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A “magnetohydrodynamiclike” theory has been previously developed for chaotic nonintegrable pro
orbits which occur in highly stressed magnetic configurations. In this paper we give the solution
the Vlasov equation to next order in expansion of the particle bounce motion. The new contributio
Boltzmann-like operator, provides a collisionless dissipation mechanism which may destabilize dri
drift ballooning Alfvén waves in highb plasmas. We discuss a number of applications of this new
potentially reconnective, mechanism in the magnetosphere, in stellar wind formation, and in the gal
dynamo. [S0031-9007(96)01701-2]

PACS numbers: 95.30.Qd, 52.30.–q, 52.35.Py, 94.30.Lr
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In high temperature collisionless toroidal laborato
plasmas, it is well known that electron Landau dampi
replaces the mechanical electron-ion friction (resistivi
and allows reconnection of the magnetic field line
This reconnection of field lines through the equilibriu
magnetic surfaces is commonly known as the tear
mode. The theory behind this process has been wor
out in the past [1]. Thirty years ago a two-dimension
(2D) version of this theory was subsequently applied
the stability of the geomagnetic tail by Coppiet al. [2]
as a theory of substorms. This idea became a sub
of both theoretical and observational interest for ma
years, since it had the potential to explain the “substo
breakup” and auroras by leading to the formation
neutral lines in the Earth’s magnetosphere.

This 2D line reconnection for antiparallel magnet
field lines was later shown to be a very unlikely scena
[3–5]. The reason is that the existence of a finite, b
small, normal component of the magnetic field,Bz, in-
duces a strong stabilizing compression of the electron
moving in a tearing electromagnetic field. Meanwhil
in situ magnetospheric measurements of the ionosph
currents and satellite observations have demonstrated
the “substorm breakup” phenomena is highly localized
longitude and usually located in the vicinity of geosy
chronous orbit in a narrow cusp field region [6–9]. The
experimental features are in conflict with what is expec
from a linear tearing mode.

The failure of the previous theoretical attempts and
observations led Pellat [5] to propose that magneto
drodynamiclike (MHD-like) modes with short transvers
wavelength could be responsible for three-dimensio
(3D) magnetic field reconnection. These modes had
ready been proposed for the substorm breakup [6,10],
with a nonrelevant theory. A first, now obvious, step w
still missing. Beforereconnection occurs the proton mo
0031-9007y96y77(21)y4354(4)$10.00
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tion becomes nonintegrable as a result of the breaking
the invariance of the magnetic moment. Recently, t
gap has been closed by solving the linearized (in elec
magnetic potential perturbation amplitude) Vlasov equ
tion for the chaotic proton motion [11–15].

The nonintegrable proton orbits allow one to recov
a MHD-like theory with a modification of the polytropic
index, for waves with frequencies smaller than the aver
bounce frequency of protons [12,14,15]. Additionally,
net dropoff potential,F0, along field lines was found by
carefully analyzing the quasineutrality equation for lo
frequency waves [13,15], as a consequence of the
electron bounce motion along the magnetic field line.

It is the purpose of this Letter to go further in th
analysis of 2D magnetic field equilibria (with 3D pertu
bations) where the proton motion becomesnonadiabatic.
As a result of our continued analysis we find that we a
forced into accepting a new paradigm for dissipation
reconnection regions. This new mechanism results fr
a Boltzmannian type collision term which arises natura
from the expansion of the solution of Vlasov equation
second order in the wave frequency (v) over the typical
proton bounce frequency (vbi ).

Originally, we were motivated by method of chara
teristics solutions, via computer, of the Vlasov equati
[11,12] in which proton density fluctuations clearly e
hibit a Poisson distribution with probability of the orde
of vtb wheretb  2

Rlb

0 dlyyk is half the bounce time.
Also, we were aware of the destabilizing effect, on lo
frequency waves, of high frequency turbulence [16].

When a proton flows along a field line that has a sm
region where the radius of curvature is comparable
the proton Larmor orbit radius (a cusp), it can suffer
effectivecollision. That is, in such a region the proton
magnetic moment is not conserved and can take on
value with uniform probability (to very good accuracy
© 1996 The American Physical Society
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[11,12]. This suggests thata solution of the Vlasov
equation can be obtained by treating the proton motion
adiabatic in the strong magnetic field region and applyin
a random walk (in magnetic moments) in the narrow we
field region where the field radius of curvature is sma
Clearly, this picture suggests a strong collision opera
of the Boltzmann type. From previous work [16], w
already know that Fokker-Planck theory is adapted to
“weak nonadiabaticity.”

One has to solve the linearized Vlasov equation for t
plasma distribution function,f, along the proton motion
parallel to the equilibrium magnetic field. The equatio
reads "

isv 1 vdd 1 yk

≠

≠l

#
g  isv 1 vpdH , (1)

wherel is the measure of length along the magnetic fie
line andyk is the velocity of the guiding center of the pro
ton projected along the magnetic field. The plasma d
tribution function is related tog through the equationf 
f0 1 qs≠f0y≠Ed fF 2 s1 1 vpyvdle2iS 2 gg wherel 
isvycd

Rl J0Ak dl, Ak is the component of the magneti
vector potential projected along the equilibrium magne
field, F is the electrostatic potential,S  k ? b̂ 3 vyV

is the eikonal,V is the proton gyrofrequency,E is the en-
ergy, andf0 is the equilibrium distribution function. The
magnetic curvature-gradient drift frequency is given by

vd 
kyc

qB
b̂ 3 f===smBd 1 my

2
k b̂ ? ===b̂g, (2)

whereb̂ is the unit vector along the magnetic field line,m
is the particle mass,m is the magnetic moment.H, the
“Lagrangian density,” is given by

H  J0F 2 J1
jy'j

k'c
kyAc 1

v 1 vd

v
l, (3)

where k' is the component of the wave vector norm
to the equilibrium magnetic field,Ac is the component
of the perturbing magnetic vector potential along the=c

direction, andjy'j is the magnitude of the velocity norma
to the equilibrium magnetic field. HereJn  Jnssskyrsldddd
is a Bessel function ofnth order andrsld is the proton
Larmor radius. The Bessel functions exhibit the benefic
property of reducing the proton response in the regi
of very large Larmor radius (which is the nonadiabat
motion region). This point helps to justify our treatmen
of the small field region as an effective scatterer. Furth
this effect eliminates the singular behavior of theB 3 =F

drift velocity of pure MHD. Note, ky is the wave
number antiparallel to the direction of the equilibrium
plasma current (they direction). The short wavelength
in the y direction (large ky) yields a Doppler shifted
frequency,v 1 v

p
i , wherev

p
i  kyscTiyqid≠ lnsniTidy≠c

is the diamagnetic drift frequency,c is the speed of light,
Ti is the bulk proton temperature (in energy units),qi is
the proton charge,ni is the proton number density, and
c is they component of the equilibrium magnetic vecto
potential (i.e., the flux function).
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Now, the motion of the proton is adiabatic except whe
it crosses the field reversal plane (see Fig. 1) atl  0.
To obtain the solution forg, we have to solve a random
walk problem, each “collision” with the midplane bein
independent. To lowest order the result is a phase mi
response [11,12]. Using the symmetry of the prot
motion on the adiabatic part of its trajectory with th
formal solution of Eq. (1) for streaming and antistreamin
protons to first order invtb we obtain the integration
constant of (1). Retaining terms up to second order
vtb we findg  g1 1 g2 where

g1 

√
v 1 vp

vk1̄l 1 kv̄dl

!
kH̄l (4)

is the lowest order contribution found in our previou
work [11,12]. We have made the operator definitions≤̄ 
2

Rlb

0 ≤dlyyk andk≤l 
REyB

0 ≤dm. The average gradient
curvature drift frequency has been computed [11,12,1
kv̄dlyk1̄l  2s2y3d skycyqdE≠sln

H
dlyBdy≠c. The next

order, is

g2 
i
2

sv 1 vpd

3

√
kH̄l

kā2l
kāl2

1 H̄ 2
ā

kāl
kH̄l 2

kH̄āl
kāl

!
, (5)

with a  1 1 vdyv. This is a “dissipative” collision-
like contribution which vanishes exactly in the adiaba
case (since them integration is removed). From this re
sult we can understand why computer calculations og
yield Poisson statistic fluctuations [11] with a mean squa
value,Oskvlykvbld.

By constructing moments for the perturbed density a
currents from the Vlasov solution (i.e.,dn 

R
d3y f1

and dj  q
R

d3y vf1) and using the Poisson equatio

FIG. 1. A typical cusplike magnetic field line is shown with
stochastic proton trajectory. They coordinate is into the page
The Earthward direction is to the left and the tailward directio
is to the right.
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and Ampère’s law we find that the quadratic for
of Pellat [5] and its quasi-MHD application [14] ar
modified by the dissipative contribution ofg2. The new
contribution is

2
i
2

sv 1 vpd

*√
H̄ 2

ā

kāl
kH̄l

!2+
, (6)

i.e., a Boltzmann type result.
Extending our previous work [12,14,15] we find th

variational principle (neglectingTeyTi corrections),

1
nimi

I dl
B

(√
≠X
≠l

!2

2
p0

RB

"
X 2

H
sdlyRB2dXH
sdlyRB2d

#2)

 vsv 1 vpd
I dl

B3

"
X 2

H
sdlyB3dXH
sdlyB3d

#2

2
i
2

sv 1 vp
2 d

s
2T
mi

*√
H̄m 2

v̄d

kv̄dl
kH̄ml

!
2

+
, (7)

where R is the local radius of curvature of the mag
netic field line,X  kyclyv, p0  ≠py≠c , v

p
2  vp 1

sckyyqd≠Ty≠c, and in the integrations on the last ter
m has been replaced bymByE so as to remove the en
ergy dependence. In the last term of (7),a has been re-
placed byvd after substituting the drop-off potential [15
F0  vkH̄mlykv̄dl (computed from quasineutrality) into
H. Minimization has simplified (6), leaving only the dif
ference between the adiabatic and stochastic compr
ibilities. The resulting minimized Lagrangian density
found to be [14,15]

Hm 

"
vd

kyc
X 1

4pp0m

qB

√
X 2

H
sdlyRB2dXH
sdlyRB2d

!#
q
E

.

(8)

The first term of (7) is thedW of Hurricaneet al. [15],
the second term is related to the kinetic energy, and
last term is the dissipation. The fact that (7) identica
vanishes for constantX is a result of quasineutrality; i.e.
there is no effect without a finite parallel wavelengt
Physically the dissipative term is essentially a ty
of parallel Landau damping: a stochastic proton be
scattered inm as it transits the high curvature region o
the field line will have its bounce frequency take on
continuum of values (the adiabatic case hasvb fixed).
Thus a particle-wave resonance occurs along the para
motion for a segment of the proton trajectory.Depending
upon the sign of the Doppler shift, the resonance can l
to either wave damping or wave growth.

In computing (7) we took the bulk plasma to b
stochastic. Since peak the contribution to the mom
integrals comes from protons with energyE , 2T 3T
depending upon the term [due to moment integrals of
form

R
d3y Eae2EyT ], (7) is valid in a regime with a

partially adiabatic population as long as2T corresponds to
the stochastic regime. If the bulk plasma is adiabatic, o
must recompute the dispersion relation using a sepa
perturbed distribution function for both the bulk an
energetic population.
4356
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Recall that, up to now, all attempts to destabilize th
configuration within the framework of standard MHD
have failed [17]. Further, the more precise adiaba
theory appears to be even more stabilizing [14]. Now w
have a new mechanism of instability. Consider equati
(7) in the following notationally simplified form

v2 1 vsvp 2 ind 2 invp
2 2 v2

MHD  0 , (9)

wheren (the effective collision frequency with the weak
field region) andv

2
MHD (the MHD frequency) can be

identified by comparison with (7). Considering the MHD
marginal case (v2

MHD  0) and assumingn is small
compared to the diamagnetic drift frequencies we find t
two roots

v1  in

√
vp 2 v

p
2

vp

!
, v2  2vp 1 in

v
p
2

vp
. (10)

The first root is an absolute growing (or damping) mod
only if ≠Ty≠c fi 0. The second root has the character
drift wave with growth, ifvp

2yvp , 0, and with damping
in the opposite case.

Initially, our “quasi-MHD theory” has been motivated
by observations made in the Earth’s magnetosphere.
have proposed elsewhere [18] that interchange-balloon
modes should be the basic wave polarization involved
a substorm breakup, flux transfer events, and bursty b
flows. Including proton stochasticity appeared necess
to obtain instability and cover the eventual 3D reconne
tion observed. This new theory builds upon the older, b
similar, idea of Hagègeet al. [16], but this case is fully
electromagnetic, does not involve extra turbulence, a
has explicitly solved quasineutrality [13,15].

It is worthwhile to give a preliminary attempt at a
nonlinear theory involving the same waves. Proceedi
in a way similar to Hagègeet al. [16] we can compute the
quasilinear effect of a turbulent spectrum of our MHD
like “high” frequency (v , v

p
i ) large ky waves during

quasisteady reconnection. The resulting Ohm’s law isI dl
B

√
$E 1

$y
c

3 $B

!
? ŷ



√
1

niTi

I dl
B

Z
dky

Gky

jvj2
jdEky j

2

!
jy , (11)

where$E is the equilibrium electric field,dEky
is the Fourier

component of the perturbed electric field, andjy ~ p0 is
the confinement current (the “Chapman-Ferraro current”
a magnetosphere). It is important to note that the “grow
rate,” Gky , is really a correlation time when working
in the context of steady reconnection (the reconnecti
length should be related to the correlation length of th
turbulence). One expects this “a dynamo-like” resistivity
to remove the local magnetic field stress, increasing t
length of the field line, and as usual contribute to a
inverse cascade of MHD turbulence. By the same notio
magnetic loops on the surface of the sun may utilize th
mechanism to open forming the solar wind.
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At galactic scales, standard dynamo theory needs a p
mordial seed, according to Kulsrudet al. [19]. Unfortu-
nately, no scenario whatever during the inflation period o
in the pre-recombination relativistic plasma, as considere
by Tajimaet al. [20], can directly produce sufficient power
in the long wavelength range to seed the dynamo [21
More careful investigation remains for the so-called “pre
big-bang scenario” which is at a time when large quantu
fluctuations of the electromagnetic field are present and t
relevant Lagrangian is nonlinear. The nonlinear couplin
can provide an interaction between short and long wav
lengths which is necessary if we are to apply our classic
plasma finding. In any case, the cosmic ray pressure a
the magnetic field pressure are comparable which satisfi
one basic requirement of our picture.

We thank F. V. Coroniti, C. F. Kennel, and J. Cornwal
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