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Extension of Onsager’s Reciprocity to Large Fields and the Chaotic Hypothesis
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We show that the “fluctuation theorem,” a consequence ofcti@otic hypothesi®f G. Gallavotti
and E. G.D. Cohen [Phys. Rev. Lef4, 26942697 (1995); J. Stat. Phy80, 931-970 (1995)] can be
interpreted as extending to arbitrary forcing fields Green-Kubo’s formulas, hence Onsager’s reciprocity,
in a class of reversible nonequilibrium statistical mechanical systems. [S0031-9007(96)01474-3]

PACS numbers: 47.52.+j, 05.45.+b, 05.70.Ln, 47.70.—n

Interest in nonequilibrium statistical mechanics and fluidpaper is to show that the fluctuation theorem of [5], valid
turbulence has recently produced a wealth of resultsyith small or large forcing, reduces to Onsager’s relations
see [1] to quote only a few. | concentrate on resultsand Green-Kubo’s formulas at zero forcing: i.e., it is a
on thermostated systems with raversible dissipation general law with no free parameters, valid out of equi-
mechanism. The physical relevance of this kind of therdibrium with no conditions and reducing to known results
mostats is questioned (their reversibility seems a contranear equilibrium. Hence it is a result of the type that one
dictory or, at best, exotic feature). In [1] a connectionlooks for in the attempt to establish a theory of nonequi-
with old debates and new problems was perceived clearlljbrium. That the chaotic hypothesis implied Onsager’s
and discussed to some extent. But it is important that theeciprocity was already noted in [6] with no reference to
mentioned works do contain first rate data, relations amonthe fluctuation theorem; but the experimental results of [7]
them, and deep theoretical suggestions that hint at, and calliggested that there could have been a much less techni-
for, atheory. Itis also clear that any such theory has to dealal derivation directlyfrom the fluctuation theoremThis
with, and say something nontrivial about, thell reco- is done in the present paper by showing that the latter gen-
gnized problenof “what is the analog of the Gibbs’ en- eral theorem, a property dérge fluctuations, becomes a
sembles out of equilibrium?” Hence | do not enter heretrivial identity at zero fields but, if before letting the fields
into the debate on the direct physical interest of reversibléo 0 one divides by appropriate powers of the forcings
thermostats [2]. and at the same time one uses the central limit theorem for

In the early 1970’s Ruelle [3] proposed an answer (“ensmallfluctuations, one gets Green-Kubo’s relations (hence
semble”= “SRB distribution”; see below), and since then reciprocity). We, therefore, conclude that the fluctuation
many have been looking for consequences of that ideaheorem can be regarded as an extension to nonzero fields
which was a bit too advanced at the time to be widelyof Onsager’s reciprocity theorem valid only at O forcing.
appreciated. The key work [4] provided a puzzling ex- A typical system studied here will b& point parti-
perimental result and an indication for its theory based oreles subject to (a) mutual and external conservative forces
Ruelle’s principle. This led [5] to “predict,” as a conse- with potential V(g1,...,gxy), (b) external (nonconserva-
quence of a form of Ruelle’s principle (“chaotic hypothe-tive) forces, forcing agents{F;}, j = 1,...,N, whose
sis”), the result of [4], witmo free parameteravailable.  strength is measured by parameté¢}, i = 1,...,s,

Although the results required reversibledissipation and (c) also to forcedg;}, j = 1,...,N, generating
mechanism, their generality seemed promising. Oneonstraints that provides a model for the thermostating
should keep in mind that we look for a nonequilibrium mechanism that keeps the energy of the system from
analog of Boltzmann’s heat theorem; he derived out ofyrowing indefinitely (because of the continuing action of

clear general principles, but not necessarily very clearlyhe forcing agents). An observahi®{g, g}) evolves un-

related to physics at the time, thedU + pdV)/T is  der the time evolutior$, solving the equations of motion,
exact: a property without free parameters “always valid.”

The fluctuation theorem seemed a step in this direction. mq; = —d;V(g;) + F;{G}) + ¢, 1)

As a consequence | wanted to test whether_ the chaqt — particle mass;3; “thermostating” forces assuring
hypothesis is consistent (at least for the considered widg, approach to a (nonequilibrium) stationary state]. Time
class of systems) with other properties that are known or ;

universally believed to be correct in generic none u”ib_evolution of 0 on the motion starting at = (4,7) is a
y 9 4 function t — O(S,x); motion statisticsis the stationary

rium systems. Not many of them exist. Perhaps only G
the fluctuation dissipations theorems (i.e., Onsager’s recf-)mbab'"ty distributiony +- on phase spac€ such that

procity and Green-Kupo’s formulas) do which concern . 1 ]T _ j’ def
derivatives of thermodynamic quantities in terms of forc- 7% T o O(Six) dt c O(y)u+(dy) = (O0)+
ing fieldsevaluated at zero forcing.The purpose of this 2
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for all datax € C except a set of zero measure with The chaotic hypothesi¢CH) implies afluctuation the-

respect to the volumg, on C. The distributionus is  orem (FT) which [5] is a property of the fluctuations

assumed to exist: a property calleeroth law[5,6]. of the entropy production rate. Namely, if the denote
The thermostating mechanism will be described byo): = [~ o(y)u+(dy) the time average, over an infi-

force lawsg¢; enforcing the constraint that kinetic energy nite time interval by Eq. (2), then trdimensionles$inite

(or total energy) of the particles, or of subgroups of thetime average = p(x)

particles, remains constant [8]. It is convenient also to L (72

imagine that the constraints keep the total kinetic energy - f o (S, x)dt def (o)sp (3)

bounded (hence phase space is bounded). Constraint T J=1/2

forces_{goj} \.N'” be supposed suc_h that thg System ISpas a statistical distributionr,(p) with respect to the

reversible this means that thgre W|I_I be_ a mapdef_lned_ stationary state distribution .. such that

on phase space, anticommuting with time evolution, i.e.,

S:i = iS—,. Examples of such thermostats areNonsé- 1 7.(p)

Hoover’sclass; see, for instance [1,5]. o)+ p 7.(—p)
Reversibility is a key assumption [5,9]. ) )
In [5,7] the above systems, at least whehaoti i.e.,, Provided (of courseXo). > 0. Following [5] a re-

when showing at least one positive Lyapunov exponentv/ersible system for whicko). > 0 will be called dis-

are supposed to verify the following hypothesis. sipative Ruelle’s ' theorem states thdtr). = 0 and,
Chaotic hypothesisA reversible many particle system at Ieas_,t if th(_ere are no nontrivially O Lyapunov exponents

in a stationary state can be regarded as a transitive Anosé§-9-» if CH is assumed)s)+ > 0 unless the stationary

system for the purpose of computing the macroscopidistribution .. has the formp (x)iz,(dx) [9]-

— 7o 1 ) (4)

properties. Hence we shall suppose that the system is dissipative
This means that the attractor is assumed hyperboligthen the forcingG does not vanish and, without real
in a strict mathematical sense (“Anosov” is a technicalloss of generality, that(ix) = —o(x) and thato (x) = 0

statement about existence and mild regularity of stablévhen the external forcing vanishes, writing
and unstable manifolds at each attractor poimgnsitive .

means that the stable and unstable manifolds of each o(x) = Zi GiJi(x) + 0(G?). (5)
attractor point are dense on the attractor; see [3]. . - i

In [7] a broader formulation of the hypothesis is given ASSuming fast decay obr-o- correlations (to be ex-
that applies also to cases in which the attractor is smallgpected if the CH is accepted [10]) then by a result of Sinai
than the whole phase space (which may happen at really-0] the entropy verifies &mit theorem i.e.,
large forcing and fixed numbers of particles): but in this 1
paper we adhere to the original formulation [5] to simplify lim — log m(p) = —{(p), (6)
the analysis.

In the quoted references it is argued that the chaotithere {(p) is analytic for p in the interval[—p*, p*]
hypothesis should be considered in the same way as th@thin which it can vary (model dependent) [11,12]. The
ergodic hypothesisn equilibrium statistical mechanics. function {(p) can be conveniently computed because its
It is assumed as correct even in cases in which itransformA(8) = lim,_.. 1 log [ ef™(P~ D) 7 (p)dp
cannot be mathematically strictly valid: but this cancan be expressed by @mulant expansian Once A(B)
be done only for the purpose of deriving statisticalis “known,” then{(p) is recovered via a Legendre trans-
properties of a few relevant observables. An analog oform; {(p) = maxg (B{o)+(p — 1) — A(B)) [11,12].
this procedure is the derivation of the second law from By using the cumulant expansion fatg) we find that
ergodicity (i.e., from the microcanonical ensemble): thex(g) = %,3202 + %,33@ + ... where the coefficients
law (“Boltzmann's heat theorem”) is derived supposingcC; are ‘/‘Djoo<g'(Stl-)g'(St2-),__O'(Stjil-)g'(-»id[l,“’ if
ergodicity, and it is assumed valid even when the ergodi¢...)” denote the cumulants of the variableér).
hypothesis is obviously false (e.g., for the free gas in In our case the cumulants of ordghave sizeO(GY),

a box). by Eq. (5), so that

It might be surprising thathere are nontrivial conse- )
quences of the hypothesizesides the existence of the dis- l(p) = o) (p=1D*+0Wp - 1G) (7
tribution 4+ in (2) which in this context is called th8RB 2C;

distribution, and that theycan be teste,7]. The main (note the first term in rhs giving the central limit theorem).

one is thefluctuation theoremsee below. : ] . .
In [5] the divergence of the right-hand side (rhs) ofi%usél)??e(lzi’ofgether with the FT (4), yields at fixpd

Eqg. (1) is a quantityr(x) defined on phase space that has
been identified with thentropy production rate. (o) = %CZ + 0(GY). (8)
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We define [11] current J;(x) = dg,0(x), transport lim 1 Iog]er[ﬁ](p—l)(a')++ﬁz(q—l)(Gj(’JGja')+]
coefficientsL;; = d¢,(J;(x))+|c=0, and we study.;;. T—® T
To derive Green-Kubo formulas (GK) we first look X . (p,q)dpdq, (16)

at the rhs of Eq. (8) discarding(G?): the rhs becomes

quadratic inG with coefficients and then the Legendre transforms,

3 f iSO+ = DD lg=0. (9 {(p.@) = max(Bi(p = Do) + Balg — 1)

X (Gjdg, o)+ — A(B1, B2)). (17)
On the other hand, the expansion{ef). in the |hs of L.
Eq. (8) to second order i@ gives The function A(B), B8 = (B1, B2) is evaluated by the
. cumulant expansion, as above, and one finds
(o) = 5 D (9606,(0)+) lg=0GiG;.  (10) AB) = 1 (B.CB) + 0(G?), (18)

)
because the first order term vanishes [by Eq. (5) ofvhereC is the2 X 2 matrix of the second order cumu-
(8). The rhs of (10) is the sum oéGiGj times Iants_,. T_he coefficien€; is given byCz appearing in ();
96,06, [ o(x)u+ (dx) which equals the sum of the fol- Cyp IS given by th.e same expression withreplaced by
lowing three terms: the first i d¢,dg, o (x)u+ (dx), the G;dg,0 while Cyy is the mixed cumulant,
second is[ dg,0(x)dg,m+(dx) + (i < j), and the third ®
is [ o(x)dg,dG, m+(dx), all evaluated aG = 0. The first ffooRU(St‘)G.iaG/‘T(')>+ — (o(S:)+(Gjdg,o(-)+ ]dr .
addend is O (by time reversal), the third addend is also 0 (19)
(aso = 0atG = 0). Hence

Hence if
36,96,(0)+lo=0 = (06,(I)+ + d6,I+) lg=0. (11) o ( (p — ){o)s )
and it is easy to check, again by using time reversal, that (g — D(G;dg, o)+
36,0 +1g=0 = 96, +lg=0 = Lij. (12) we get
Thus equating the rhs and |hs of Eq. (8), as expressed, {(p.q) = 3 (C"1W, W) + 0(G?), (20)

respectively, by Egs. (9) and (11) we express the matri
Lij + L;;/2 getting GK at least ifi = j; a relation
sometimes called a “fluctuation dissipation theorem” [13]
We want to show that the above ideako suffice
to prove Onsager reciprocity (OR), i.&;; = L;;. The —(C™N2(Gjdg,o)s — (C"alo)s =0 + 0(G?),
main remark is that we caextendthe FT theorem to give
properties ofjoint distribution of the average of, (3), (21)
and of the corresponding .. average of5;dg,o. Infact,  which because of (8), and ofC~'),, = C;,/detC,
definingdimensionlesg currentg = ¢(x) as becomes the analog of (8),

%ompletely analogous to (7). But the FT in (14) implies
thatZ(p,q) — {(—p,—q) is g independentthis means,
‘as it is immediate to check,

(Gjag,o)r = 3Cip + O(GY). (22)

Then, proceeding as in the derivation of (9) through (12)
where the factoiG; is there only to keepr andG,dg, o [i.e., expanding both sides of (28) first orderin the G;’s

L[ e
7 [ n GjHGja'(S,x) dt ot Gj<aG/0'>+q, (13)

with the same dimensions. and using (19)], we get that (dg,0)+ is given by the
Then if 7.(p,q) is the joint probability ofp,q the integral in (9). This means that; = L and the GK
sameproof of the FT in [5] yields also follow together with the OR.

Thus Egs. (8) and (22) and the ensuing GK and OR are

1 7(p,q) a consequence of FT, (4), and of its (obvious) extension,

1'530 o) p lo 7 (—p,—q) L, (14) (14), in the limitG — 0, when combined with the expan-
sion (7) for entropy fluctuations. Those theorems and the
and the limit theorem in (6) is extended [10] to fast decay of thero correlations [10] are all natural con-
1 sequences of CH for reversible statistical systems, which
lim — log 7 (p.q) = —{(p,q). (15) s the starting point of our considerations. Reversibility is

here assumeboth in equilibrium and in nonequilibrium
We can comput€(p, ¢) in the same way ag(p) by this is a feature of Gaussian thermostat models [5], but by
considering first the transform(g, 82), no means of all models [4,8].
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Of course while the OR and GK only hold around
equilibrium, i.e., they are properties & derivatives
evaluated atG = 0, and the expansion fon(gB) is a  [9]
general consequence of the correlation decay, the FT also
holds far from equilibrium, i.e., for larg& and can be
considered a generalization of the OR and GK.

Evidence for (8) and (22) arose in [7] in an effort to in-
terpret results of various numerical experiments and an ap-
parent incompatibility of tha priori known non-Gaussian
nature of the distributionr,(p) and “Gaussian looking”
empirical distributions. In [7] the situation arising at re-
ally large fields, when the attractor is strictly smaller than
the whole phase space, is also discussed.

The above ideas as well as attempts to give a more fun-
damental role to Gaussian thermostats gave rise, recently,
to several papers [2].
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version and for many comments. Partial support from
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No. ERBCHRXCT940460.
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