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Modeling of Covalent Bonding in Solids by Inversion of Cohesive Energy Curves

Martin Z. Bazant and Efthimios Kaxiras

Department of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 24 April 1995

We provide a systematic test of empirical theories of covalent bonding in solids using an
exact procedure to inverb initio cohesive energy curves. By considering multiple structures of
the same material, it is possible for the first time to test competing angular functions, expose
inconsistencies in the basic assumption of a cluster expansion, and extract general features of covalent
bonding. We test our methods on silicon, and provide direct evidence that the Tersoff-type bond-
order formalism correctly describes coordination dependence. For bond-bending forces, we obtain
skewed angular functions that favor small angles, unlike existing models. As a proof-of-principle
demonstration, we derive a Si interatomic potential which exhibits comparable accuracy to existing
models. [S0031-9007(96)01524-4]

PACS numbers: 61.50.Lt, 33.15.Dj, 34.20.Cf

Large-scale atomistic simulations are becomingphysical intuition and then adjust parameters to fit a data-
increasingly important in the study of complex physicalbase ofab initio structural energies [1]. The reliance on
phenomena such as fracture, plastic deformation, twantuition and fitting leads to the two questions that moti-
and three-dimensional melting, epitaxial growth, shockvate our work: (1) Is there aab initio justification for the
wave propagation, friction, sintering, etc. ldeally, onefunctional form of an interatomic potential? (2) Given a
would like to represent the atomic interactions in thesearticular form, is there a systematic way to obtain new
simulations with a quantum mechanical approach, treatingotentials directly frorrab initio energy data?
explicitly the electronic degrees of freedom. This is In this Letter, we present an exact procedure for invert-
a computationally demanding proposition, tractable atng ab initio energy data to obtain parameter-free many-
present only for relatively small system sizes of ortiér  body potentials [12]. The inversion approach was pio-
atoms. An alternative description is in terms of effectiveneered by Carlsson, Gelatt, and Ehrenreich (CGE) for the
interatomic potentials which allow fast evaluation of en-case of gair potential [13], and since then the same for-
ergies and forces, making possible simulations involvingnula has been applied with limited success by only a cou-
more than10® atoms. The drawback in going from an ple of authors [7,14]. We revisit the inversion approach
explicit quantum treatment of electrons to an effectivewith the following innovations: (i) a recursive formula-
interatomic potential is a significant loss in accuracy thation that incorporates many-body interactions and strains
may undermine simulation results. In most cases, thether than uniform volume expansion; (ii) the requirement
microscopic mechanisms of greatest interest (for instancehat ab initio energies be exactly reproduced for relevant
bond formation or rupture) are precisely those whichdensities only (near of the equilibrium solid and liquid
require a high degree of transferability, that is, ability ofdensities); and (iii) the use of an overdetermined set of
the potential to describe accurately a wide range of locastructures for the same material, which guarantees a wide
atomic environments. range of relative atomic arrangements. These ideas form

Over a decade of experience has shown that such trana-general framework for analyzing functional forms and
ferability is difficult to attain, especially in covalent solids, deriving potentials, as illustrated by application to Si. In
for inherently quantum effects such as bond bending anthis manner, we provide satisfactory answers to both ques-
breaking, hybridization, charge transfer, and metallizationtions posed in the previous paragraph. We analyze the
In the prototypical case of silicon, about 30 model potentwo defining features of covalent bonding in two steps,
tials exist in the literature [1], including popular and in- (1) pair bondingand(2) angular forces.
novative ones by Stillinger and Weber (SW) [2], Tersoff 1. Pair bonding—We begin with the simplest case of
[3], and Chelikowskyet al. [4]. Although the shortcom- a pair potential, in which the cohesive eneigy | of an
ings of existing model potentials have been carefully docarbitrary structure is given by

umented, it has proven very difficult to improve them or to ®
understand, even qualitatively, the causes of their failures E(r) =Y ¢Ri) = D npd(s,r), 1)
[1,5]. Some theoretical arguments have been advanced i#] p=1

to motivate the form of an effective interaction [6,7] and with atomic separations grouped into shefls of radius
to derive potentials as approximations of quantum models,r containingn, atoms each. Dilation of the lattice is
[8—11], but little specific theoretical guidance exists to aidachieved by varying the parameterwith the structural
in the development of new potentials. The most successquantitiess,,} and{n,} fixed. Shells are numbered so that
ful approach to date is to guess a functional form using; < s, < s3 < ..., and distances scaled so that= 1.
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A simple rearrangement of the terms in Eq. (1) yields the 03
desired inversion formula fap[E], 3 4
1 i T
¢(r) = —(E(r) - np¢(spr))- )
ni p=2 03[
Although the unknown potential appears on both sides ofg
this equation, recursive substitution generates the explicits 06
formula, /.o
1 o0 n 09
¢(r) = —E(r) = > 5 E(s,r) e
n p=2 N1 12k 3 .4 5
i ”p”q 1 1 1 r (A) 1
+ Z + E(spsqr) — ..., 3 2 e 5

pg=2 "1
which was originally derived by CGE invoking the lin- FIG. 1. The inverted pair potential for silicon (i) before and
earity of the functiona[¢] [13]. Our recursive formu- (i) after a cutoff is imposed, compared withsw (r) (dashed

. : . . line). Numbers inside the figure indicate shell radii in the
lation generalizes to nonlinear functionals and suggests g.mond lattice. The inset shows the diamond LDA data and

simple computational procedure: If the t?” 4’_(?) i$ as-  the interpolant (i) before and (ii) after imposing a cutoff.
sumed known forr > a, then the potential is uniquely

determined by solving the recursion in order of decreas-
ing r starting atr = a (because, > 1 for p = 2). An  ingand its description by an effective potential are subjects
important case is that of finite range, i.ex(r) = 0 for  of active research, it is obvious that distant atoms in a bulk
r = a, as is typically assumed for interatomic potentials. crystal cannot interact in the same way as atoms with the
To illustrate the inversion procedure, we apply it to ansame separation in a gas.
ab initio database consisting of cohesive energy curves To rectify the inversion procedure, we forgo the re-
for Si from density functional calculations in the local quirement that the potential exactly reproduce ¢mire
density approximation (LDA) [15]. In order to keep cohesive energy curve. Instead, we focus on condensed
the procedure simple while still capturing the importantvolumes typical of solid and liquid environments, whose
local bonding characteristics, the database includes thexact energies can be preserved with any choice of tail for
following crystals: (i) the low-energy and low-coordination the potential. For Si, we find that exponential decay to a
structures, diamond (Si-IB-tin (Si-1l) [16], BC-8 (Si-lll)  cutoff near the second-neighbor distance in the diamond
[17], and BCT-5 [18]; (ii) sc (simple cubic) and fcc crystals lattice, 3.84 A, generates potentials in good agreement
for metallic behavior; and (iii) the graphitic structure for with bonding theory. For example, as shown in Fig. 1,
nontetrahedral hybridization [19]. These structures havave force the energy curve to be zero for= agw =
coordinations 4, 6, 4, 5, 6, 12, and 3, respectively. We.771 18 A without disturbing energies within 10% of the
consider only atomic volumes smaller théhs4 A)® to  equilibrium bond length, where covalent bonds are well
avoid the difficulty of LDA to represent accurately the defined, to produce an inverted pair potential with a deep
energies of isolated atoms [20]. Smooth interpolation ofminimum at the first-neighbor distance.
the LDA data and extrapolation to infinite volume with an  Applying the same procedure to the other curves in our
exponential tail are used. The LDA data points for thedatabase, we obtain the potentials of Fig. 2. The large
diamond lattice with the interpolant are shown in the insetliscrepancy between them is direct evidence for a well-
of Fig. 1. known fact: the energetics of silicarannot be described
The inverted pair potential for the diamond curve, showrby a pair potential alone[7]. Our results suggest,
in Fig. 1, is clearly unphysical: lIts long range and stronghowever, that an environment-dependent pair potential
repulsion at the first-neighbor distance contradict our incan describe the ideal bulk phases reasonably well. There
tuitive understanding of covalent bonding. Similar resultsis a clear coordination dependence to the curves: bond
have been obtained in previous work applying the CGHengths (positions of the minima) increase, and bond
formula to metals [7,13] and semiconductors [14]. Ourstrengths (depths of the minima) decrease with increasing
recursive approach reveals that these problems are inhareordination. This behavior can be described by the
ent to the inversion process, which, in spite of being exacthond-order formalism, which is justified on grounds of
stretches the assumption of a volume-independent potentitieoretical arguments [6—9] as well as experience with
to an unphysical extreme. Because inversion amounts tempirical potentials [3,22,23]. In its simplest form, a
solving in order of decreasing distance from infinite separabond-order potential is given by
tion, the tail of the potential comes from unscreened inter- _
actions between atoms in a low density gaseous phase [21]. ¢, 2) = ¢r(r) + p(2)$alr), ()
The same tail is then used to describe long range interagvhere ¢r and ¢4 are monotonic repulsive and attractive
tions in a bulk crystal, which are presumably screened byerms, respectively, angh(Z) gives the bond strength
the presence of closer atoms. While the nature of screems a function of the coordinatiod. The leading order
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02 \ \\\\ T T T pair potential comes from the diamond lattice inversion
described above. A particular form for the angular term

h(8) must be assumed in order to invetfg, h] for the

radial functiong[F,]. The procedure is the same as in

0

02 [ / E

e o4r i the pair potential case: solve Eq. (5) fgfr) to obtain a
S ol S\ T - recursion. Grouping bonds into shells as above and taking
08k i 4 the positive root of the resulting quadratic equation yields
L ) J the desired expression,
FRww T
14 1 1 L g _ _B(r)+\/ﬁ(r)2+4CY11[F(V)_'}/(V)]
o 2 25 3 35 4 gr) = 2ai; ., (6)

FIG. 2. Inverted pair potentials (with cutoff) for seven silicon
bulk phases. The inset shows the implied bond orger wherea,, =3, es >, cs, h(Oix), B(r) =2, ai, X
extracted from these curves (points) compareq/4gZ (line). g(s,r), andy(r)= Z:zz Z‘;zp @pa8(spr)g(syr). Inthe
p(1) reflects the Sibond length and energy [1]. a,, sums, onlyk > j contributes to avoid double count-
ing. An explicit formula like the CGE pair potential can
approximation of the bond order js(Z) « Z~'/2. Since  be obtained by recursive substitution with Eq. (6) and in-
this comes from describing the local density of statessolves a tree of nested square roots. It is simpler to fol-
by the bandwidth only, we expect the approximation tolow the same computational procedure as before, solving
work well for the metallic phases witlZ > 4 (BCT- the recursion in order of decreasing distance starting
5, B-tin, sc, and fcc). For the covalent phases withat the cutoff. In principle, the same general procedure
Z = 4 (diamond, BC-8, and graphite), band shape effectgan be applied to determine radial functions of other
become important, and we expect significant departuréorms or for higher order terms in a cluster expansion of
from theZ~1/2 behavior. the effective potential. For example, for a nonseparable
If the repulsive interactiorpg were known, the bond- three-body term involving three bond lengths, like the po-
order term could be extracted directly from thk initio  tential of Pearsoret al.[24], the recursion comes from
data, usingp(Z) = Va(ro)/Vi®(ro), whereV, = ¢ —  solving a cubic equation, and for a four-body term, a quar-
dr, 1o is the minimum of the inverted potentigl, and we  tic equation.
setp = 1 for the diamond latticeA = 4). The repulsive As in the pair potential case, it is useful to invert more
term, intended to represent an effective force betweethan one cohesive energy curve of the same material for
electrons due to Pauli exclusion, is the weakest link ing[F, 2] (r). If the assumed angular dependen¢e) (and
bond-order models, since its form must be assumed artvo-body terms) were truly transferable, then the same
then fit to empirical data without theoretical guidance.radial functiong(r) would result from every inversion.
Although the general trend is insensitive to the choice ofConversely, the greater the variance between the inverted
ér, we find that usingdr = 263", where ¢5” is the  g(r), the less transferable is the assumied). This
repulsive part of the SW potential, produces@) which  principle gives us ajuantitativemeans of assessing the
lies remarkably close to its expected behavior (see inset @fuality of angular functions directly from thab initio
Fig. 2). data. For example, although the SW angular function
2. Angular forces—While the energetics of bulk phases 1(9) = [cog6) + %]2, produces mediocre collapse of the
can be fairly well described by a bond-order pair func-inverted g(r), it is fortuitously far better than taking
tional, it is well known that many-body interactions with j(g) = [coq6) + %]4, due to the latter’s flatness near the
explicit angular dependence are required for silicon, for extetrahedral minimum.
ample, to stabilize the diamond lattice against shear strain Using the same principle, we can extract an optimal

[3,7]. As the simplest case of a many-body potentialangular dependence from thab initio data by assum-

we consider one with volume-independent pair terms anq1g a series expansiom() = 3> o cilcog6) + %]2“
i :

separable three-body terms like the potentials of SW angtor the curve shown in Fig. 3 (defined by = 1,¢; =

Kaxiras and Pandey [S]. The many-body enetfj{s) =  _j .86 ¢, — 1.42), the collapse of radial functions from
E(r) — V»(r), formed by subtracting the pair ters(r)  the low-energy phases is rather good, as seen in the inset
from the total energyi(r), is expressed as a sum over pairsgf Fig. 3. A novel feature of the inverted angular func-
of bonds, tion is its skew about the minimum to favor smaller an-
gles. This is consistent with the conclusion that existing
F(r) = ZZ Z g(Rij)g(RjA(Gijx),  (3)  potentials tend to overpenalize angles smaller thad
PURikELk] [1], which presumably leads to poor descriptions of sur-
where co®;;; = R;; - Rjx. Following theory [6,7] and faces, clusters, and certain defects. The skewed angular
practice [1], we assumé& = 0, which implies that the function also raises the energy of overcoordinated metallic
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