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Steady Viscous Flow with Fractal Power Spectrum
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We demonstrate a family of two-dimensional steady viscous flows which have singular continuous
(fractal) Fourier spectra. Such flows represent a novel intermediate stage between order and Lagrangian
chaos: The motion of individual fluid particles in them is neither entirely correlated nor completely
disordered. In the considered setup these flows are presented by the exact solutions of the Navier-Stokes
equations and occupy a parameter subset of positive measure. Onset of this unusual state follows the
formation of steady eddies and is caused by the development of singularities of return times along the
particle paths near the stagnation points. [S0031-9007(96)01707-3]

PACS numbers: 47.52.+j, 05.45.+b, 47.15.Rq, 47.53.+n

To get a feeling of historic affinity between hydro- ics is known basically from the mathematical models of
mechanics and the theory of dynamical systems, one haystems with incommensurate scales or quantum systems
only to recall several words like “sink,” “source,” and last in quasiperiodic potentials (see, e.g., [4,5]), where, unlike
but not least, one of the most important ones, the “flow.”our case, the singular spectra describe the spatial structure;
When one views a steady motion of incompressible fluido our knowledge it has never been previously reported in
as a dynamical system, the flow is really a phase flowthe context of fluid mechanics.
streamlines become phase trajectories, and the time in- In this Letter we report on the class of two-dimensional
dependent spatial pattern recovers the geometry of th&teady viscous flows generated by time-independent forc-
attractor. For this purpose, the Lagrangian descriptioing. Increase of the forcing amplitude leads to changes in
of the fluid motion seems more suited than the Euleriarthe topology of streamlines pattern; from the Lagrangian
one. Whereas the latter is bound to the fixed place in theoint of view this marks the transition from the flow with
space (where by virtue of steadiness the values of all oka discrete temporal spectrum to the motion with a fractal
servables remain time independent), the former traces thene. With the help of the autocorrelation function, we ob-
individual “fluid particles” along their paths and can de- tain nhumerical estimates for the correlation dimension of
liver the picture of chaotic motion with its exponential the spectral measure.
growth of the distance between the initially close particles Let the incompressible fluid with density and vis-

[1]. The stirring and mixing imposed by chaotic stream-cosity v flow over the 2-torusQ=x =27, 0=y =

line patterns is of importance for geophysics and magnet®+) under the action of the time-independent fofce=
hydrodynamics; for the numerous examples of Lagrangiafif siny, f sinx,0). (For the experimental realization of
chaos in various steady and time-dependent flow patternspatially periodic forcing in two-dimensional flows, see,
see, e.g., the monograph [2]. e.g., [6-8].) The Navier-Stokes equations governing the

For obvious reasons the phase space of a chaotic afluid motion are
tonomous dynamical system is at least three dimensional.

. vp 2
Consequently, Lagrangian chaos can be encountered only Py +( - VVv=—-—+2Wv+F, (3
in fully three-dimensional steady fluid motions. At first p
sight it may seem that the highest temporal complexity at- V-v=0,

tainable for tracers transported by two-dimensional steadyhere v and P are, respectively, the velocity and the
flows is periodicity or at most (in appropriate geome-pressure. The structure of the forcing term is reminiscent
try) quasiperiodicity, with well pronounced correlations of the Kolmogorov flow [9]. We restrict ourselves to
and discrete temporal spectra. However, slowing dowrhe two-dimensional formulation; besides, the geometry
near the stagnation points generates singularities in thef the domain implies that not only the forcing, but also
turnover times of individual fluid particles. As we will the velocity field itself is periodic:

demonstrate, this can result in the onset of some inter-
mediate phase between order and chaos, where the power vx,y) = vlx +2m,y) = vlxy + 27). (2
spectrum is (singular) continuous, but certain correlationghus the possible perturbations are confined to the torus
persist over arbitrarily long times (recall that the abso-size, and the long-wave disturbances which are known to
lutely continuous spectrum is a signature of chaos, but ae the first to destabilize the Kolmogorov flow [9,10] are
dynamical system is mixing if and only if the correlations precluded. As a further difference from the Kolmogorov
asymptotically decay [3]). This peculiar type of dynam-flow we prescribe the fixed nonzero mean flow across the
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domain in both directions, parametrizing it by the two (a) / (b)
flow ratesa and B, respectively:
2
[ v, dy =27a,
0 x=0,27
[277 (3)
vy, dx =27f.
0 y=0,27 /
Incompressibility of the fluid allows one to project out / /_/

the pressure by introducing the streamfunctiix, y):
v, = d¥/dy, v, = —9¥/dx. The pattern, described

(c)

by the steady solution

/ —
fsinlx — ¢1) _ fsinly — ¢o) Q
R >})@ ©
(4) N /
¢ = arctang, ¢r = arctan% /?i /

of Egs. (1) satisfying (2) and (3), yields the stationaryF!G- 1. Flow patterns foer = (V5 — 1)/2, 8 = 1: (a) pat-

velocity field tern (4) forv =1, f= %f“ = 0.587785; (b) patt?rn 4)
B for v =1, f = fo; (C) pattern (4) forv =1, f = 5f =
v =a — JM, 1.7633557; (d) pattern (6). ?
/BZ + 32
_ o fcodx — ¢1) nent which is built of two mutually symmetric isolated
v, =p ——.
Va2 + 12 eddies [Fig. 1(c)]. Each eddy has the elliptic point at its

In the absence of forcing f{= 0) the streamlines are center and is encircled by one of the separatrices of the
straight and the velocity is everywhere the same; one hagspective hyperbolic stagnation point. Inside the eddies
the trivial flow on the 2-torus with the rotation number the particle paths are obviously closed; respectively, the
a/B. [Of course the rotation number equalg 8 also above statement concerning the density of orbits under
in the general casél = ay — Bx + ®(x,y), where irrational values ot /B holds everywhereutsidethe ed-
®(x,y) is periodic in both arguments and bounded.] dies [13].
The increase of the forcing amplitudé distorts the

streamlines [Fig. 1(a)]. However, in a range of values

of f the Lagrangian dynamics does not alter qualitatively: 1.0r

If «/B is rational, the streamlines are eventually closed \ M\ Mn
otherwise each particle path is dense in the domair¥ o | ()
In both cases the Fourier spectrum of an observabl©

&(r) measured along the trajectory of the particle is i “ U\ wh
discrete; the autocorrelation functi@i(7) = (£(1)&(r + -1.0O : ' ' . 5(')0

a

7))/(£2(t)) displays peaks which approach 1 for the

time values corresponding to the multiples of period

in the former case and to the denominators of rationa 5

approximations taxr/g in the latter. This can be seenin _

Fig. 2(a); here and below we fix the values= 1 and the 8 0.0

“golden mean” rotation numbék/5 — 1)/2. 05
At reaching the threshold value of the forcing amplitude

f=fa =B+ v’maxa®, B, () o5
two cusps appear at two particular streamlines, with the¥ oo
velocity vanishing at the cusp tips [Fig. 1(b)]. Fgr> 05
fer €ach cusp tip splits into a couple of stagnation points

the elliptic one and the hyperbolic one (the Poincaré 1 5 3 2 5
index [11,12] being! for the former and-1 for the lat- 10 10 100 ¢ 10 10 10

ter). The pattern of st‘r‘eamlin"es (4_) acquires new ,feaFIG. 2. Autocorrelation function for “fluid particles” in steady
tures: Along with the “global” particle paths crossing fiow patterns: (a) pattern (4), parameter values as in Fig. 1(a);
the whole domain, there appears a “localized” compo{b) pattern (4), parameter values as in Fig. 1(c); (c) pattern (6).
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Let us choose a secant which is transversal to the globalith the increase of the sample lengih, as would
component of the flow. Because of the Hamiltonian na-be the case for thé peaks of the discrete spectrum,
ture of the flow (which is ensured by the incompressibilitynor converge to constant values, as in the case of
of the fluid), the Poincaré return mapping which the parthe absolutely continuous spectrum. In this sense, the
ticle paths induce on this secant is conjugate to the shiftonventional procedure of computing the power spectrum
on the circle:¢;+; = (¢; + 27 «/B)mod 27, both for  S(w) from time series of progressively growing length
rational and irrational values af /3. provides the more and more “fractalized” approximations

Under irrational values ofv/B the power spectrum to the ultimate singular continuous object. Since the ACF
for any orbit of this map is discrete, and the motion isis the Fourier transform of the power spectrum, the fractal
completely correlated, with the appropriate peaks of theroperties of the latter can be evaluated with the help of
autocorrelation function (ACF) tending to 1, like those inthe former. Thus the integrated squared autocorrelation
Fig. 2(a). However, the correlation properties of the flowfunction Ci,(7) = % f(’) |C(7)|? d7 for a state with purely
appear to be remarkably different from those of its ownsingular continuous spectrum should decay -as >
Poincaré mapping. As can be seen from Fig. 2(b), unlikevhere D, is the correlation dimension of the spectral
the subcritical case from Fig. 2(a), the highest peaksneasure [15]. The plot ofCi, () corresponding to
of the ACF do not even reach; i.e., the dynamics is Fig. 2(b) is presented in Fig. 3; it provides evidence that
far from being completely ordered. The reason for thethe contribution of the discrete spectral component, if
weakening of correlations lies in the nonuniform slowingpresent at all, is extremely weak; the slope of this curve
down of motion in vicinities of the stagnation points. yields the estimate fob, of the fractal spectral measure:
Take a smooth curvé transversal to the local stable p, = 0.51 = 0.02.
separatrixW, of a stagnation point. The turnover time The spectral properties of the Hamiltonian flow on a
7 as a function of a coordinat¢ on / diverges at the torus without fixed points f < f.. in our terms) were
point {, wherel andW; intersect:r({) ~ —logl{ — {l.  first addressed by Kolmogorov [16], who showed that the
Consider two initially close fluid particles ne#f, which  spectrum was discrete for irrational rotation numbers, “not
move along two streamlines on the same sideWiaf  too fast” approximated by rationals, and conjectured that
and slow down while approaching the stagnation pointit could be continuous otherwise. Further, the possibil-
The slowing is more pronounced for the particle whichity of weak mixing for the latter rotation numbers (which
lies closer to the separatrix; it stays in the vicinity of constitute a subset of zero measure on the set of all num-
the stagnation point longer than its counterpart, and théers) under certain conditions imposed on the distribution
distance between them grows. The much stronger effe@f bounded turnover times was demonstrated by Shklover
is observed for the two particles lying on tlopposite [17]. In the presence of fixed points the return times are
sides ofW,, since one of them is doomed to hover in theunbounded; as shown by Kochergin [18] in this case the
stagnation region twice (for the first time on entering itflow does not mix if the prefactors before the logarithmic
along Wy, and for the second after making a tour aroundierms in the return times are balanced. This is precisely
the eddy) and thereby gets a very noticeable lag. As &he case for the pattern (4) with two symmetric eddies
consequence the coefficients before the logarithmic termghere the sums of prefactors corresponding to the pas-
in 7({) to the left and to the right from, differ by a  sage to the left and to the right from the stagnation points
factor of 2 [13]. are obviously equal. Noteworthy, mixing must be present

Albeit relatively low, the correlations do not entirely [19] in the threshold cas¢ = f.. when the stagnation
decay: At certain time values (which apparently mark thepoints are degenerate and the return times diverge in a
denominators of the best rational approximationa )  powerlike wayr(¢) ~ |& — &l /0.
the ACF displays distinct peaks whose height remains Applying the more elaborate periodic forcing, it is
above the certain finite level. Although with growth of possible to excite a velocity field with a single eddy; a
time the intervals between these peaks are getting largeypical flow pattern with a streamfunction
and larger (note the logarithmic scale along the time axis),
they are well discernible at the largest computationally
attainable times which correspond to tens of thousands

V(x,y) = ay — Bx + sinxcosy — sinx — cosy (6)

of revolutions around the torus. The “vague” memory AF

of this kind is characteristic for dynamical systems with 19 3 N st
singular continuous (fractal) power spectra [14]. The oF " = R
latter deliver a link between systems with the discrete 103 B
(pure point) spectra and those with absolutely continuous E o vinnd v ol O
spectra: Although the spectrum is continuous, the spectral 10° 10° t 10*

measure is located on a set of zero Lebesgue measudg, 3. Integrated autocorrelation for states from Fig. 1(c)

For the typical Irequen.cy values® the Fourier sums (curvey,) and Fig. 1(d) (curvey,); cf. power laws shown by
S(w,L) = L™' Y, |&e?™ |2 neither grow linearly dashed lines.
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is presented in Fig. 1(d). For this pattern the logarithmicogether occupies almost the whole parameter space (its
singularities in the return times are not mutually com-complement, corresponding to rational rotation numbers
pensated. The respective ACF is plotted in Fig. 2(c)jhas zero measure). In other words, a randomly chosen
although one notices many similarities to Fig. 2(b), thepoint in the parameter space corresponds with probability
slow but definite decrease of the highest peaks is not td to a pattern with irrational rotation number. Thus
be overlooked. The decay of correlations implies mix-one is tempted to conjecture that in the presence of the
ing; presence of mixing for Hamiltonian flows on a torusimposed mean flow a motion of a passive tracer along
with nonbalanced logarithmic singularities was shown bythe typical two-dimensional steady pattern with isolated
Sinai and Khanin [20]. As compared to the case of sym-eddies possesses the fractal Fourier spectrum.

metric eddies(,(¢) decays faster (Fig. 3); evaluation of We are grateful to A. Nepomnyashchy and K. Khanin
the fractal dimension of the spectral measure results ifor stimulating discussions and to the latter for bringing
D, = 0.75 = 0.01. our attention to the works [13,18,20].
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