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Steady Viscous Flow with Fractal Power Spectrum
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We demonstrate a family of two-dimensional steady viscous flows which have singular conti
(fractal) Fourier spectra. Such flows represent a novel intermediate stage between order and Lag
chaos: The motion of individual fluid particles in them is neither entirely correlated nor compl
disordered. In the considered setup these flows are presented by the exact solutions of the Navie
equations and occupy a parameter subset of positive measure. Onset of this unusual state foll
formation of steady eddies and is caused by the development of singularities of return times alo
particle paths near the stagnation points. [S0031-9007(96)01707-3]

PACS numbers: 47.52.+ j, 05.45.+b, 47.15.Rq, 47.53.+n
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To get a feeling of historic affinity between hydro
mechanics and the theory of dynamical systems, one
only to recall several words like “sink,” “source,” and la
but not least, one of the most important ones, the “flow
When one views a steady motion of incompressible fl
as a dynamical system, the flow is really a phase flo
streamlines become phase trajectories, and the time
dependent spatial pattern recovers the geometry of
attractor. For this purpose, the Lagrangian descript
of the fluid motion seems more suited than the Euler
one. Whereas the latter is bound to the fixed place in
space (where by virtue of steadiness the values of all
servables remain time independent), the former traces
individual “fluid particles” along their paths and can d
liver the picture of chaotic motion with its exponenti
growth of the distance between the initially close partic
[1]. The stirring and mixing imposed by chaotic stream
line patterns is of importance for geophysics and magn
hydrodynamics; for the numerous examples of Lagrang
chaos in various steady and time-dependent flow patte
see, e.g., the monograph [2].

For obvious reasons the phase space of a chaotic
tonomous dynamical system is at least three dimensio
Consequently, Lagrangian chaos can be encountered
in fully three-dimensional steady fluid motions. At fir
sight it may seem that the highest temporal complexity
tainable for tracers transported by two-dimensional ste
flows is periodicity or at most (in appropriate geom
try) quasiperiodicity, with well pronounced correlation
and discrete temporal spectra. However, slowing do
near the stagnation points generates singularities in
turnover times of individual fluid particles. As we wi
demonstrate, this can result in the onset of some in
mediate phase between order and chaos, where the p
spectrum is (singular) continuous, but certain correlatio
persist over arbitrarily long times (recall that the abs
lutely continuous spectrum is a signature of chaos, bu
dynamical system is mixing if and only if the correlation
asymptotically decay [3]). This peculiar type of dynam
0031-9007y96y77(21)y4338(4)$10.00
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ics is known basically from the mathematical models
systems with incommensurate scales or quantum syst
in quasiperiodic potentials (see, e.g., [4,5]), where, unl
our case, the singular spectra describe the spatial struc
to our knowledge it has never been previously reported
the context of fluid mechanics.

In this Letter we report on the class of two-dimension
steady viscous flows generated by time-independent fo
ing. Increase of the forcing amplitude leads to change
the topology of streamlines pattern; from the Lagrang
point of view this marks the transition from the flow wit
a discrete temporal spectrum to the motion with a frac
one. With the help of the autocorrelation function, we o
tain numerical estimates for the correlation dimension
the spectral measure.

Let the incompressible fluid with densityr and vis-
cosity n flow over the 2-torus (0 # x # 2p, 0 # y #

2p) under the action of the time-independent forceF ­
s f siny, f sinx, 0d. (For the experimental realization o
spatially periodic forcing in two-dimensional flows, se
e.g., [6–8].) The Navier-Stokes equations governing
fluid motion are

≠

≠t
y 1 sy ? =dy ­ 2

=P
r

1 n=2y 1 F , (1)

= ? y ­ 0 ,

where y and P are, respectively, the velocity and th
pressure. The structure of the forcing term is reminisc
of the Kolmogorov flow [9]. We restrict ourselves t
the two-dimensional formulation; besides, the geome
of the domain implies that not only the forcing, but als
the velocity field itself is periodic:

ysx, yd ­ ysx 1 2p , yd ­ ysx, y 1 2pd . (2)

Thus the possible perturbations are confined to the to
size, and the long-wave disturbances which are known
be the first to destabilize the Kolmogorov flow [9,10] a
precluded. As a further difference from the Kolmogoro
flow we prescribe the fixed nonzero mean flow across
© 1996 The American Physical Society
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(6).
domain in both directions, parametrizing it by the tw
flow ratesa andb, respectively:Z 2p

0
yx dy

Ç
x­0,2p

­ 2pa,

Z 2p

0
yy dx

Ç
y­0,2p

­ 2pb .
(3)

Incompressibility of the fluid allows one to project o
the pressure by introducing the streamfunctionCsx, yd:
yx ­ ≠Cy≠y, yy ­ 2≠Cy≠x. The pattern, describe
by the steady solution

C ­ ay 2 bx 1
f sinsx 2 f1d

p
a2 1 n2

2
f sins y 2 f2dp

b2 1 n2
,

(4)

f1 ­ arctan
n

a
, f2 ­ arctan

n

b

of Eqs. (1) satisfying (2) and (3), yields the stationa
velocity field

yx ­ a 2
f coss y 2 f2dp

b2 1 n2
,

yy ­ b 2
f cossx 2 f1d

p
a2 1 n2

.

In the absence of forcing (f ­ 0) the streamlines are
straight and the velocity is everywhere the same; one
the trivial flow on the 2-torus with the rotation numb
ayb. [Of course the rotation number equalsayb also
in the general caseC ­ ay 2 bx 1 Fsx, yd, where
Fsx, yd is periodic in both arguments and bounded.]

The increase of the forcing amplitudef distorts the
streamlines [Fig. 1(a)]. However, in a range of valu
of f the Lagrangian dynamics does not alter qualitative
If ayb is rational, the streamlines are eventually clos
otherwise each particle path is dense in the dom
In both cases the Fourier spectrum of an observa
jstd measured along the trajectory of the particle
discrete; the autocorrelation functionCstd ­ kjstdjst 1

tdlykj2stdl displays peaks which approach 1 for t
time values corresponding to the multiples of per
in the former case and to the denominators of ratio
approximations toayb in the latter. This can be seen
Fig. 2(a); here and below we fix the valuesn ­ 1 and the
“golden mean” rotation numbers

p
5 2 1dy2.

At reaching the threshold value of the forcing amplitu

f ­ fcr ­
q

a2b2 1 n2 maxsa2, b2d , (5)

two cusps appear at two particular streamlines, with
velocity vanishing at the cusp tips [Fig. 1(b)]. Forf .

fcr each cusp tip splits into a couple of stagnation poin
the elliptic one and the hyperbolic one (the Poinc
index [11,12] being1 for the former and21 for the lat-
ter). The pattern of streamlines (4) acquires new f
tures: Along with the “global” particle paths crossin
the whole domain, there appears a “localized” com
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FIG. 1. Flow patterns fora ­ s
p

5 2 1dy2, b ­ 1: (a) pat-
tern (4) for n ­ 1, f ­

1
2 fcr ­ 0.587785; (b) pattern (4)

for n ­ 1, f ­ fcr ; (c) pattern (4) forn ­ 1, f ­
3
2 fcr ­

1.7633557; (d) pattern (6).

nent which is built of two mutually symmetric isolate
eddies [Fig. 1(c)]. Each eddy has the elliptic point at
center and is encircled by one of the separatrices of
respective hyperbolic stagnation point. Inside the edd
the particle paths are obviously closed; respectively,
above statement concerning the density of orbits un
irrational values ofayb holds everywhereoutsidethe ed-
dies [13].

FIG. 2. Autocorrelation function for “fluid particles” in stead
flow patterns: (a) pattern (4), parameter values as in Fig. 1
(b) pattern (4), parameter values as in Fig. 1(c); (c) pattern
4339



VOLUME 77, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 18 NOVEMBER 1996

ob
na
lit
a
h

i
th
in

ow
w
lik
a

th
n
ts
le
e

in
ic
o
t

ffe

h

n
s
rm

ly
th

in
of
rg
is

al
n
r
it
h
e
o
ct
su

,
of

the
um
h
ns
F

tal
of
ion

al

at
if

ve
:

a

he
ot
at
il-

h
um-
ion
ver
re

the
ic
ely
es
as-
nts
nt

n a

s
a

c)
Let us choose a secant which is transversal to the gl
component of the flow. Because of the Hamiltonian
ture of the flow (which is ensured by the incompressibi
of the fluid), the Poincaré return mapping which the p
ticle paths induce on this secant is conjugate to the s
on the circle:fi11 ­ sfi 1 2p aybdmod 2p, both for
rational and irrational values ofayb.

Under irrational values ofayb the power spectrum
for any orbit of this map is discrete, and the motion
completely correlated, with the appropriate peaks of
autocorrelation function (ACF) tending to 1, like those
Fig. 2(a). However, the correlation properties of the fl
appear to be remarkably different from those of its o
Poincaré mapping. As can be seen from Fig. 2(b), un
the subcritical case from Fig. 2(a), the highest pe
of the ACF do not even reach12 ; i.e., the dynamics is
far from being completely ordered. The reason for
weakening of correlations lies in the nonuniform slowi
down of motion in vicinities of the stagnation poin
Take a smooth curvel transversal to the local stab
separatrixWs of a stagnation point. The turnover tim
t as a function of a coordinatez on l diverges at the
point z0 wherel andWs intersect:tsz d , 2 log jz 2 z0j.
Consider two initially close fluid particles nearWs which
move along two streamlines on the same side ofWs

and slow down while approaching the stagnation po
The slowing is more pronounced for the particle wh
lies closer to the separatrix; it stays in the vicinity
the stagnation point longer than its counterpart, and
distance between them grows. The much stronger e
is observed for the two particles lying on theopposite
sides ofWs, since one of them is doomed to hover in t
stagnation region twice (for the first time on entering
alongWs, and for the second after making a tour arou
the eddy) and thereby gets a very noticeable lag. A
consequence the coefficients before the logarithmic te
in tsz d to the left and to the right fromz0 differ by a
factor of 2 [13].

Albeit relatively low, the correlations do not entire
decay: At certain time values (which apparently mark
denominators of the best rational approximations toayb)
the ACF displays distinct peaks whose height rema
above the certain finite level. Although with growth
time the intervals between these peaks are getting la
and larger (note the logarithmic scale along the time ax
they are well discernible at the largest computation
attainable times which correspond to tens of thousa
of revolutions around the torus. The “vague” memo
of this kind is characteristic for dynamical systems w
singular continuous (fractal) power spectra [14]. T
latter deliver a link between systems with the discr
(pure point) spectra and those with absolutely continu
spectra: Although the spectrum is continuous, the spe
measure is located on a set of zero Lebesgue mea
For the typical frequency valuesv the Fourier sums
Ssv, Ld ­ L21

PL
k­1 jjkei2pkvj2 neither grow linearly
4340
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with the increase of the sample lengthL, as would
be the case for thed peaks of the discrete spectrum
nor converge to constant values, as in the case
the absolutely continuous spectrum. In this sense,
conventional procedure of computing the power spectr
Ssvd from time series of progressively growing lengt
provides the more and more “fractalized” approximatio
to the ultimate singular continuous object. Since the AC
is the Fourier transform of the power spectrum, the frac
properties of the latter can be evaluated with the help
the former. Thus the integrated squared autocorrelat
function Cintstd ­

1
t

Rt
0 jCstdj2 dt for a state with purely

singular continuous spectrum should decay as,t2D2

where D2 is the correlation dimension of the spectr
measure [15]. The plot ofCintstd corresponding to
Fig. 2(b) is presented in Fig. 3; it provides evidence th
the contribution of the discrete spectral component,
present at all, is extremely weak; the slope of this cur
yields the estimate forD2 of the fractal spectral measure
D2 ­ 0.51 6 0.02.

The spectral properties of the Hamiltonian flow on
torus without fixed points (f , fcr in our terms) were
first addressed by Kolmogorov [16], who showed that t
spectrum was discrete for irrational rotation numbers, “n
too fast” approximated by rationals, and conjectured th
it could be continuous otherwise. Further, the possib
ity of weak mixing for the latter rotation numbers (whic
constitute a subset of zero measure on the set of all n
bers) under certain conditions imposed on the distribut
of bounded turnover times was demonstrated by Shklo
[17]. In the presence of fixed points the return times a
unbounded; as shown by Kochergin [18] in this case
flow does not mix if the prefactors before the logarithm
terms in the return times are balanced. This is precis
the case for the pattern (4) with two symmetric eddi
where the sums of prefactors corresponding to the p
sage to the left and to the right from the stagnation poi
are obviously equal. Noteworthy, mixing must be prese
[19] in the threshold casef ­ fcr when the stagnation
points are degenerate and the return times diverge i
powerlike waytsz d , jz 2 z0j

21y6.
Applying the more elaborate periodic forcing, it i

possible to excite a velocity field with a single eddy;
typical flow pattern with a streamfunction

Csx, yd ­ ay 2 bx 1 sinx cosy 2 sinx 2 cosy (6)

FIG. 3. Integrated autocorrelation for states from Fig. 1(
(curve g1) and Fig. 1(d) (curveg2); cf. power laws shown by
dashed lines.
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is presented in Fig. 1(d). For this pattern the logarithm
singularities in the return times are not mutually co
pensated. The respective ACF is plotted in Fig. 2(
although one notices many similarities to Fig. 2(b), t
slow but definite decrease of the highest peaks is no
be overlooked. The decay of correlations implies m
ing; presence of mixing for Hamiltonian flows on a tor
with nonbalanced logarithmic singularities was shown
Sinai and Khanin [20]. As compared to the case of sy
metric eddies,Cintstd decays faster (Fig. 3); evaluation o
the fractal dimension of the spectral measure results
D2 ­ 0.75 6 0.01.

As regards the transport of the nondiffusive scalar tr
ers in these velocity fields, one may expect something
between” the ordered motion over the regular pattern
the chaotic advection imposed by Lagrangian turbulen
Because of incompressibility, both Lyapunov characte
tic exponents vanish identically; thereby the exponen
divergence of close particles is prohibited, and the slo
effects should be looked for. To enable the unboun
drift, we considered the periodic tiling on the plane a
computed the value of

d2std ­ kfxsT 1 td 2 xstd 2 tyxg2l (7)

averaged with respect to the timeT along the particle
paths, for both the symmetric field (4) and asymmet
pattern (6); hereyx is the mean velocity of the drift in the
x direction. In both cases after a short intermediate st
with the time scale of one revolution around the torus, o
observes the slow stretching:d2std , t2x with x ø 0.07
for the former andx ø 0.09 for the latter.

Summarizing, the discussed class of steady flows
a reasonable candidate for the role of a state with
most complicated Lagrangian dynamics which can
observed in a time-independent two-dimensional se
Noteworthy, for these flow patterns the property of havi
a singular continuous component in the spectrum
generic, unlike the case of dissipative dynamical syste
where until now such spectra were reported only
certain marginal situations on the border between or
and chaos [14]. Properly rewritten, the equations
governed by three dimensionless parameters: The for
strength and two “Reynolds numbers” characterizing
mean flow inx andy directions, respectively. Obviously
each particular state with an irrational rotation numbe
structurally unstable, but the set of all these states ta
ic
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together occupies almost the whole parameter space
complement, corresponding to rational rotation numbe
has zero measure). In other words, a randomly cho
point in the parameter space corresponds with probabi
1 to a pattern with irrational rotation number. Thu
one is tempted to conjecture that in the presence of
imposed mean flow a motion of a passive tracer alo
the typical two-dimensional steady pattern with isolate
eddies possesses the fractal Fourier spectrum.

We are grateful to A. Nepomnyashchy and K. Khan
for stimulating discussions and to the latter for bringin
our attention to the works [13,18,20].
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