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Modeling of Covalent Bonding in Solids by Inversion of Cohesive Energy Curves
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(Received 24 April 1996)

We provide a systematic test of empirical theories of covalent bonding in solids using an
exact procedure to invertab initio cohesive energy curves. By considering multiple structures of
the same material, it is possible for the first time to test competing angular functions, expose
inconsistencies in the basic assumption of a cluster expansion, and extract general features of covalent
bonding. We test our methods on silicon, and provide direct evidence that the Tersoff-type bond-
order formalism correctly describes coordination dependence. For bond-bending forces, we obtain
skewed angular functions that favor small angles, unlike existing models. As a proof-of-principle
demonstration, we derive a Si interatomic potential which exhibits comparable accuracy to existing
models. [S0031-9007(96)01524-4]

PACS numbers: 61.50.Lt, 33.15.Dj, 34.20.Cf
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Large-scale atomistic simulations are becomin
increasingly important in the study of complex physica
phenomena such as fracture, plastic deformation, tw
and three-dimensional melting, epitaxial growth, shoc
wave propagation, friction, sintering, etc. Ideally, on
would like to represent the atomic interactions in the
simulations with a quantum mechanical approach, treat
explicitly the electronic degrees of freedom. This
a computationally demanding proposition, tractable
present only for relatively small system sizes of order102

atoms. An alternative description is in terms of effectiv
interatomic potentials which allow fast evaluation of en
ergies and forces, making possible simulations involvin
more than108 atoms. The drawback in going from an
explicit quantum treatment of electrons to an effectiv
interatomic potential is a significant loss in accuracy th
may undermine simulation results. In most cases, t
microscopic mechanisms of greatest interest (for instan
bond formation or rupture) are precisely those whic
require a high degree of transferability, that is, ability o
the potential to describe accurately a wide range of loc
atomic environments.

Over a decade of experience has shown that such tra
ferability is difficult to attain, especially in covalent solids
for inherently quantum effects such as bond bending a
breaking, hybridization, charge transfer, and metallizatio
In the prototypical case of silicon, about 30 model pote
tials exist in the literature [1], including popular and in
novative ones by Stillinger and Weber (SW) [2], Terso
[3], and Chelikowskyet al. [4]. Although the shortcom-
ings of existing model potentials have been carefully do
umented, it has proven very difficult to improve them or t
understand, even qualitatively, the causes of their failur
[1,5]. Some theoretical arguments have been advan
to motivate the form of an effective interaction [6,7] an
to derive potentials as approximations of quantum mod
[8–11], but little specific theoretical guidance exists to a
in the development of new potentials. The most succe
ful approach to date is to guess a functional form usin
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physical intuition and then adjust parameters to fit a da
base ofab initio structural energies [1]. The reliance on
intuition and fitting leads to the two questions that mot
vate our work: (1) Is there anab initio justification for the
functional form of an interatomic potential? (2) Given
particular form, is there a systematic way to obtain ne
potentials directly fromab initio energy data?

In this Letter, we present an exact procedure for inve
ing ab initio energy data to obtain parameter-free man
body potentials [12]. The inversion approach was pi
neered by Carlsson, Gelatt, and Ehrenreich (CGE) for t
case of apair potential [13], and since then the same fo
mula has been applied with limited success by only a co
ple of authors [7,14]. We revisit the inversion approac
with the following innovations: (i) a recursive formula-
tion that incorporates many-body interactions and stra
other than uniform volume expansion; (ii) the requireme
that ab initio energies be exactly reproduced for releva
densities only (near of the equilibrium solid and liqui
densities); and (iii) the use of an overdetermined set
structures for the same material, which guarantees a w
range of relative atomic arrangements. These ideas fo
a general framework for analyzing functional forms an
deriving potentials, as illustrated by application to Si. I
this manner, we provide satisfactory answers to both qu
tions posed in the previous paragraph. We analyze
two defining features of covalent bonding in two step
(1) pair bondingand(2) angular forces.

1. Pair bonding.—We begin with the simplest case o
a pair potential, in which the cohesive energyEffg of an
arbitrary structure is given by

Esrd ­
X
ifij

fsRijd ­
X̀
p­1

npfssprd , (1)

with atomic separations grouped into shellsSp of radius
spr containingnp atoms each. Dilation of the lattice is
achieved by varying the parameterr with the structural
quantitieshspj andhnpj fixed. Shells are numbered so tha
s1 , s2 , s3 , . . . , and distances scaled so thats1 ­ 1.
© 1996 The American Physical Society
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A simple rearrangement of the terms in Eq. (1) yields th
desired inversion formula forffEg,

fsrd ­
1
n1

√
Esrd 2

X̀
p­2

npfssprd

!
. (2)

Although the unknown potential appears on both sides
this equation, recursive substitution generates the expl
formula,

fsrd ­
1
n1

Esrd 2
X̀
p­2

np

n2
1

Essprd

1
X̀

p,q­2

npnq

n3
1

Esspsqrd 2 . . . , (3)

which was originally derived by CGE invoking the lin-
earity of the functionalEffg [13]. Our recursive formu-
lation generalizes to nonlinear functionals and suggest
simple computational procedure: If the tail offsrd is as-
sumed known forr . a, then the potential is uniquely
determined by solving the recursion in order of decrea
ing r starting atr ­ a (becausesp . 1 for p $ 2). An
important case is that of finite range, i.e.,fsrd ­ 0 for
r $ a, as is typically assumed for interatomic potentials

To illustrate the inversion procedure, we apply it to a
ab initio database consisting of cohesive energy curv
for Si from density functional calculations in the loca
density approximation (LDA) [15]. In order to keep
the procedure simple while still capturing the importan
local bonding characteristics, the database includes
following crystals: (i) the low-energy and low-coordination
structures, diamond (Si-I),b-tin (Si-II) [16], BC-8 (Si-III)
[17], and BCT-5 [18]; (ii) sc (simple cubic) and fcc crystal
for metallic behavior; and (iii) the graphitic structure fo
nontetrahedral hybridization [19]. These structures ha
coordinations 4, 6, 4, 5, 6, 12, and 3, respectively. W
consider only atomic volumes smaller thans3.54 Åd3 to
avoid the difficulty of LDA to represent accurately the
energies of isolated atoms [20]. Smooth interpolation
the LDA data and extrapolation to infinite volume with a
exponential tail are used. The LDA data points for th
diamond lattice with the interpolant are shown in the ins
of Fig. 1.

The inverted pair potential for the diamond curve, show
in Fig. 1, is clearly unphysical: Its long range and stron
repulsion at the first-neighbor distance contradict our i
tuitive understanding of covalent bonding. Similar resul
have been obtained in previous work applying the CG
formula to metals [7,13] and semiconductors [14]. Ou
recursive approach reveals that these problems are inh
ent to the inversion process, which, in spite of being exa
stretches the assumption of a volume-independent poten
to an unphysical extreme. Because inversion amounts
solving in order of decreasing distance from infinite separ
tion, the tail of the potential comes from unscreened inte
actions between atoms in a low density gaseous phase [
The same tail is then used to describe long range inter
tions in a bulk crystal, which are presumably screened
the presence of closer atoms. While the nature of scre
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FIG. 1. The inverted pair potential for silicon (i) before an
(ii) after a cutoff is imposed, compared withfSW srd (dashed
line). Numbers inside the figure indicate shell radii in th
diamond lattice. The inset shows the diamond LDA data a
the interpolant (i) before and (ii) after imposing a cutoff.

ing and its description by an effective potential are subjec
of active research, it is obvious that distant atoms in a bu
crystal cannot interact in the same way as atoms with t
same separation in a gas.

To rectify the inversion procedure, we forgo the re
quirement that the potential exactly reproduce theentire
cohesive energy curve. Instead, we focus on conden
volumes typical of solid and liquid environments, whos
exact energies can be preserved with any choice of tail
the potential. For Si, we find that exponential decay to
cutoff near the second-neighbor distance in the diamo
lattice, 3.84 Å, generates potentials in good agreeme
with bonding theory. For example, as shown in Fig.
we force the energy curve to be zero forr $ aSW ­
3.771 18 Å without disturbing energies within 10% of the
equilibrium bond length, where covalent bonds are we
defined, to produce an inverted pair potential with a de
minimum at the first-neighbor distance.

Applying the same procedure to the other curves in o
database, we obtain the potentials of Fig. 2. The lar
discrepancy between them is direct evidence for a we
known fact: the energetics of siliconcannot be described
by a pair potential alone[7]. Our results suggest,
however, that an environment-dependent pair poten
can describe the ideal bulk phases reasonably well. Th
is a clear coordination dependence to the curves: bo
lengths (positions of the minima) increase, and bo
strengths (depths of the minima) decrease with increas
coordination. This behavior can be described by t
bond-order formalism, which is justified on grounds o
theoretical arguments [6–9] as well as experience w
empirical potentials [3,22,23]. In its simplest form,
bond-order potential is given by

fsr , Zd ­ fRsrd 1 psZdfAsrd, (4)

wherefR andfA are monotonic repulsive and attractiv
terms, respectively, andpsZd gives the bond strength
as a function of the coordinationZ. The leading order
4371
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FIG. 2. Inverted pair potentials (with cutoff) for seven silico
bulk phases. The inset shows the implied bond orderp
extracted from these curves (points) compared to

p
4yZ (line).

ps1d reflects the Si2 bond length and energy [1].

approximation of the bond order ispsZd ~ Z21y2. Since
this comes from describing the local density of sta
by the bandwidth only, we expect the approximation
work well for the metallic phases withZ . 4 (BCT-
5, b-tin, sc, and fcc). For the covalent phases w
Z # 4 (diamond, BC-8, and graphite), band shape effe
become important, and we expect significant depart
from theZ21y2 behavior.

If the repulsive interactionfR were known, the bond-
order term could be extracted directly from theab initio
data, usingpsZd ­ VAsr0dyV dia

A sr0d, where VA ­ f 2

fR, r0 is the minimum of the inverted potentialf, and we
setp ­ 1 for the diamond lattice (Z ­ 4). The repulsive
term, intended to represent an effective force betwe
electrons due to Pauli exclusion, is the weakest link
bond-order models, since its form must be assumed
then fit to empirical data without theoretical guidanc
Although the general trend is insensitive to the choice
fR, we find that usingfR ­ 2f

SW
R , wheref

SW
R is the

repulsive part of the SW potential, produces apsZd which
lies remarkably close to its expected behavior (see inse
Fig. 2).

2. Angular forces.—While the energetics of bulk phase
can be fairly well described by a bond-order pair fun
tional, it is well known that many-body interactions wit
explicit angular dependence are required for silicon, for
ample, to stabilize the diamond lattice against shear st
[3,7]. As the simplest case of a many-body potenti
we consider one with volume-independent pair terms a
separable three-body terms like the potentials of SW a
Kaxiras and Pandey [5]. The many-body energy,Fsrd ­
Esrd 2 V2srd, formed by subtracting the pair termsV2srd
from the total energyEsrd, is expressed as a sum over pa
of bonds,

Fsrd ­
X

i

X
jfii

X
kfii,k.j

gsRijdgsRjkdhsuijkd, (5)

where cosuijk ­ R̂ij ? R̂jk . Following theory [6,7] and
practice [1], we assumeF $ 0, which implies that the
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pair potential comes from the diamond lattice inversi
described above. A particular form for the angular ter
hsud must be assumed in order to invertFfg, hg for the
radial functiongfF, hg. The procedure is the same as
the pair potential case: solve Eq. (5) forgsrd to obtain a
recursion. Grouping bonds into shells as above and tak
the positive root of the resulting quadratic equation yiel
the desired expression,

gsrd ­
2bsrd 1

p
bsrd2 1 4a11fFsrd 2 gsrdg

2a11
, (6)

whereapq ­
P

rij[Sp

P
rik[Sq

hsuijkd, bsrd ­
P`

p­2 a1p 3

gssprd, andgsrd ­
P`

p­2

P`
q­p apqgssprdgssqrd. In the

app sums, onlyk . j contributes to avoid double count
ing. An explicit formula like the CGE pair potential ca
be obtained by recursive substitution with Eq. (6) and
volves a tree of nested square roots. It is simpler to f
low the same computational procedure as before, solv
the recursion in order of decreasing distance start
at the cutoff. In principle, the same general procedu
can be applied to determine radial functions of oth
forms or for higher order terms in a cluster expansion
the effective potential. For example, for a nonsepara
three-body term involving three bond lengths, like the p
tential of Pearsonet al. [24], the recursion comes from
solving a cubic equation, and for a four-body term, a qu
tic equation.

As in the pair potential case, it is useful to invert mo
than one cohesive energy curve of the same material
gfF, hg srd. If the assumed angular dependencehsud (and
two-body terms) were truly transferable, then the sa
radial functiongsrd would result from every inversion.
Conversely, the greater the variance between the inve
gsrd, the less transferable is the assumedhsud. This
principle gives us aquantitativemeans of assessing th
quality of angular functions directly from theab initio
data. For example, although the SW angular functi
hsud ­ fcossud 1

1
3 g2, produces mediocre collapse of th

inverted gsrd, it is fortuitously far better than taking
hsud ­ fcossud 1

1
3 g4, due to the latter’s flatness near th

tetrahedral minimum.
Using the same principle, we can extract an optim

angular dependence from theab initio data by assum-
ing a series expansion,hsud ­

P2
i­0 cifcossud 1

1
3 g21i .

For the curve shown in Fig. 3 (defined byc0 ­ 1, c1 ­
21.86, c2 ­ 1.42), the collapse of radial functions from
the low-energy phases is rather good, as seen in the i
of Fig. 3. A novel feature of the inverted angular fun
tion is its skew about the minimum to favor smaller a
gles. This is consistent with the conclusion that existi
potentials tend to overpenalize angles smaller thanpy2
[1], which presumably leads to poor descriptions of su
faces, clusters, and certain defects. The skewed ang
function also raises the energy of overcoordinated meta
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FIG. 3. An inverted angular function for silicon from the BC
8, BCT-5, andb-tin energy curves compared withhSW sud. The
inset shows the collapse of the invertedgsrd with the average
curve (dashed line) andgSW srd (dotted line).

structures relative to covalent ones by penalizing large
gles. While it is typical to characterize metallic structur
by the presence of small angles [4], we note that me
lic structures tend to have angles nearp also. Covalent
bonds are actually characterized by angles in the interm
diate range,py2 to 2py3.

Although we are not attempting here to provide a
improved potential for Si, we have performed some te
of the potential obtained by the inversion just describ
[25] (in this proof-of-principle demonstration, we om
coordination dependence for practical reasons). We fi
that it performs as well as the popular SW and Ters
potentials without fitting to any defect structures, fo
energies of other silicon bulk phases, defects such
interstitials and vacancies, generalized stacking fau
the concerted exchange diffusion mechanism [5], a
(100) and (111) surface reconstructions. Consider
the database employed in the inversion, we conclu
that many important features of chemical bonding a
contained in cohesive energy curves for ideal bulk phas

In conclusion, we have presented a general procedure
inverting cohesive energy curves to obtain many-body
fective interatomic potentials. By invertingab initio cohe-
sive energy curves for silicon, we have demonstrated h
general features of bonding are revealed. Elsewhere
will describe extensions of these ideas, for example, to
inversion of energy curves for shear strains to obtain
angular functionhfF, gg sud directly. The inversion proce-
dure provides a systematic method for deriving interatom
potentials and a unique tool for understanding their gene
limitations through the direct use ofab initio data. It is
hoped that this tool will lead to potentials with improve
transferability, a goal that has proven elusive when p
sued by intuitive arguments and fitting of databases.
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