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H® h: A Jahn-Teller Coupling That Really Does Reduce the Degeneracy of the Ground State
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In all linear Jahn-Teller (JT) systems studied to date, the ground state, after allowing for the vibronic
interaction, has always been of the same symmetry as the original electronic state. Furthermore, the
ground state remains the same symmetry for all coupling strengths. We now report results for the
H ® h JT system (as occurs in various states of thg i@olecule) where this is not the case. There
are two possible types of JT effects in this system, depending upon whethesr Ds, extrema are
absolute minima. For the case b; minima, we find that for couplings above a certain value the
ground state is aiA-type singlet, rather than the expectdetype quintet. [S0031-9007(96)01520-7]

PACS numbers: 61.48.+c, 71.20.Tx

In their 1937 paper [1] introducing what is now called containsH twice. There are thus two independent sets
the Jahn-Teller (JT) effect, Jahn and Teller discussed thef Clebsch-Gordan (CG) coefficients which describe the
stability of molecules with degenerate electronic statesgoupling of h-type vibrations to anH-type electronic
and concluded thatstability and degeneracy are not state. However, it is not possible to define the two sets
possible simultaneously unless the molecule is a lineauniquely.
one” They pointed out that distorted configurations of Earlier attempts at solving th& ® i problem have
a molecule can be expected to exist and be more stablesed a particular choice of CG matrices which leads
than the original symmetrical configuration. Thus theto a Hamiltonian of SO(3) symmetry [4] and thus to a
electronic degeneracy is removed or reduced from that ahinimal trough on the energy surface. When a more
the original degenerate electronic state. It was Van Vleckjeneral choice of CG matrices is taken [5], it is found
[2] in 1939, referring to a case of threefold electronicthat there are minimal points dbs;; and Ds; symmetry.
degeneracy, who pointed out explicitly that When the These points lie on the trough found in the earlier
Jahn-Teller effect “rescues” the atom from a degeneratework. We will follow the choice of matrices used
trigonal state, it is only the instantaneous field that is ofin Ref. [5], and label the two corresponding coupling
less than trigonal symmetry...there are always three coefficientsV, and V,. With this choice, the positions
possible directions of distortion from trigonal symmetry of the Ds; minima are found to be independent Wf,
which are on a par. Because of the “tunnel” effect thereand the positions of thé;,; minima are independent
is bound to be resonance through the different equivalenof V,. There are alsd,, extrema, but they can never
configurations. be absolute minima. In this Letter, we will consider

Over the years since then, the effect of this tunnelinghe D3;; minima only, so we will not consider th&,
has been followed in many different symmetries andcoupling.
degeneracies. So far, the degeneracy of the ground stateOnly the static JT problem has been solved previously
at strong linear coupling after tunneling has been takein the H ® i system for the case of distinct minima. In
into account has always turned out to be the same ahis paper, the dynamic JT problem will be solved by
that of the original electronic state [3]. It is also the caseallowing tunneling between thB;,; minima. We find that
that wherever the degeneracy of the ground state has be#re ground state at strong coupling is a singlet, and not the
followed through from weak to strong coupling it remains quintet that experience leads us to expect. Along the line
the same throughout; there is no crossover of eigenstaté®m weak to strong coupling, there is a crossover of the
as the coupling strength changes. Now, however, wground states.
can report results for th& ® i JT system where thisis  The interaction Hamiltonian foH ® i, when coupling
different. to theV; mode only is considered, can be written in terms

The H ® h JT effect can occur in a molecule whose of the CG coefficients given in Fowler and Ceulemans
overall symmetry is icosahedrél,), such as the fullerene [6]. Their coordinate system has #sxis along a twofold
Ceo. The fivefold representatiomd is the largest ir- axis, and is consistent with that used in Ref. [7]. The
reducible representation among the molecular pointmodes, which are linear combinations of the hydrogenlike
groups. It is peculiar in not being simply reducible; d orbitals, are labeled, €, 4, 5, and 6. The result in
the symmetric part of the Kroneker squafé ® H  matrix form is
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The vibrational part of the Hamiltonian is written in thle energy is
2 2
usual form £ 2 Ki wherek? — Vl_ﬁ_ 4
1 P% ) 9 hw J70)
Hyip = ) Z[; + pwQ; } @) The ground states of the transformed Hamiltonian may

be transformed back to the original space by multiplying
where u is the nuclear mass. Quadratic coupling andthem by the value oU after substitution of the appropri-
higher order terms in the Hamiltonian will be neglected,ate a;'s. These untransformed states will be denoted by

so that the total Hamiltonian § = Hj, + Hyip. x"". They are automatically vibronic as th#s contain
Following the method of Bates, Dunn, and Sigmundphonon operators.
[8], a unitary transformation of the form In infinite coupling, the system is localized in one of
the (infinitely deep) minima so that the vibronic states
= exp|: Z a; :| (3) so far obtained are eigenstates of the system. However,
for finite coupling strengths, tunneling will occur and the

. — correct states will be linear combinations of these states.
can be applied to the Hamiltonian to translate the coorpyqiaction operator techniques can be used to determine
dlnatgs Q’ to p03|t|(_)?s(QA,- — a;h). The tr{ingformed the required linear combinations [10]. This results in
Hamiltonian # = U~ HU may then be split into o yinronic states ofH, G, and A symmetries. It is only
parts: H; which depends only on the parametets,  pecessary to know one component of each state in order

and /1, which contains the operato®; and Q;. As all 1 getermine the energies of the vibronic mulitplets. We
the terms inA, contain phonon operator#], is a good may use

Hamiltonian for determining the ground states of the sys- 1
tem in strong coupling. It may be obtained by replacing|H;¢) = ——= N3?[e” + f" + ¢" + h" — 2i" — 2j"],
eachQ; by —a;# in the untransformed Hamiltonian and 2\/_
neglecting the term i?;. The values okx; are fixed by 1G4y = Ha" + b" — " = d" - 2" + 2f"],
minimizing the energy of the system. 2\/_
The easiest method of diagonaliziig is that of Opik  and
and Pryce [9], applied in the transformed space. The 1
resulting calculation is then very similar to that carried out 1A%y = 710 f\d[z X”} (x =atoj), (5)

previously by Ceulemans and Fowler [5]. The electronic
states for theDs, wells are summarized in Table I. Their where theN{ are normalization constants. The required
energies can be found after the normalization factors and
matrix elements oH between the untransformed states
have been evaluated [11]. The matrix element Hof

TABLE I. Electronic eigenstates faps;, minima. . .
g sl between any well and itself is found to be

5 2 K}
Label Electronic state Hyo = = ho — = L. (6)
2 9 hw
a % 0,0,1,1,1) All of the matrix elements between different wells can be
b L 0,0.1,~1,-1) expressed in terms of the matrix elements between wells
L 0.0 L1 -1 a andb and between wella ande, namely,
C — J— —
\qg( b 9 9 9 ) H S < 5 h 14 Kl >
= =1,—- ab = Vab|\ 7 W —
e — (1. —/3 5 10 K
1\/6 (19 \/3s \/53030) Hag — Sae( hw —_ _1>
f 7 (1,—V3,-+2,0,0 2 27 he
1 respectively, whereS,, and S,. are the corresponding
g e (1,30, \/E’_O) overlaps, given by
h ﬁ(l,\/g,o,—\/lo) ¢ 1 ex;{ 8 <K1> }
. | = ——
i 7 (=v2,0,0,0,—1) b 3 27 hw2 ®)
. 1
j L (-v2,0,0,0,1) 5. =L exp{_i<_> }
L @ =3 27 \hw) |
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These result in energies for the G, andA states of
Haa - 2Hab + Hae

Ey

1 — 285 + See 8

EG _ Haa + Hab__ 2Hae i (9) ;

1+ Sup — 284 £

g, — Ha * 6Hap + 3Hae ;3

1 + 6S. + 384 s

Figure 1 shows a plot of the two possible inversion ’g

splittings, E4 — Ey and Eg — Ey, as a function of

Ki/hw. It is found that theA and H states become 01P 1 2 3 6 K/?ﬁﬁ)
degenerate whek, /i = 3,/—3 IN(3/v2 — 2) = 3.77 !
and that theA state will be lowest in energy for all cou- 1. Inversion splitting vk, /fie for Dy, minima

plings stronger than this. This means that the inclusion
of the JT effect has changed the ground state of the sys-
tem from a quintet electronic state to a singlet vibronicparametrization of the coordinate space is used that
state. We have also performed the above calculations imnaps the minimal points onto a spherical subspace.
cluding anisotropy (via a scale transformation) and obtairThe trigonal D3, points are mapped onto the vertices
this same result. of a dodecahedron and the pentagofm|; points are

It is possible to look at the appearance of a singletmapped onto the centers of the faces of the dodecahe-
ground state from another point of view. In the adiabaticdron. We note that the mapping puts each point onto
approximation at strong coupling, the wave functionsthe sphere twice. The duplicated points are related by
can be written as products of an electronic part and @version. TheDs,; points that are nearest neighbors
vibrational part W (r, Q) = i.(r,Q)®(Q). The normal on the sphere are also nearest neighbors in the whole
coordinatesQ appear as parameters in the electronicconfiguration space. Close to the center of the edge be-
statesi.(r, Q), and ®(Q) carries the variation off in  tween every pair is one of the,; saddle points.
coordinate space. As above, the ground states in finite The phase tracking was done along the lines on the sur-
coupling must be linear combinations of these states. Thface of the sphere that join nearest neighbor wells. We
correct symmetry adapted forms must take into accourfound that there is no phase change around a pentagonal
the phase changes @f,—the Berry phase—as well as closed path made up of such lines. Hence there is no elec-
of the transformation properties of the(Q). We will  tronic phase change around any closed path through nearest
show that, in the case considered here, there is no Bernyeighbor wells made up of such lines. Consequently, the
phase change, and so verify that the symmetry adaptqguhase change between any pair of nearest neighbor wells
states obtained in Eq. (5) witfy, > 0 andS,, = O must must be zero. Itis this absence of any phase change that
be valid in the strong coupling limit. The state with gives rise to the singlet ground state. The absence of a
lowest energy is that with maximum overlap, which isphase change in this case is surprising. For convenience
then clearly the singlet state. in discussing this apparent anomaly, we rewrite the matrix

The phase ofi,; was tracked numerically using the Hj, (1) in terms of a coordinate system with theaxis
technique described by Cullerne and O'Brien [12]. r&along aDs, direction, giving

0 -3¢ V343 V3q4 —/3¢s
—\/§Q2 _\/§q1 —q4 —qg3 — (s —q2 + qa —q3
Hyc| 3¢z —a3—q5 3aq1 — @ —gs —g> —qs |, (10)
V3qs —qt @ —qs 31+ g2 —q3 t gs
—/3gs —q3 ~¢—qs  —q3+qs —Bq +aq

where the components of tthemode and thé1 electronic |
bases foiH},, are parametrized in terms of spherical polar
coordinates using the relations

g1 =70 — 2> —y) = 7(3cos 0 — 1),

g2 = V3xz = 2 /3sin260 cos ,

g3 = V3xy = 3/3sin 0 sin2¢, (11)
gs = 33 (x* — y?) = 1 /3sin 6 cos2eh,

gs = V3yz = 2 /3sin26sing .
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This also gives the values of tgg on the spherical surface.
Berry’s analysis [13] shows explicitly that for a degen-
eracy of the type shown in (12) there is a phase change
of 7 as the electronic state is taken round any closed path
encircling the degeneracy. Ham [14] noted the connection
between this phase change and the appearance of a degen-

eracy in the ground state of tle® ¢ JT system. We must
ask why it is that a phase change is not found in the case
considered here. To examine this, we lookrt, (10).
OneDs, pointis atd = 0, where onlyg, is nonzero. The
lowest roots neaf = 0 correspond to the second and fifth
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electronic bases, and the linear interaction between these The path around the edges of the pentagon can be trans-
bases near the point can be extracted fidp in the form  formed continuously and without crossing any degener-
acy into a path that goes tightly around the degeneracy at
MO = [ 94 g3 } (12) 6 = 0 on the spherical surface. At tiee= 0 point, the
43 744 spherical surface is tangential to tfe, g5} plane, and
orthogonal to thdgs, g4} plane. As we have seen, a path
in the {¢», g5} plane induces no phase change. Conse-
quently, it is reasonable that no phase change is induced
by traversing the pentagonal path.
In summary, we have found that the JT effect can
change the symmetry of the ground state of e’ &
T system. This has never been seen before in any other
system, and indeed it has been generally assumed
(although no proof has been given) that JT effects cannot
alter the symmetry of the ground state [3]. This change

where a diagonal term+/3 ¢, has been subtracted. This
matrix is in the standard form for a conicdl, ® e type
degeneracy, where themodes are the paiigs, g4}. It
will induce a phase change af on going round a circle
that encloses the origin idqs, g4} space. The other
pair of modes{q,, gs}, only appear in this interaction to
second order. These second order terms can be found
perturbation withinH},, and this part of the interaction
can be written, after subtracting2(¢3 + ¢2) from the

diagonal, as in symmetry has important consequences for the theory of
23 @ - 42 —3¢2gs vibronic reduction factors, which assumes no change in
M = 2 (13)  symmetry. Although there is no problem with reduction

B 2@ dd) | factors as defined for previous JT systems, a new concept
2 must be used for thé? ® & system. This may have
important consequences for the study of all icosahedral

M® is in the same form as a second ordem® ¢2 JT . . .
systems, including § molecules and $j clusters.

interaction, with thee modes now represented by the
{92. g5} pair.
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