
VOLUME 77, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 18 NOVEMBER 1996

e

4

H≠ h: A Jahn-Teller Coupling That Really Does Reduce the Degeneracy of the Ground Stat
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In all linear Jahn-Teller (JT) systems studied to date, the ground state, after allowing for the vibronic
interaction, has always been of the same symmetry as the original electronic state. Furthermore, the
ground state remains the same symmetry for all coupling strengths. We now report results for the
H ≠ h JT system (as occurs in various states of the C60 molecule) where this is not the case. There
are two possible types of JT effects in this system, depending upon whetherD3d or D5d extrema are
absolute minima. For the case ofD3d minima, we find that for couplings above a certain value the
ground state is anA-type singlet, rather than the expectedH-type quintet. [S0031-9007(96)01520-7]

PACS numbers: 61.48.+c, 71.20.Tx
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In their 1937 paper [1] introducing what is now calle
the Jahn-Teller (JT) effect, Jahn and Teller discussed
stability of molecules with degenerate electronic sta
and concluded that “stability and degeneracy are no
possible simultaneously unless the molecule is a lin
one.” They pointed out that distorted configurations
a molecule can be expected to exist and be more st
than the original symmetrical configuration. Thus t
electronic degeneracy is removed or reduced from tha
the original degenerate electronic state. It was Van Vl
[2] in 1939, referring to a case of threefold electron
degeneracy, who pointed out explicitly that “…when the
Jahn-Teller effect “rescues” the atom from a degener
trigonal state, it is only the instantaneous field that is
less than trigonal symmetry.…there are always three
possible directions of distortion from trigonal symme
which are on a par. Because of the “tunnel” effect the
is bound to be resonance through the different equiva
configurations.”

Over the years since then, the effect of this tunnel
has been followed in many different symmetries a
degeneracies. So far, the degeneracy of the ground
at strong linear coupling after tunneling has been ta
into account has always turned out to be the same
that of the original electronic state [3]. It is also the ca
that wherever the degeneracy of the ground state has
followed through from weak to strong coupling it remai
the same throughout; there is no crossover of eigens
as the coupling strength changes. Now, however,
can report results for theH ≠ h JT system where this i
different.

The H ≠ h JT effect can occur in a molecule who
overall symmetry is icosahedralsIhd, such as the fulleren
C60. The fivefold representationH is the largest ir-
reducible representation among the molecular p
groups. It is peculiar in not being simply reducibl
the symmetric part of the Kroneker squareH ≠ H
362 0031-9007y96y77(21)y4362(4)$10.00
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containsH twice. There are thus two independent se
of Clebsch-Gordan (CG) coefficients which describe t
coupling of h-type vibrations to anH-type electronic
state. However, it is not possible to define the two s
uniquely.

Earlier attempts at solving theH ≠ h problem have
used a particular choice of CG matrices which lea
to a Hamiltonian of SO(3) symmetry [4] and thus to
minimal trough on the energy surface. When a mo
general choice of CG matrices is taken [5], it is foun
that there are minimal points ofD3d and D5d symmetry.
These points lie on the trough found in the earli
work. We will follow the choice of matrices use
in Ref. [5], and label the two corresponding couplin
coefficientsV1 and V2. With this choice, the positions
of the D5d minima are found to be independent ofV1,
and the positions of theD3d minima are independen
of V2. There are alsoD2h extrema, but they can neve
be absolute minima. In this Letter, we will conside
the D3d minima only, so we will not consider theV2
coupling.

Only the static JT problem has been solved previou
in the H ≠ h system for the case of distinct minima. I
this paper, the dynamic JT problem will be solved
allowing tunneling between theD3d minima. We find that
the ground state at strong coupling is a singlet, and not
quintet that experience leads us to expect. Along the
from weak to strong coupling, there is a crossover of
ground states.

The interaction Hamiltonian forH ≠ h, when coupling
to theV1 mode only is considered, can be written in term
of the CG coefficients given in Fowler and Ceulema
[6]. Their coordinate system has itsz axis along a twofold
axis, and is consistent with that used in Ref. [7]. Theh
modes, which are linear combinations of the hydrogenl
d orbitals, are labeledu, e, 4, 5, and 6. The result in
matrix form is
© 1996 The American Physical Society
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266664
3Qu 23Qe 2Q4 2Q5 2Q6

23Qe 23Qu

p
3 Q4 2

p
3 Q5 0

2Q4
p

3 Q4 2Qu 1
p

3 Qe 22
p

2 Q6 22
p

2 Q5

2Q5 2
p

3 Q5 22
p

2 Q6 2Qu 2
p

3 Qe 22
p

2 Q4

2Q6 0 22
p

2 Q5 22
p

2 Q4 2Qu
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The vibrational part of the Hamiltonian is written in th
usual form

Hvib ­
1
2

X
i

∑
P2

i

m
1 mv2Q2

i

∏
, (2)

where m is the nuclear mass. Quadratic coupling an
higher order terms in the Hamiltonian will be neglecte
so that the total Hamiltonian isH ­ Hint 1 Hvib.

Following the method of Bates, Dunn, and Sigmun
[8], a unitary transformation of the form

U ­ exp

"
i

X
j

ajPj

#
(3)

can be applied to the Hamiltonian to translate the co
dinatesQj to positions sQj 2 aj h̄d. The transformed
Hamiltonian H̃ ­ U21HU may then be split into two
parts: H̃1 which depends only on the parametersaj,
and H̃2 which contains the operatorsPj and Qj. As all
the terms inH̃2 contain phonon operators,̃H1 is a good
Hamiltonian for determining the ground states of the sy
tem in strong coupling. It may be obtained by replacin
eachQj by 2aj h̄ in the untransformed Hamiltonian and
neglecting the term inPj . The values ofaj are fixed by
minimizing the energy of the system.

The easiest method of diagonalizingH̃1 is that of Öpik
and Pryce [9], applied in the transformed space. T
resulting calculation is then very similar to that carried o
previously by Ceulemans and Fowler [5]. The electron
states for theD3d wells are summarized in Table I. Thei

TABLE I. Electronic eigenstates forD3d minima.

Label Electronic state

a 1
p

3
s0, 0, 1, 1, 1d

b 1
p

3
s0, 0, 1, 21, 21d

c 1
p

3
s0, 0, 21, 1, 21d

d 1
p

3
s0, 0, 21, 21, 1d

e 1
p

6
s1, 2

p
3,

p
2, 0, 0d

f 1
p

6
s1, 2

p
3, 2

p
2, 0, 0d

g 1
p

6
s1,

p
3, 0,

p
2, 0d

h 1
p

6
s1,

p
3, 0, 2

p
2, 0d

i 1
p

3
s2

p
2, 0, 0, 0, 21d

j 1
p

3
s2

p
2, 0, 0, 0, 1d
d
,

d

r-

s-
g

e
t

ic

energy is

E ­ 2
2
9

K2
1

h̄v
whereK2

1 ­
V 2

1 h̄
mv

. (4)

The ground states of the transformed Hamiltonian m
be transformed back to the original space by multiply
them by the value ofU after substitution of the appropr
ateaj ’s. These untransformed states will be denoted
x00. They are automatically vibronic as theU’s contain
phonon operators.

In infinite coupling, the system is localized in one
the (infinitely deep) minima so that the vibronic sta
so far obtained are eigenstates of the system. Howe
for finite coupling strengths, tunneling will occur and t
correct states will be linear combinations of these sta
Projection operator techniques can be used to determ
the required linear combinations [10]. This results
vibronic states ofH, G, and A symmetries. It is only
necessary to know one component of each state in o
to determine the energies of the vibronic mulitplets. W
may use

jH3d
u l ­

1

2
p

3
N3d

H fe00 1 f 00 1 g00 1 h00 2 2i00 2 2j00g ,

jG3d
x l ­

1

2
p

3
N3d

G fa00 1 b00 2 c00 2 d00 2 2e00 1 2f 00g ,

and

jA3d
a l ­

1
p

10
N3d

A

∑X
x

x00

∏
sx ­ a to jd , (5)

where theN3d
G are normalization constants. The requir

energies can be found after the normalization factors
matrix elements ofH between the untransformed stat
have been evaluated [11]. The matrix element ofH
between any well and itself is found to be

Haa ­
5
2

h̄v 2
2
9

K2
1

h̄v
. (6)

All of the matrix elements between different wells can
expressed in terms of the matrix elements between w
a andb and between wellsa ande, namely,

Hab ­ Sab

µ
5
2

h̄v 2
14
27

K2
1

h̄v

∂
,

Hae ­ Sae

µ
5
2

h̄v 2
10
27

K2
1

h̄v

∂
,

(7)

respectively, whereSab and Sae are the correspondin
overlaps, given by

Sab ­ 2
1
3

exp

∑
2

8
27

µ
K1

h̄v

∂2∏
,

Sae ­
1
3

exp

∑
2

4
27

µ
K1

h̄v

∂2∏
.

(8)
4363
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These result in energies for theH, G, andA states of

EH ­
Haa 2 2Hab 1 Hae

1 2 2Sab 1 Sae
,

EG ­
Haa 1 Hab 2 2Hae

1 1 Sab 2 2Sae
, (9)

EA ­
Haa 1 6Hab 1 3Hae

1 1 6Sab 1 3Sae
.

Figure 1 shows a plot of the two possible inversio
splittings, EA 2 EH and EG 2 EH , as a function of
K1yh̄v. It is found that theA and H states become
degenerate whenK1yh̄v ­

3
2

p
23 lns3y

p
2 2 2d ø 3.77

and that theA state will be lowest in energy for all cou
plings stronger than this. This means that the inclus
of the JT effect has changed the ground state of the s
tem from a quintet electronic state to a singlet vibron
state. We have also performed the above calculations
cluding anisotropy (via a scale transformation) and obt
this same result.

It is possible to look at the appearance of a sing
ground state from another point of view. In the adiaba
approximation at strong coupling, the wave functio
can be written as products of an electronic part and
vibrational part,Csr, Qd ­ celsr, QdFsQd. The normal
coordinatesQ appear as parameters in the electron
statescelsr, Qd, andFsQd carries the variation ofC in
coordinate space. As above, the ground states in fi
coupling must be linear combinations of these states.
correct symmetry adapted forms must take into acco
the phase changes ofcel —the Berry phase—as well a
of the transformation properties of theFsQd. We will
show that, in the case considered here, there is no B
phase change, and so verify that the symmetry adap
states obtained in Eq. (5) withSae . 0 andSab ø 0 must
be valid in the strong coupling limit. The state wit
lowest energy is that with maximum overlap, which
then clearly the singlet state.

The phase ofcel was tracked numerically using th
technique described by Cullerne and O’Brien [12].
a
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FIG. 1. Inversion splitting vsK1yh̄v for D3d minima.

parametrization of the coordinate space is used
maps the minimal points onto a spherical subspa
The trigonal D3d points are mapped onto the vertic
of a dodecahedron and the pentagonalD5d points are
mapped onto the centers of the faces of the dodec
dron. We note that the mapping puts each point o
the sphere twice. The duplicated points are related
inversion. TheD3d points that are nearest neighbo
on the sphere are also nearest neighbors in the w
configuration space. Close to the center of the edge
tween every pair is one of theD2h saddle points.

The phase tracking was done along the lines on the
face of the sphere that join nearest neighbor wells.
found that there is no phase change around a pentag
closed path made up of such lines. Hence there is no e
tronic phase change around any closed path through ne
neighbor wells made up of such lines. Consequently,
phase change between any pair of nearest neighbor w
must be zero. It is this absence of any phase change
gives rise to the singlet ground state. The absence
phase change in this case is surprising. For convenie
in discussing this apparent anomaly, we rewrite the ma
Hint (1) in terms of a coordinate system with thez axis
along aD5d direction, giving
H 0
int ~

2666664
0 2

p
3 q2

p
3 q3

p
3 q4 2

p
3 q5

2
p

3 q2 2
p

3 q1 2 q4 2q3 2 q5 2q2 1 q4 2q3p
3 q3 2q3 2 q5

p
3 q1 2 q2 2q5 2q2 2 q4p

3 q4 2q2 1 q4 2q5
p

3 q1 1 q2 2q3 1 q5

2
p

3 q5 2q3 2q2 2 q4 2q3 1 q5 2
p

3 q1 1 q4

3777775 , (10)
e.
n-
nge

path
tion
egen-
t

case

fth
where the components of theh mode and theH electronic
bases forH 0

int are parametrized in terms of spherical pol
coordinates using the relations

q1 ­
1
2 s2z2 2 x2 2 y2d ­

1
2 s3 cos2 u 2 1d ,

q2 ­
p

3 xz ­
1
2

p
3 sin2u cosf ,

q3 ­
p

3 xy ­
1
2

p
3 sin2 u sin2f , (11)

q4 ­ 1
2

p
3 sx2 2 y2d ­ 1

2

p
3 sin2 u cos2f ,

q5 ­
p

3 yz ­
1
2

p
3 sin2u sinf .
r
This also gives the values of theqi on the spherical surfac

Berry’s analysis [13] shows explicitly that for a dege
eracy of the type shown in (12) there is a phase cha
of p as the electronic state is taken round any closed
encircling the degeneracy. Ham [14] noted the connec
between this phase change and the appearance of a d
eracy in the ground state of theE ≠ e JT system. We mus
ask why it is that a phase change is not found in the
considered here. To examine this, we look atH 0

int (10).
OneD5d point is atu ­ 0, where onlyq1 is nonzero. The
lowest roots nearu ­ 0 correspond to the second and fi
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electronic bases, and the linear interaction between th
bases near the point can be extracted fromH 0

int in the form

Ms1d ­

∑
2q4 2q3

2q3 2q4

∏
, (12)

where a diagonal term2
p

3 q1 has been subtracted. Thi
matrix is in the standard form for a conical,E ≠ e type
degeneracy, where thee modes are the pairhq3, q4j. It
will induce a phase change ofp on going round a circle
that encloses the origin inhq3, q4j space. The other
pair of modeshq2, q5j, only appear in this interaction to
second order. These second order terms can be found
perturbation withinH 0

int and this part of the interaction
can be written, after subtracting22sq2

2 1 q2
5d from the

diagonal, as

Ms2d ­

2664 2
3
2

sq2
2 2 q2

5d 23q2q5

23q2q5
3
2

sq2
2 2 q2

5d

3775 . (13)

Ms2d is in the same form as a second orderE ≠ e2 JT
interaction, with thee modes now represented by th
hq2, q5j pair.

We can understand the form ofMs1d and Ms2d in
terms of the reduction of symmetry fromIh to D5d .
This reduction splits anH representation inIh into
A1 © E1 © E2 representations ofD5d . Now in D5d the
productE1 ≠ E1 containsE2 but not E1, while E2 ≠ E2
containsE1 but notE2. As a result, it is possible to have
E1 ≠ e2 andE2 ≠ e1 linear JT systems. Furthermore, th
quadratic JT systems areE1 ≠ e2

1 and E2 ≠ e2
2. If the

bases forMs1d and Ms2d (i.e., the bases 2 and 5 ofH 0
int)

spanE1 then Ms1d corresponds toE1 ≠ e2 and Ms2d to
E1 ≠ e2

1. Similar results can be obtained forE2.
The differing effects ofMs1d and Ms2d can be seen

by following the usual treatment of theE ≠ e case and
puttingq4 ­ q0 cosa, q3 ­ q0 sina so that

Ms1d ­ q0

∑
2 cosa 2 sina

2 sina 1 cosa

∏
, (14)

which has eigenstates depending onay2 that produce
the phase change. Puttingq2 ­ q0 cosa, q5 ­ q0 sina

gives

Ms2d ­
3
2

q2
0

∑
2 cos2a 2 sin2a

2 sin2a 1 cos2a

∏
, (15)

with eigenstates ina, and hence no phase change.
ese

by

The path around the edges of the pentagon can be t
formed continuously and without crossing any degen
acy into a path that goes tightly around the degenerac
u ­ 0 on the spherical surface. At theu ­ 0 point, the
spherical surface is tangential to thehq2, q5j plane, and
orthogonal to thehq3, q4j plane. As we have seen, a pa
in the hq2, q5j plane induces no phase change. Con
quently, it is reasonable that no phase change is indu
by traversing the pentagonal path.

In summary, we have found that the JT effect c
change the symmetry of the ground state of theH ≠ h
JT system. This has never been seen before in any o
JT system, and indeed it has been generally assu
(although no proof has been given) that JT effects can
alter the symmetry of the ground state [3]. This chan
in symmetry has important consequences for the theor
vibronic reduction factors, which assumes no change
symmetry. Although there is no problem with reducti
factors as defined for previous JT systems, a new con
must be used for theH ≠ h system. This may hav
important consequences for the study of all icosahe
systems, including C60 molecules and Si13 clusters.
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