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Scaling Behavior of Block Copolymers in Spontaneous Growth of Lamellar Domains
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The kinetics of microphase-separated lamellar domains is studied in numerical simulations of the
cell-dynamical-system model of block copolymers in two dimensions. At early stages the correlation
length ¢ is found to grow with time as a power law, = /2, and is understood theoretically. The
later-stage behavior, where both lamellar period and the correlation length are observed to grow in the
same way, ag ~ % with ¢ ~ L suggests that the lamella-forming block copolymers and Rayleigh-
Bénard convective systems belong to the same universality class. [S0031-9007(96)01700-0]

PACS numbers: 64.60.Cn, 61.41.+e, 64.75.+¢g

When a system is transferred from a homogeneouage of the quantityX; on the square lattice it is
phase into an ordered phase where the initial state igefined by (X) = %ZX (nearest neighbor cells+
thermodynamically unstable, a network of small domainsl > X (next-nearest neighbor cells The injective map
of ordered phase develops spontaneously and the lengii models the local cell dynamics, and is chosen to be
scale associated with these domains grows With time. I () = Atanh(y). The parameted controls the quench
systems (such as a binary mixture) where this domaigjepth. TheD is a positive constant proportional to the
coarsening proceeds to formacroscopicdomains, it is  diffusion constant, and the positive constanensures the
now reasonably well established that the domain growthyrmation of lamellas.
can be described in terms of dynamic scaling [1]. Inthis The linear stability analysis of Eq. (2) shows that
Letter we broaden the discussion to systems in whichpe homogeneous phase becomes unstabledfer A,
coarsening cannot proceed to a macroscopic scale bWhereAC =1 + 2+/BD. The wave numbek,, of the
insteadmicrodomainsare formed. _ linearly most unstable mode (to be referred to igs

We investigate the microphase separation of blockpgge hereafter) is given via the equati@d(k,,) +
copolymers (BCP) [2] with equal length subchains, SOj,(v2k,) = 3[1 + (1 — A)/2D], wherelJ, is the Bessel
that the ordered state is given by a periodic lamellaynction of the first kind. One also finds from the
structure. The existence of the spatial perfad/qo of  |inear analysis that the wave number which minimizes
the ordered structure renders the study of microphasge free energy (potential functional), is obtained as the
separation kinetics quite intriguing in comparison with g tion of2Jo(k.) + Jo(v2k.) = 3(1 — /B/D) [5].
the case of macrophase separation for whigh= 0. To \ye have simulated Eq. (2) on two-dimensional square
describe the kinetics of the system, a phenomenologichices of size256 x 256 with periodic boundary condi-
model was introduced in terms of a cell dynamical systemons - The initial condition consisted of uniformly dis-
(CDS), and the corresponding partial differential equatioryjpyted random fluctuations of amplitude 0.05, and five
was proposed [3]: samples were studied. The parameters uses are0.005

iy 2 22 23 andD = 0.5, so that the critical value of is A, = 1.1,
(CrTa e = (V2 + k)7 +3viyr. @ and k. = 0.56. In the computation reported here, the
Here (r, 1) is the order parameter field, which is the data were hardened using the transformatjom, 1) —
local monomer concentration deviation;, ¢, k, and & sgm/(n,t) to remove any effe(?tdue to the flnlteness_ of t'he
are phenomenological parameters. Equation (1) has sindatio of the thickness of domain Wa_IIs and the domain size;
been much used to test scaling hypothesis of the find] this way we can make contact with the KYG calculation
equilibrium pattern (e.g., the lameliar thickness and thdsee be_Iow) in which the order parameter field saturates ex-
equilibrium structure factor) [4]. However, little attention Ponentially fast away from the walls. _ L
has yet been paid to the study of domain coarsening in We first studied early stages of ordering kinetics.
BCP. In this Letter we study the growth of domainsTak'ng .advantage of the slower time scales owing to
of lamellas in numerical simulations of a CDS modelthe critical slowing down, we have choseh= 1.12

corresponding to Eq. (1). For the order parametér,7) SO that we are able to probe mostly the .early and
in the nth cell at timer, the CDS model reads intermediate stages. We computed the scattering function

S(k, 1) defined ass(k, 1) = (¥ (K, )" (K, 1)) with (K, 1)
Yot + 1) =n,1) = By(n,t) = [Jn,0]i. (2)  peing the Fourier transform of the order parameter. Time
Here J(n,1) = f(¢(n,1)) + D[y(n,1)]; — ¢(n,t) is  evolution of the circularly (irk space) averaged scattering
the effective chemical potential, whdg], = (X)) — X,  function,S(k, ¢), is shown in Fig. 1 (inset). Narrowing of
the operator {X) being the isotropic spatial aver- the scattering profile and increase of the peak intensity
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FIG. 1. Time evolution of the circularly averaged scattering functiéh, ¢) for hardened data with = 1.3 as a function of the
wave numbek; the times are, from lowest to uppermost, 100, 300, 900, 2000, 4000, and 10 00@. isTtefined only for discrete
multiples of 27 /256, and the discrete values 6f(k,t) are connected by the straight lines. The scale of the vertical axis is in
arbitrary units. In the inset, the early time behaviorSok, r) for A = 1.12 is shown in the same manner for times 800 to 2000 at
intervals of 400 time steps.

are observed to occur at the positibr= k,,(= 0.61) for  of the unstable modes with = k,, is surely playing an
dimensionless times < 1900. The time dependence of important role here. This can be corroborated by the
the peak heightS,,) and the full width at half maximum following observation.

(Ak) of the scattering function is summarized in Fig. 2, Elder and Grant [6] proposed that a singular perturba-
obeying the power law asy, « t* and Ak « t~# with  tion technique [7] (to be referred to as KYG), developed
the exponenta = 0.47 and B = 0.50 approximately. originally to study the nonconserved ordering kinetics,
Clearly the time interval represented by Fig. 2 is not themight be generalized to a broader class of other ordering
so-called linear regime, which appears at much earliedynamics problems. In fact, the extended KYG approach
stages and where the growth is exponential. We arbas been applied to the Rayleigh-Bénard convection to
unable to explain why the growth ¢f(k, r)at k,,, persists successfully explain the growth of roll patterns at an in-
far beyond the regime where the linearized theory idermediate time domain [8]. When applied to Eq. (1),
valid. We infer, however, that the nonlinear interactionthe extended KYG method formally expands the solution
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FIG. 2. Time evolution of the peak intensif)s,;) and the full width at half maximun{Ak) of the scattering function for
A = 1.12. The wave numbet is scaled withk, = 77 /128, andS,, is in arbitrary units. The straight line is the best fit to the data.
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of Eq. (1) in terms of the solutioy?) to its linearized secondary peak developed at a smaller wave number,
part. Each term in the expansion (representing nonlinincreasing its intensity gradually until it took over the
ear interactions of fluctuations) is then approximated byoriginal peak and shifted té, for + = 2000. Because
replacingy°(k, ) by its value ofk,, mode. The result- of this double-peaked nature of scattering profiles, the
ing infinite series can then be resummed. We have capeak intensity and width changed nonmonotonically with
culated the equal-time correlation functiefr — r/,t) =  time in this transient regime. After the peak had shifted
(Y, (', 1)) in the manner of KYG to find that the to the positionk,, representing the equilibrium lamellar
circularly averaged [and normalized g, r) = 1] corre-  thickness, narrowing of the scattering profile and an
lation function is given by increase of peak intensity occurred gradually as in other

g(r.1) = (2/m) arcsifJo(knr) exd—r2/41%(1)]}, (3) coarsening processes of phase separation. Figure 4(b)

herel(r) = 2k,/2i/m0. T it th ded KYG shows the time dependence of the peak intensity and
:‘l(\;rrire(;)t)is_inzdgedzi{l:g in gutre S(‘:talst: (\jvgxt:zr\]/eeused dat\é\l]idth at the late stages. Figures 4(a) and 4(b) imply
from the CDS simulation. The chara’lcteristic length scal e characteristic length scalg)( obeying the power

" Gaw ¢ ~ 1® with ¢ ~ L over the transient period of
[(r) was extracted from fitting Eq. () to the data. Very time gand at late (?imess. This scaling behaf)/ior is not

good agreement with the theory could be seen over the .
) . . ; -tinderstood theoretically at present. However we note a
time domain considered, one example being shown i

. . . 1'/5 scaling of the length scale (as seen earlier by Elder
f'g' S(a). Ir_' F'g' 3(b) we p.IOTl(.t) th.us obtglned as a o al, [9] in the simulation of the Swift-Hohenberg model
unction of ¢; variation of ! with time is consistent with 10]) has been found by Cross and Meiron [11] in the
[ o« t'/2_ It should be emphasized also that the result (3 y

implies the scattering functiofi(k, 7) has the scaling form umerical simulations of equations that model Rayleigh-

- o Bénard (RB) convections.
S(k, 1) _.l(t)h_[(k .k’”)l([)] _apart frqm the dependence We expect that both features observed, namely, a law
uponk,, itself; h(x) is a scaling function. The results of

1/2 ;  41/5 ;
Fig. 2 are indeed consistent with this scaling. ﬁoc: ; ecﬁ‘?ce?orlyBgrgets)u?no%rcur tin ;‘é Igtesréetﬁrrgesgsa\:vee”
We next turn to the question of what are the scalin P y ;

roperties. if thev exist characterizing the late-sta gInterestingly, ar'/? scaling at earlier times seems to have
f:)oapr)senin’ rocegs To fnvesti ate thisg Luestion we hgsoeen observed in the simulations cited above. To address
ap ) 9 q this expectation we close this Letter with the following

taken the choicet = 1.3 in our simulation, since with observation. Equation (1) can be recast into the form
A = 1.12 (“shallow” quenches) the late stages cannot - =
SH

be reached in practice because of the slower time scale Y 2
and the larger length scale (hence the finite-size effect). 0T T v S (4)
Time evolution of the scattering function is shown in

Fig. 1. It is seen that there is a shift in the positiap)  where H is the Hamiltonian derived by Ohta and
where S(k, ) has its maximum, the shift occurring from Kawasaki [5] in which there is a Coulomb-type long-
k. (= 0.99) to k. with increasing time. Time dependence range repulsive interaction; for the weakly segregated
of the peak position is given in Fig. 4(a). Looking more systems this Hamiltonian reduces to that derived by
closely into the scattering profiles during the time periodLeibler [12]. We then follow Fredrickson and Binder [13]
400 < t < 2000, we found that as time went on the to argue that since the operat®? in Eq. (4) reflects a
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FIG. 3. (a) Test of the extended KYG approach. Data of the circularly averaged correlation fuggtion at + = 1200 for
A = 1.12 is shown by open circles, and the solid curve is the best fit to the data based on Eq. (3). (b) Time evolution of the
characteristic length scalé) of the correlation function. The line has the slope 0.52 corresponding to the best fit.
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FIG. 4. Double-logarithmic plot of the (a) peak positibp and (b) peak intensitg,,, and full width at half maximumk of the
scattering function in the later stage fér= 1.3. The wave number is scaled witlj = 7 /128, andS,, is in arbitrary units. The
straight line is the best fit to the data yielding the slep&20, 0.16, and 0.18 fok,, 1/Ak, andS,,, respectively.
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