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Scaling Behavior of Block Copolymers in Spontaneous Growth of Lamellar Domains
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The kinetics of microphase-separated lamellar domains is studied in numerical simulations of the
cell-dynamical-system model of block copolymers in two dimensions. At early stages the correlation
length j is found to grow with time as a power law,j ~ t1y2, and is understood theoretically. The
later-stage behavior, where both lamellar period and the correlation length are observed to grow in the
same way, asj , tf with f ø 1

5 , suggests that the lamella-forming block copolymers and Rayleigh-
Bénard convective systems belong to the same universality class. [S0031-9007(96)01700-0]

PACS numbers: 64.60.Cn, 61.41.+e, 64.75.+g
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When a system is transferred from a homogeneo
phase into an ordered phase where the initial state
thermodynamically unstable, a network of small domain
of ordered phase develops spontaneously and the len
scale associated with these domains grows with time.
systems (such as a binary mixture) where this doma
coarsening proceeds to formmacroscopicdomains, it is
now reasonably well established that the domain grow
can be described in terms of dynamic scaling [1]. In th
Letter we broaden the discussion to systems in whi
coarsening cannot proceed to a macroscopic scale
insteadmicrodomainsare formed.

We investigate the microphase separation of bloc
copolymers (BCP) [2] with equal length subchains, s
that the ordered state is given by a periodic lamell
structure. The existence of the spatial period2pyq0 of
the ordered structure renders the study of micropha
separation kinetics quite intriguing in comparison wit
the case of macrophase separation for whichq0 ­ 0. To
describe the kinetics of the system, a phenomenologi
model was introduced in terms of a cell dynamical syste
(CDS), and the corresponding partial differential equatio
was proposed [3]:

t0
≠c

≠t
­ ec 2 s=2 1 k2

md2c 1 g̃=2c3. (1)

Here csr, td is the order parameter field, which is the
local monomer concentration deviation;t0, , km and g̃
are phenomenological parameters. Equation (1) has si
been much used to test scaling hypothesis of the fin
equilibrium pattern (e.g., the lamellar thickness and th
equilibrium structure factor) [4]. However, little attention
has yet been paid to the study of domain coarsening
BCP. In this Letter we study the growth of domain
of lamellas in numerical simulations of a CDS mode
corresponding to Eq. (1). For the order parametercsn, td
in thenth cell at timet, the CDS model reads

csn, t 1 1d ­ csn, td 2 Bcsn, td 2 fJ sn, tdg1 . (2)

Here J sn, td ; fssscsn, tdddd 1 Dfcsn, tdg1 2 csn, td is
the effective chemical potential, wherefXg1 ­ kkXll 2 X,
the operator kkXll being the isotropic spatial aver-
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age of the quantityX; on the square lattice it is
defined by kkXll ­

1
6

P
X snearest neighbor cellsd 1

1
12

P
X snext-nearest neighbor cellsd. The injective map

f models the local cell dynamics, and is chosen to b
fscd ­ A tanhscd. The parameterA controls the quench
depth. TheD is a positive constant proportional to the
diffusion constant, and the positive constantB ensures the
formation of lamellas.

The linear stability analysis of Eq. (2) shows tha
the homogeneous phase becomes unstable forA $ Ac

where Ac ; 1 1 2
p

BD. The wave numberkm of the
linearly most unstable mode (to be referred to askm

mode hereafter) is given via the equation2J0skmd 1

J0s
p

2kmd ­ 3f1 1 s1 2 Ady2Dg, whereJ0 is the Bessel
function of the first kind. One also finds from the
linear analysis that the wave numberke, which minimizes
the free energy (potential functional), is obtained as th
solution of2J0sked 1 J0s

p
2ked ­ 3s1 2

p
ByD d [5].

We have simulated Eq. (2) on two-dimensional squa
lattices of size256 3 256 with periodic boundary condi-
tions. The initial condition consisted of uniformly dis-
tributed random fluctuations of amplitude 0.05, and fiv
samples were studied. The parameters used areB ­ 0.005
andD ­ 0.5, so that the critical value ofA is Ac ­ 1.1,
and ke ­ 0.56. In the computation reported here, the
data were hardened using the transformationcsn, td !
sgncsn, td to remove any effect due to the finiteness of th
ratio of the thickness of domain walls and the domain siz
in this way we can make contact with the KYG calculatio
(see below) in which the order parameter field saturates e
ponentially fast away from the walls.

We first studied early stages of ordering kinetics
Taking advantage of the slower time scales owing
the critical slowing down, we have chosenA ­ 1.12
so that we are able to probe mostly the early an
intermediate stages. We computed the scattering functi
Ssk, td defined asSsk, td ­ kcsk, tdcpsk, tdl with csk, td
being the Fourier transform of the order parameter. Tim
evolution of the circularly (ink space) averaged scattering
function,Ssk, td, is shown in Fig. 1 (inset). Narrowing of
the scattering profile and increase of the peak intens
© 1996 The American Physical Society
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FIG. 1. Time evolution of the circularly averaged scattering functionSsk, td for hardened data withA ­ 1.3 as a function of the
wave numberk; the times are, from lowest to uppermost, 100, 300, 900, 2000, 4000, and 10 000. Thek is defined only for discrete
multiples of 2py256, and the discrete values ofSsk, td are connected by the straight lines. The scale of the vertical axis i
arbitrary units. In the inset, the early time behavior ofSsk, td for A ­ 1.12 is shown in the same manner for times 800 to 2000
intervals of 400 time steps.
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are observed to occur at the positionk ­ kms­ 0.61d for
dimensionless timest & 1900. The time dependence o
the peak heightsSM d and the full width at half maximum
sDkd of the scattering function is summarized in Fig.
obeying the power law asSM ~ ta and Dk ~ t2b with
the exponenta ø 0.47 and b ø 0.50 approximately.
Clearly the time interval represented by Fig. 2 is not t
so-called linear regime, which appears at much ear
stages and where the growth is exponential. We
unable to explain why the growth ofSsk, tdat km persists
far beyond the regime where the linearized theory
valid. We infer, however, that the nonlinear interactio
.

FIG. 2. Time evolution of the peak intensitysSMd and the full width at half maximumsDkd of the scattering function for
A ­ 1.12. The wave numberk is scaled withk0 ­ py128, andSM is in arbitrary units. The straight line is the best fit to the data
,
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of the unstable modes withk ø km is surely playing an
important role here. This can be corroborated by t
following observation.

Elder and Grant [6] proposed that a singular perturb
tion technique [7] (to be referred to as KYG), develope
originally to study the nonconserved ordering kinetic
might be generalized to a broader class of other order
dynamics problems. In fact, the extended KYG approa
has been applied to the Rayleigh-Bénard convection
successfully explain the growth of roll patterns at an in
termediate time domain [8]. When applied to Eq. (1
the extended KYG method formally expands the solutio
4379
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of Eq. (1) in terms of the solutionsc0d to its linearized
part. Each term in the expansion (representing non
ear interactions of fluctuations) is then approximated
replacingc0sk, td by its value ofkm mode. The result-
ing infinite series can then be resummed. We have
culated the equal-time correlation functiongsr 2 r0, td ;
kcsr, tdcsr0, tdl in the manner of KYG to find that the
circularly averaged [and normalized asgs0, td ­ 1] corre-
lation function is given by

gsr , td ­ s2ypd arcsinhJ0skmrd expf2r2y4l2stdgj , (3)

where lstd ­ 2km

p
2tyt0. To test if the extended KYG

form (3) is indeed true in our case, we have used d
from the CDS simulation. The characteristic length sc
lstd was extracted from fitting Eq. (3) to the data. Ve
good agreement with the theory could be seen over
time domain considered, one example being shown
Fig. 3(a). In Fig. 3(b) we plotlstd thus obtained as a
function of t; variation of l with time is consistent with
l ~ t1y2. It should be emphasized also that the result
implies the scattering functionSsk, td has the scaling form
Ssk, td ­ lstdhfsk 2 kmdlstdg apart from the dependenc
uponkm itself; hsxd is a scaling function. The results o
Fig. 2 are indeed consistent with this scaling.

We next turn to the question of what are the scali
properties, if they exist, characterizing the late-sta
coarsening process. To investigate this question we h
taken the choiceA ­ 1.3 in our simulation, since with
A ­ 1.12 (“shallow” quenches) the late stages cann
be reached in practice because of the slower time s
and the larger length scale (hence the finite-size effe
Time evolution of the scattering function is shown
Fig. 1. It is seen that there is a shift in the positionskpd
whereSsk, td has its maximum, the shift occurring from
kms­ 0.99d to ke with increasing time. Time dependenc
of the peak position is given in Fig. 4(a). Looking mo
closely into the scattering profiles during the time peri
400 & t & 2000, we found that as time went on th
of the

FIG. 3. (a) Test of the extended KYG approach. Data of the circularly averaged correlation functiongsr , td at t ­ 1200 for
A ­ 1.12 is shown by open circles, and the solid curve is the best fit to the data based on Eq. (3). (b) Time evolution
characteristic length scalesld of the correlation function. The line has the slope 0.52 corresponding to the best fit.
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secondary peak developed at a smaller wave numb
increasing its intensity gradually until it took over the
original peak and shifted toke for t * 2000. Because
of this double-peaked nature of scattering profiles, t
peak intensity and width changed nonmonotonically wi
time in this transient regime. After the peak had shifte
to the positionke, representing the equilibrium lamella
thickness, narrowing of the scattering profile and a
increase of peak intensity occurred gradually as in oth
coarsening processes of phase separation. Figure 4
shows the time dependence of the peak intensity a
width at the late stages. Figures 4(a) and 4(b) imp
the characteristic length scale (j) obeying the power
law j , tf with f ø 1

5 over the transient period of
time and at late times. This scaling behavior is n
understood theoretically at present. However we note
t1y5 scaling of the length scale (as seen earlier by Eld
et al. [9] in the simulation of the Swift-Hohenberg mode
[10]) has been found by Cross and Meiron [11] in th
numerical simulations of equations that model Rayleig
Bénard (RB) convections.

We expect that both features observed, namely, a l
j ~ t1y2 at early times andj , t1y5 at later times, are
not specific to BCP but occur in RB systems as we
Interestingly, at1y2 scaling at earlier times seems to hav
been observed in the simulations cited above. To addr
this expectation we close this Letter with the followin
observation. Equation (1) can be recast into the form

t0
≠c

≠t
­ =2 dHHH

dc
, (4)

where HHH is the Hamiltonian derived by Ohta and
Kawasaki [5] in which there is a Coulomb-type long
range repulsive interaction; for the weakly segregat
systems this Hamiltonian reduces to that derived
Leibler [12]. We then follow Fredrickson and Binder [13
to argue that since the operator=2 in Eq. (4) reflects a
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FIG. 4. Double-logarithmic plot of the (a) peak positionkp and (b) peak intensitySM , and full width at half maximumDk of the
scattering function in the later stage forA ­ 1.3. The wave number is scaled withk0 ­ py128, andSM is in arbitrary units. The
straight line is the best fit to the data yielding the slope20.20, 0.16, and 0.18 forkp , 1yDk, andSM , respectively.
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global conservation of the order parameter, it plays no rol
in the late stages of microphase coarsening in which w
may restrict ourselves to the wave number region wher
k , ke. Hence=2 may be replaced by2k2

e , andHHH is
taken to be of the so-called weak-segregation form. The
the resulting equation takes the form of a time-depende
Ginzburg-Landau equation for the RB convection (i.e., th
Swift-Hohenberg model). We therefore hypothesize tha
BCP and RB convections belong to the same universalit
class with regard to the ordering dynamics.

In this connection it is worth adding that we have
obtained similar results by analyzing the data withou
hardening, too, excepting one difference: the extende
KYG prediction (3) exhibits a not so striking agreemen
with data as in Fig. 3(a). We have discussed, in thi
Letter, the results for the weak-segregation regime whe
the ratiokeykm is of order unity [14]. However, the result
that unhardened data yield the same growth exponents
the hardened data (at both early and later stages) wou
imply that the same power law growth occurs also in the
strong-segregation regime.
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