, and jna, 0l2 of H2 with energy E
s2d
0,0  0,

E
s2d
0,nb

 h̄vbnb , andE
s2d
na ,0  h̄vana disappear.
46
Because of the cancellation of the angular mome
between modesa and b the angular momentaJ2 and
J1 have the same spectrumj

s2d
na ,nb  h̄sna 2 nbd  j

s1d
na,nb 

any integer multiple ofh̄. The s1d system still has the
same lowest eigenvalue as thes2d systemj

s1d
0,0  j

s2d
0,0  0.

Now we consider the interesting limit caseM ! 0
discussed by Baxter [1]. In this case there are constra
which should be carefully considered. The first equat
of (2) shows that the limit caseM ! 0 requires the
constraints

Ci ; Pi 1 geijRjy2  0 . (28)

We observe that the Poisson bracketshCi , Cjj  geij fi

0 [8], so that the Dirac brackets can be determined [9]

hR1, P1jD  hR2, P2jD 
1
2 ,

hR1, R2jD  21yg , hP1, P2jD  2gy4 . (29)

Other Dirac brackets ofRi and Pi are zero. The Dirac
brackets ofCi with any variablesRi and Pi are zero;
thus (28) are strong conditions in the sense of Dir
which can be used to eliminate the dependent variab
Choosing the independent variablessR1, P1d, (28) fixes
the dependent variablesR2  22P1yg, P2  gR1y2. In
the reduced phase space of the independent varia
sR1, P1d the Hamiltonian (2) has the structure of a on
dimensional harmonic oscillator

H 
2K
g2 P2

1 1
1
2

KR2
1 . (30)

According to (29) the quantization condition of th
independent variables isfR1, P1g  ih̄y2. Set R1 
qy

p
2, P1  py

p
2 which leads tofq, pg  ih̄. Introduce

V2sqd 
1
2 mpv2q2 2

1
2 h̄v where the effective massmp

and the frequencyv are

mp  g2y2K , v  Kyg . (31)

Define

A  sh̄y2mpvd1y2dydq 1 smpvy2h̄d1y2q,

Ay  2sh̄y2mpvd1y2dydq 1 smpvy2h̄d1y2q ; (32)

we obtain from (30)

H2 
1

2mp
fp2 1 smp2v2q2 2 mph̄vdg  h̄vAyA

(33)

with eigenvalues

E
s2d
n  nh̄v sn  0, 1, 2, . . .d . (34)

Observe that if we rewrite (30) asH  sP2
1 1

m2
1v

2
1R2

1 dy2m1 where the effective massm1  g2y4K
and the frequencyv1  2Kyg, we find that the frequency
v of (31) differs from that of the conventional harmon
oscillator by a factor of1y2. This is the representation o
the well-known fact that reduction to the reduced pha
space alters the symplectic structure [9].



VOLUME 77, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 1 JULY 1996

he
e

n-
in

d
he
at
e

be

it
od
si
io
u

ct

ue
v-

te
la

nt
o

pe
m
nd
n
g

le
h-
SS
x-
ea

ral

Y.)
on,

ys.

,

tt.

n-

on
how

ts
ing

A

he

-

,

at
ti-
ver

. P.
In the limit M ! 0 the angular momentum is

J2  gRiRiy2  h̄sAyA 1
1
2 d . (35)

The spectrum ofJ2 is a positive half-integer multiple of̄h,

j
s2d
n  h̄sn 1

1
2 d, sn  0, 1, 2, . . .d . (36)

Comparing (33), (35) with (19), (20), we see that in t
limit M ! 0 when the modeb disappears, only the mod
a is maintained [1]. UsingA and Ay defined in (32) we
constructU  sAAyd21y2A which is a SUT. With such
a SUT, H2 in (33) and J2 in (35) are simultaneously
transformed into their superpartners

H1  UH2Uy  h̄vAAy,

J1  UJ2Uy  h̄sAAy 1
1
2 d , (37)

with, respectively, spectra

E
s1d
n  h̄vsn 1 1d,

j
s1d
n  h̄sn 1 3y2d sn  0, 1, 2, . . .d . (38)

Comparing with the spectrum ofJ2, the spectrum ofJ1 is
also a positive half integer of̄h, but starting from3h̄y2, the
lowest angular momentum̄hy2 of J2 is destroyed by SUT.

A possible experimental verification of the lowest a
gular momentum of SS cold Rydberg atoms is allowed
principle. In the present case the difference betweenV1

andV2 is a constant,V1 2 V2  2h̄sgy4M2 1 KyMd1y2.
Taking the limit of vanishing kinetic energy is achieve
as follows [1]. If the magnetic field is strong enough, t
second term in (2) is dominant. Further, in an appropri
optical trapping field the speed of the atom can be slow
to the extent that the kinetic energy term in (2) may
removed [10], which leads to the limitM ! 0 [11]. As-
suming that the planar, confined dipole is prepared in
energy ground state and interacts with a radiation m
of a Laguerre-Gaussian form (since a Laguerre-Gaus
beam carries orbital angular momentum along its direct
of propagation [12]). The expectation value of the ang
lar momentum in the long time limit shows two distin
resonances atva, vb. As a diminution in the kinetic en-
ergy term, theb resonance occurs at even greater val
of frequency, until only thea resonance remains achie
able atva  Kyg. The supersymmetrization of thes2d
system can be achieved with a constant shift of the po
tial V2. Thus the location and nature of possible angu
momentum resonances allow in principle the experime
verification of the lowest angular momentum spectrum
SS cold Rydberg atoms.

To summarize, the main results obtained in this pa
are as follows: (1) SUT is applied to discuss supersy
metrization of cold Rydberg atoms. The Hamiltonian a
angular momentum of the SS Rydberg atom are simulta
ously obtained. This allows the possibility of comparin
e
d

s
e

an
n
-

s

n-
r
al
f

r
-

e-

the relation of angular momenta between thes2d system
ands1d system. It is interesting to exploit further possib
applications of SUT in physics. (2) In the limit of vanis
ing kinetic energy the lowest angular momentum of the
cold Rydberg atom is3h̄y2. The suggested possible e
perimental verification provides a crucial test of the id
of SS QM.
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