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A “magnetohydrodynamiclike” theory has been previously developed for chaotic nonintegrable proton
orbits which occur in highly stressed magnetic configurations. In this paper we give the solution to
the Vlasov equation to next order in expansion of the particle bounce motion. The new contribution, a
Boltzmann-like operator, provides a collisionless dissipation mechanism which may destabilize drift or
drift ballooning Alfvén waves in highB plasmas. We discuss a number of applications of this new,
potentially reconnective, mechanism in the magnetosphere, in stellar wind formation, and in the galactic
dynamo. [S0031-9007(96)01701-2]

PACS numbers: 95.30.Qd, 52.30.—q, 52.35.Py, 94.30.Lr

In high temperature collisionless toroidal laboratorytion becomes nonintegrable as a result of the breaking of
plasmas, it is well known that electron Landau dampinghe invariance of the magnetic moment. Recently, this
replaces the mechanical electron-ion friction (resistivity)gap has been closed by solving the linearized (in electro-
and allows reconnection of the magnetic field lines.magnetic potential perturbation amplitude) Vlasov equa-
This reconnection of field lines through the equilibrium tion for the chaotic proton motion [11-15].
magnetic surfaces is commonly known as the tearing The nonintegrable proton orbits allow one to recover
mode. The theory behind this process has been workeal MHD-like theory with a modification of the polytropic
out in the past [1]. Thirty years ago a two-dimensionalindex, for waves with frequencies smaller than the average
(2D) version of this theory was subsequently applied tdounce frequency of protons [12,14,15]. Additionally, a
the stability of the geomagnetic tail by Copet al. [2] net dropoff potential®,, along field lines was found by
as a theory of substorms. This idea became a subjecarefully analyzing the quasineutrality equation for low
of both theoretical and observational interest for manyfrequency waves [13,15], as a consequence of the fast
years, since it had the potential to explain the “substornelectron bounce motion along the magnetic field line.
breakup” and auroras by leading to the formation of It is the purpose of this Letter to go further in this
neutral lines in the Earth’'s magnetosphere. analysis of 2D magnetic field equilibria (with 3D pertur-

This 2D line reconnection for antiparallel magnetic bations) where the proton motion beconmesadiabatic.
field lines was later shown to be a very unlikely scenarioAs a result of our continued analysis we find that we are
[3-5]. The reason is that the existence of a finite, buforced into accepting a new paradigm for dissipation in
small, normal component of the magnetic fieRl,, in-  reconnection regions. This new mechanism results from
duces a strong stabilizing compression of the electron gas Boltzmannian type collision term which arises naturally
moving in a tearing electromagnetic field. Meanwhile,from the expansion of the solution of Vlasov equation to
in situ magnetospheric measurements of the ionospherisecond order in the wave frequenay)(over the typical
currents and satellite observations have demonstrated thatoton bounce frequencyy,).
the “substorm breakup” phenomena is highly localized in  Originally, we were motivated by method of charac-
longitude and usually located in the vicinity of geosyn-teristics solutions, via computer, of the Vlasov equation
chronous orbit in a narrow cusp field region [6—9]. Thes€11,12] in which proton density fluctuations clearly ex-
experimental features are in conflict with what is expectedibit a Poisson distribution with probability of the order
from a linear tearing mode. of wr, Wherer, =2 [ di/vy is half the bounce time.

The failure of the previous theoretical attempts and theAlso, we were aware of the destabilizing effect, on low
observations led Pellat [5] to propose that magnetohyfrequency waves, of high frequency turbulence [16].
drodynamiclike (MHD-like) modes with short transverse  When a proton flows along a field line that has a small
wavelength could be responsible for three-dimensionategion where the radius of curvature is comparable to
(3D) magnetic field reconnection. These modes had akhe proton Larmor orbit radius (a cusp), it can suffer an
ready been proposed for the substorm breakup [6,10], bwéffectivecollision. That is, in such a region the proton’s
with a nonrelevant theory. A first, now obvious, step wasmagnetic moment is not conserved and can take on any
still missing. Beforereconnection occurs the proton mo- value with uniform probability (to very good accuracy)
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[11,12]. This suggests tha solution of the Vlasov Now, the motion of the proton is adiabatic except where
equation can be obtained by treating the proton motion ast crosses the field reversal plane (see Fig. 1) at 0.
adiabatic in the strong magnetic field region and applyingTo obtain the solution fog, we have to solve a random
a random walk (in magnetic moments) in the narrow weakvalk problem, each “collision” with the midplane being
field region where the field radius of curvature is small.independent. To lowest order the result is a phase mixed
Clearly, this picture suggests a strong collision operatoresponse [11,12]. Using the symmetry of the proton
of the Boltzmann type. From previous work [16], we motion on the adiabatic part of its trajectory with the
already know that Fokker-Planck theory is adapted to dormal solution of Eq. (1) for streaming and antistreaming
“weak nonadiabaticity.” protons to first order inw7, we obtain the integration

One has to solve the linearized Vlasov equation for theeonstant of (1). Retaining terms up to second order in
plasma distribution functionf, along the proton motion w7, we findg = g, + g> where
parallel to the equilibrium magnetic field. The equation 0 + o }

81 ( )<H> 4)

reads —
9 w(l) + (@q)
i(@ + wq) + v 18- i@+ w)H, (1) s the lowest order contribution found in our previous

where! is the measure of length along the magnetic fielc1""olrk [11,12]. we haveEn/wl?de the operator definitiéns

line anduy is the velocity of the guiding center of the pro- 2 [o *dl/vj and(e)= [;’" edu. The average gradient-

ton projected along the magnetic field. The plasma discurvature drift frequency has been computed [11,12,15],

tribution function is related tg through the equatiofi=  (@a)/<1) = —(2/3) (kyc/q)Ed(In § di/B)/9y. The next

fo+qafo/dE)[® — (1 + w*/w)re ™ — g] whereA =  order, is

i(w/c) [ JoA| dl, A is the component of the magnetic i .

vector potential projected along the equilibrium magnetic 82 = & (@ + @7)

field, @ is the electrostatic potentiaf, = k - b X v/Q , _ _

is the eikonal{) is the proton gyrofrequency is the en- % (gq)@ + g - X (H) — @) (5)

ergy, andf is the equilibrium distribution function. The (@) (@) (@)

magnetic curvature-gradient drift frequency is given by \yith ¢ = 1 + wy/w. This is a “dissipative” collision-
wy = kye b X [V(uB) + mvib - Vb] ) like contribution which vanishes exactly in the adiabatic

B I ’ case (since the integration is removed). From this re-
whereb is the unit vector along the magnetic field line, sult we can understand why computer calculationg of
is the particle massy is the magnetic momentH, the  Yield Poisson statistic fluctuations [11] with a mean square

“Lagrangian density,” is given by value ~0((w)/{wp)).
lv .| 0+ wy By constructing moments for the perturbed density and
H=Jy® —J h_ckyAw T A (3)  currents from the Vlasov solution (i.edn = [d%v f,

where k| is the component of the wave vector normal@nd 8j = ¢ Jd*vvfi) and using the Poisson equation
to the equilibrium magnetic field4, is the component
of the perturbing magnetic vector potential along the
direction, andv , | is the magnitude of the velocity normal
to the equilibrium magnetic field. Hetg, = J,(k,p(1))

is a Bessel function ofith order andp(/) is the proton
Larmor radius. The Bessel functions exhibit the beneficia
property of reducing the proton response in the regior
of very large Larmor radius (which is the nonadiabatic
motion region). This point helps to justify our treatment
of the small field region as an effective scatterer. Further
this effect eliminates the singular behavior of Biex Vo
drift velocity of pure MHD. Note,k, is the wave
number antiparallel to the direction of the equilibrium
plasma current (theg direction). The short wavelength
in the y direction (largek,) yields a Doppler shifted
frequency,w + ;, wherew; = ky(cT:/q:)d In(n; T;)/ iy

is the diamagnetic drift frequency,is the speed of light,
Yf;i is the buII; protoh _ten;]perature (in er;)ergé/ unl@)’ls d FIG. 1. Atypical cusplike magnetic field line is shown with a
the proton chargey; Is the proton number aensity, and gqcpastic proton trajectory. Thecoordinate is into the page.

i is they component of the equilibrium magnetic vector The Earthward direction is to the left and the tailward direction
potential (i.e., the flux function). is to the right.
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and Ampere’'s law we find that the quadratic form Recall that, up to now, all attempts to destabilize this
of Pellat [5] and its quasi-MHD application [14] are configuration within the framework of standard MHD
modified by the dissipative contribution gf. The new have failed [17]. Further, the more precise adiabatic

contribution is theory appears to be even more stabilizing [14]. Now we
i 2 have a new mechanism of instability. Consider equation
—5 (@ + o) (|H - @<H> (6)  (7) in the following notationally simplified form
i.e., a Boltzmann type result. w? + w(w* — iv) — ive) — ok, =0, (9)
Extending our previous work [12,14,15] we find the where (the effective collision frequency with the weak
variational prlnC|pIe (neglecting, /T; correctlons) field region) andwimp (the MHD frequency) can be

identified by comparison with (7). Considering the MHD

1 dl p! gﬂdl/RBZ)X
o al " RB X - §(di/RB?) marginal case dyup = 0) and assumingy is small
o compared to the diamagnetic drift frequencies we find the

$(dl/B3)X two roots
_w(w-i-w)j{ |: fﬁ(dl/BS)j|

o7 w+=iv(%>, w- = —w*+il/%. (10)
__(w + wz) Hm _ <Hm> , (7) . . . .
m; < ) The first root is an absolute growing (or damping) mode

where R is the local radius of curvature of the mag- only if 97/9y # 0. The second root has the character of
netic field line,X = k,cA/w, p' = ap/d, > = w* +  drift wave with growth, ifw; /w* < 0, and with damping
(cky/q)0T /oy, and in the integrations on the last term in the opposite case.

u has been replaced bhyB/E so as to remove the en- Initially, our “quasi-MHD theory” has been motivated
ergy dependence. In the last term of (@)has been re- by observations made in the Earth’s magnetosphere. We
placed byw, after substituting the drop-off potential [15], have proposed elsewhere [18] that interchange-ballooning
®y = w(H,)/{@s) (computed from quasineutrality) into modes should be the basic wave polarization involved in
H. Minimization has simplified (6), leaving only the dif- a substorm breakup, flux transfer events, and bursty bulk
ference between the adiabatic and stochastic compres#ews. Including proton stochasticity appeared necessary
ibilities. The resulting minimized Lagrangian density is to obtain instability and cover the eventual 3D reconnec-

found to be [14,15] tion observed. This new theory builds upon the older, but
w4 4 p'u $(dI/RB)X \ | ¢ similar, idea of Hageget al.[16], but this case is fully
Hy, = EX + 4B - 7f(dl/RB2) = electromagnetic, does not involve extra turbulence, and
y

(8) has explicitly solved quasineutrality [13,15].

. . . It is worthwhile to give a preliminary attempt at a
The first term of (7) is thé W of Hurricaneet al. [15], . ; ) ;
the second term is related to the kinetic energy, and thnonhnear theory involving the same waves. Proceeding

last term is the dissipation. The fact that (7) identicallyl% a way similar to Hageget al. [16] we can compute the

. . ; N guasilinear effect of a turbulent spectrum of our MHD-
vanishes for constarX is a result of quasineutrality; i.e., like “high” frequency @ ~ ) large k, waves during
there is no effect without a finite parallel wavelength. uasisteady reconnection. The resulting Ohm's law is
Physically the dissipative term is essentially a typeq y ' 9

of paraIIeI' Landqu dam_ping: a §tochastic proton being dl B+ v < B 9

scattered inu as it transits the high curvature region of B c

the field line will have its bounce frequency take on a ( 1 fdlf
d

continuum of values (the adiabatic case has fixed). = T,

Jy. (11)
Thus a particle-wave resonance occurs along the parallel )
motion for a segment of the proton trajectorepending whereE is the equilibrium electric fieldy £y is the Fourler
upon the sign of the Doppler shift, the resonance can leadomponent of the perturbed electric f|eld afydec p'is
to either wave damping or wave growth. the confinement current (the “Chapman-Ferraro current” in
In computing (7) we took the bulk plasma to be a magnetosphere). Itis important to note that the “growth
stochastic. Since peak the contribution to the momentate,” I'y, is really a correlation time when working
integrals comes from protons with ener@y~ 27-3T  in the context of steady reconnection (the reconnection
depending upon the term [due to moment integrals of théength should be related to the correlation length of the
form [d’v E“e F/T], (7) is valid in a regime with a turbulence). One expects thia ‘tlynamo-like” resistivity
partially adiabatic population as long 2E corresponds to to remove the local magnetic field stress, increasing the
the stochastic regime. If the bulk plasma is adiabatic, onéength of the field line, and as usual contribute to an
must recompute the dispersion relation using a separateverse cascade of MHD turbulence. By the same notion,
perturbed distribution function for both the bulk and magnetic loops on the surface of the sun may utilize this
energetic population. mechanism to open forming the solar wind.
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