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Rigid H,O Molecule Model of Anomalous Thermal Expansion of Ices

Andrzej Katrusiak

Department of Crystallography, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Pd2okamd
(Received 10 July 1996

Structural details of hexagonali land cubic t ices, resulting from a combination between
H,O molecular and ice-lattice dimensions, reveal new features of the proton dynamics in hydrogen
bonds, applicable to all aggregates of water molecules. Coupling of proton transfers with reori-
entations of molecules induce systematic changes in the hydrogen-bond dimensions, e.g., a short-
ening of the O--O distances, and an anomalous thermal expansion of the ice crystals about
80 K. [S0031-9007(96)01671-7]

PACS numbers: 61.50.Ks, 65.70.+y, 92.40.Sn

Water is one of the most abundant substances and ifgotons [13], shown in Fig. 1. Of two symmetry-
role in many physical, chemical, or biological processesndependent hydrogen bonds one lies along [00.1] on a
cannot be overestimated. The relatively simplgOH crystal site ofD3, symmetry (e.g., OH--On Fig. 1), and
molecule is also a prototypic structure for studying a prothe other is centered on @,-symmetric position (e.g.,
ton transfer, aftere transfer the second most frequent OH--O" and O--HO'). Two symmetry-independent
chemical transformation in nature [1]. Properties of watelO---O---O angles are both close to the tetrahedral
and ices equally apply to simple hydrogen-bonded strucangle [7], thus markedly more open than the H—O—H
tures and to much more complex substances, proteinangle of the water molecule. The H—O—H angle
DNA and other biopolymers, containing up to 60% of of an isolated water molecule is 104.5423&nd the
water [2]. Protons are the dominant charge carriers itD—H distance is 0.9578478 A [14]. This geome-
hydrogen-bonded systems. Simple models, assuming tay may only slightly change in the molecular crystal
double-well potential of the H motion, well reproduce [15,16], which was confirmed by the second moment
such a subtle property of ices, as a nonmonotonic funcNMR studies of ice & [17]; also the D-O-D angles
tion of temperature of the soliton mobility in icehl (D denotes deuterium) in the ordered polymorphs of
about 200 K [3]. A proton transfer across cellular mem-heavy ice agree within experimental errors with the
branes is associated with possible coherence features @bove angle: 105.6(11)in ice VIl [18] and 105.4(6)
the proton motion [4]. All the theoretical and experimen-in ice IX [19]. Owing to much quicker electronic than
tal data indicate a strong coupling between H sites and lat-
tice vibrations [5]. Water and ices, particularly naturally
occurring on Earth icell stable down to 0 K and to pres-
sures of about 0.2 GPa, are the most intensively studied

hydrogen-bonded materials [6,7]; however, certain of their _r__,g?‘é'
structural properties still require explanation [8]. Three ETO
mechanisms of transformations of the hydrogen-bonded °
network in ice are considered in literature: intermolecular L]
proton hopping [9], molecular reorientations [9,10], and H
intramolecular proton migrations [11]. Their quantitative ‘g?r o' ,{1\0:"
contribution to proton dynamics is not certain [12], al- &‘C‘?}:‘?é Pyl &85 7780
though it is assumed that the H hopping prevails at lower "_'olx igg ot
temperatures [5]. Below it is shown that a combination i C i

of H,0O molecular dimensions with structural dimensions I .

of ice |k reveals new features which, when associated : H1

with the proton dynamics, afford straightforwardly an un- X ) 0 &0 w
derstanding of such a fundamental property of ice as its ¢ eVl b I s
negative thermal expansion below 100 K. The discussed o &Q/O Y
effects are irrespective of the mode of the ice-structure oy &
transformations; therefore, only the intermolecular H hop- H

ping is discussed in detail. : . .
. . FIG. 1. Fragment of theitice structure viewed perpendicular
At0.1 MPa and 273 K water crystallizes into a hexago'to [z]. Two sets of frozen H sites are indicated by open and

nal polymorph of ice &, space group &/mmc, with  plack circles; the covalent bonds of the former ones are drawn
tetrahedrally coordinated water molecules and disordereaks full lines and their hydrogen bonds as dashed lines.
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structural transformations, the,&8 molecular dimensions where ny is the O—H--O angle characterizing the
are unlikely to be distorted by the statical or dynamicalhydrogen bondu, is the H—O -- O’ angle, andu, the
disorder in the ice structures. Although precise resultdd--O’---O angle:

on the HO geometry in the disordered structures are

not available, this conclusion can be drawn by analogy pa = (0 = ma)/2, 2)
to the hydrogen-bonded ferroelectric crystals of the - . )
KH,PO, type, where protons become disordered in two Ha = sin[(da/do) sinpal: (3)

well resolved sites in the paraelectric phase. Precisg, is the O---O---O angle,n, is the H—O—H angle
structural data measured for such ferroelectric crystaland 4, the O—H covalent bond length, angj, is the
testify to the absence of detectable geometry changes iA--O distance:
the donor and acceptor groups when the protons become

disordered [20], even though the hydrogen bonds involv- d, = \/dj + r2 — 2d r cosuy, 4)
ing sp? and sp? oxygen atoms are considerably shorter
and stronger than in the ;@ ices. Moreover, it was

wherer is the O --O distance between the oxygens of
Haydrogen-bonded water molecules. For thgOHA ice

protons become disordered, either. Consequently, in th&t 80 K [7] and the theoretically determined molecular

Ih structure the O—H covalent bonds cannot lie alongtimensionsd, and Zd [14], 711, pra, @Ndd, are 176.21,

the O---O directions, but are diverted from them by 2'47;’ and 1'7|915b ,respecglvely.l I q ! di

about 2.5 to satisfy the rigid HO molecular dimensions,  1h€ Interplay between the molecular and crystal di-

for the D3, and C2,-symmetric hydrogen bonds similarly. Mensions in ice also affects the process of proton trans-

The O—H--O angles in the two hydrogen bonds ard€r between the hydrogen-bonded water molecules. This

both close to 1762[see Eq. (1) below], and each of the is illustrated in Fig. 3, showing an ice-structure fragment

% H sites indicated in Fig. 1 in fact consists of a group(Compare Fig. 1) undergo_lng a transformaﬂon: atom_H
1 . . . transfers from ® to O, which in accordance with Paul

of three ; H sites arranged in accordance with they,

; R .._ing's ice rule is accompanied by H transfers in the neigh-
or Cy;, symmetries, as shown in Fig. 2. The three site

oring hydrogen bonds: atom"H moves to @, and HY
are separated by a mere 0.075 A between themselves, t vegs fr)gm (g) to &. The rigid molecular geometry im-

¥)Iies that each H transfer can be considered to proceed in

available experimental methods [7]. o steps. In the first step the protons transfer between

Dimensions of a static hydrogen bond can be obtaine
from the interdependence of the molecular and crystal
dimensions:

e = 180° — wg — pa, 1)
OV["
oVI oVl QW&o  Qligow
‘020" Come "
L0 otwo Q oeor
OIX . .
Q oox

&, ORI
(a) (b)

FIG. 2. Schematic drawing of the time-averaged distribution
of the H sites (small circles) in th€,,-symmetric (a) and FIG. 3. Fragment of the 4l structure depicted in Fig. 1,
Dsj,-symmetric (b) hydrogen bonds viewed alon§-O OY and  showing schematically the process of H transfer. The initial
O---O! directions (compare Fig. 1), respectively. The smallstable sites of the H atoms are presented with full small circles
circles are the H sites located below the midpoint of the bondsand their bonds to the O atoms with solid lines. The virtual
slightly larger are the circles indicating the H sites above theH sites immediately after transfer are shown with open circles,
midpoint. The small and larger dots indicate the virtual Hand are indicated with arrows 1. The stable H sites after the
sites, described in the text, below and above the hydrogen-bond readjustments, indicated by arrows 2, are marked as open
midpoint, respectively. circles with dots inside, and their H—O bonds as open lines.
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oxygen atoms, as indicated by arrows 1 in Fig. 3. In-Pna2 [28], have not been confirmed, and the ice transfor-
stantaneously after the transfers, so formed water molenation is considered as a glassy one [27]. Diffraction
cule H'OH is unfavorably oriented with respect to the studies below 100 K provide space-averaged positions of
neighboring water molecules. To assume an energeticalthe atoms [7]. However, in annealed KOH-doped ize |
favored orientation, the molecule must readjust its oriena phase transition to the ferroelectric structure was ob-
tation in the way indicated by arrows 2 in Fig. 3 (com-served at 72 K [29], in accordance with theoretical pre-
pare the H sites shown in Fig. 2). In the discussion belowdictions [30,31]. The H motion halting coincides with the
the H sites immediately after the H transfer, before thdong-known anomalous thermal expansion of isg32],
molecular reorientation, will be referred to as virtual H which levels up about 100 K and becomes negative below
sites, the H sites after the molecular reorientation will be80 K [33].

referred to as the stable ones, and the orientation adjust- Dimensions of the two symmetry-independent hydro-
ments will be calledo adjustments. The virtual H sites, gen bonds in# at 60 K are identical within the experi-
marked near each stable H site in Fig. 2, are split due tomental errors, and remain identical at 123 and 223 K [7];
two possible sites of the H atom leaving the water mole-also the changes in O- O distancesAr, are similar. The
cule (HY in Fig. 3). The O--O distances corresponding changes in the unit-cell dimensions of ide depend di-

to the stable and virtual H sites,and r¥, are described rectly onAr:
by the formula

Aa = 2Ar,sin(n,/2), (8)
r=+ld} + d2 — 2dyd, cosny, 5
¢ d “ d i ®) Ac = 2Ar, — 2Ar, cosy,, (9)
rv = \/dgzz + d2 — 2d,d, cosny, (6) where Aa and Ac are the changes in unit-cell di-
respectively; where mensionsa and ¢, and Ar, and Ar. are changes in

v o_ o I . two symmetry-independent hydrogen bonds: G and
My = 1807 = pa = @ = sin[(da/da)sin(pa + Q)] 5 gy (Fig. 1), respectively. According to Ref. [33]
(7)  Aa is 0.00106(8) andAc is 0.0012(3) A, when ice/l
The ¢-adjustment angle is approximately equakh® x4, is cooled from 80 to 70 K. The corresponding short-
ie., 4.28. enings of the O--O distances [Egs. (8) and (9)] are
In the ice structure thep adjustments superimpose Ar, = 0.00065 A, and Ar. = 0.00082 A. These mag-
with other modes of vibrations of considerable amplitudesiitudes compared with the maximum shortening of the
[12]. As the ¢ adjustments are inherent parts of anyO---O distance; — r¥ [Egs. (5) and (6)] of 0.0088 A,
H-site changes, the effect of the adjustments on the allow the mean residence time of H atomg,, in ice Ik
structural dimensions depends on the time required by that 80 K to be assessed as of aboit!? s, the value be-
¢ adjustments to completer,,, compared to the mean ing in agreement with the experimental results cited above
residence timery of an H atom in a given position. [22,23].
Assessed from the O--H—O bending-force constant [21], In conclusion, the model of rigid water molecules
7o €equalsl.3 X 10713 s. The estimates ofy in ice are  accounts for the lengthening of the-OO distances
10713 s [22], while the relaxation time of the rotational of hydrogen bonds, and hence the negative thermal
diffusion measured for the overcooled water at 253 K isexpansion of the structure, when the H hopping is halted
2 X 10712 s[23]. Thus, in the dynamically disordergid | at about 80 K. The coupling between the H transfers and
structurer, is comparable to, or somewhat shorter thanmolecular reorientations is intrinsic to all aggregates of
T, and a substantial number of the molecules are in &,0 molecules, where angles H—O—H do not ideally
stage of thep adjustments. This influences the averagematch the Q--O---O angles. This type of coupling is
O---0 distances, which becomes shorter thamwing to  present in all supramolecules of,® on disordering of
some contribution of?, and may be regarded as a time protons, and in all transformable structures with bistable
weighted average of and r¥. This contribution ofr?  hydrogen bonds: substances like NHH,S, or HCI,
disappears for the structure with proton motions frozen outhonsolvate and inclusion compounds or biopolymers, e.g.,
The residual entropy of ice was connected with pro-see [4,34,35]. In particular, it can be predicted that the
ton disorder by Pauling [24], and the thermal equilibra-cubic polymorph ¢ of ice will also exhibit a negative
tion observed about 100 K was associated with freezing afhermal expansion at about 80 K, although no such an
the H motion [25]. More recent reinvestigations indicatedexperimental evidence is presently available. In the
that the relaxation heat capacity anomaly about 100 K fodiamond-type ¢ structure all hydrogen bonds are centered
H,), and 115 K for QO ices is connected with the very on the crystal sites ab;, symmetry, but they are nearly
initial stage of the freezing process [26], which takes placeédentical with theC,,-symmetric hydrogen bonds of ice
at considerably lower temperatures [27]. The theoretii{h [see Figs. 1 and 2(a)] [36]. The results presented
cally postulated ambient-pressure orthorhombic phases diere also indicate that the structural mechanism of the
ice, ferroelectric of space group Cma& antiferroelectric  anomalous expansion of ices is more complex than that of
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