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Why do Chaotic Orbits Converge under a Random Velocity Reset?

Yih-Yuh Chen
Physics Department, National Taiwan University, Taipei, Taiwan, Republic of China

(Received 8 July 1996)

When an ensemble of interacting identical particles is put inside a confining potential it is usual
case that the particle trajectories are chaotic and thus exhibit sensitive dependence on initial con
However, if their velocities are randomly reset at a regular time intervalt according to a prescribed
probability distribution, then it might happen that all the particles will eventually converge to s
unique yet irratic orbit in the physical space, depending on the pertinent physical parameters
system andt. We suggest that this is a rather general phenomenon, and give an argument in fa
this view. Scaling properties for the threshold reset time are also derived. [S0031-9007(96)016
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In many applications one usually is concerned ab
how to impose a certain behavior on a dynamical sys
using some conveniently chosen driving mechanism.
the heart of this type of control is that the dynamic
response of the system under consideration be stable
respect to the driving reset signal, for otherwise a runaw
situation will ensue. The study of this type of stability f
a physical system is quite interesting when the system
already in a chaotic state, and even more so when
resetting signal itself is also random or chaotic, beca
there is no telling how compounded seemingly rand
events will exhibit themselves. In this sense, we c
say that the work of Pecora and Carroll [1] and that
Fahy and Hamann [2] represent one intriguing feature
a chaotic system, namely, wecan maintain stability on
an otherwise chaotic system using either a chaotic o
random resetting signal.

To see this similarity more clearly, we recall that
the original implementation of the synchronization
chaos [1] one simply channels one output of a cha
driving system to replace the corresponding variable
an identical response system, and observes that the
variables of the response system evolve into the same
as the driver, irrespective of the initial conditions. O
the other hand, for the Fahy and Hamann implementa
[2,3], one starts with two noninteracting particles movi
chaotically inside a confining potential. The velociti
of both particles are then randomly reset according
the Maxwellian distribution at a regular time interv
t, and it is observed that fort less than a threshol
value the trajectories always tend to converge to the s
orbit, independent of their initial conditions. In these tw
examples, the only difference in their resetting mechan
is that in the former the reset is done continuously in tim
whereas in the latter it is done at a discrete time inter
This suggests two possible immediate generalization
the cited work: (1) We can investigate synchrono
chaos within the Pecora-Carroll implementation usin
discrete time reset, and (2) we can study the gener
of the Fahy-Hamann result. Because some interes
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progress and potential applications have been reported
7] concerning possibility (1), here we will concentrate o
(2) only.

To set the stage, we assume that an ensemble
interacting identical particles is put inside a confining
force field so that total potential energy isV s $xd when the
configuration space coordinate of the system is$x. (For
an n-body system moving in aD-dimensional space,$x
hasN ; nD components.) For simplicity, we assume th
potentialV s $xd is a smooth function which never blows up
unlessk $xk ! `. The equation of motion for the system
then reads

d $x
dt

­ $y and
d $y
dt

­ 2
1
m

≠V
≠ $x

2 g $y , (1)

where m is the mass of the particles,$y the velocity
conjugate to$x, and we have included a damping facto
g $ 0 to take into account a possible dissipative effec
The system will freely evolve for a timet before suffering
an instantaneous reset in the velocity$y from an external
agent. The new velocity$ynew after reset takes the
following form:

$ynew ­ a $yold 1 $yrandom , (2)
where the parametera is included to simulate a certain
memory effect, and$yrandom is a velocity randomly se-
lected from a prescribed distribution. In the following dis
cussion we shall confine ourselves to the case0 # a # 1
[2,3]. Disregarding the possible gain from the rando
reset, the system tends to lose a fraction of its kinetic e
ergy after each reset whena , 1. We thus expecta and
g ($0) to play a similar role in the formalism.

In order to study the linear stability of the system, w
will have to calculate the time evolution of the sma
deviation between two nearby orbits in the phase spa
and see if it converges exponentially. The deviationsd $x
andd $y satisfy

dd $x
dt

­ d $y and
dd $y
dt

­ 2
1
m

≠2V
≠ $x2 d $x 2 gd $y . (3)

Suppose the system is allowed to evolve for a short tim
t, then we can integrate Eq. (3) forward in time an
express the answer in a Taylor series oft. Correct to
© 1996 The American Physical Society
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second order int, one has

d $x ­ d $x0 1 d $y0t 2
t2

2m

µ
≠2V0

≠ $x2
d $x0 1 mgd $y0

∂
1 · · · ,

d $y ­ d $y0 2
t

m

µ
≠2V0

≠ $y2
d $x0 1 mgd $y0

∂
2

t2

2m

µ
≠3V0

≠ $x3
$y0d $x0 1

≠2V0

≠ $x2
d $y0 2 g

≠2V0

≠ $x2
d $x0 2 mg2d $y0

∂
1 · · · ,

(4)
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where the subscript “0” means that a quantity is eva
ated at the reference time. After this brief free evo
ing moment, the system is subjected to a reset descr
by Eq. (2). But since the two nearby orbits suffer th
same amount of random reset from the term$yrandom,
the d $y after the reset is necessarilya times that com-
puted in Eq. (4). Therefore, the (linear) relation betwe
sd $x0, d $y0d of the previous reset andsd $x, d $yd after the
new reset can be succinctly organized in the matrix fo
sd $x, d $ydT ­ Hsd $x0, d $y0dT , with

H ;
µ

I 0
0 aI

∂
1 t

µ
0 I

2
a

m
≠2V0

≠ $x2 2agI

∂
2

t2

2m

√
≠2V0

≠$x2 mg

a
≠3V0

≠$x3 $y0 2 ag
≠2V0

≠$x2 a
≠2V0

≠$x2 2 amg2

!
,

(5)

whereI is anN 3 N identity matrix. The investigation
of the stability of the system then reduces to solving
the compounded effect of the matrixH at different times
and verifying that it does not blow up in the long ru
But since this obviously presents a tremendous challe
for analytical treatment, we will resort to a less direct b
more intuitive approach: trying to evaluate the average
H and obtaining its stability criterion, which, in this cas
is simply that the magnitude of the eigenvalues of t
averagedH are less than unity.

But before we proceed, a few remarks are in ord
First, in view of the fact that the system is roamin
erratically in the phase space, it seems reasonable
assume that after a long time there will be a stea
probability distribution fs $x, $yd for the system to be
found at the states $x, $yd. By our very construction,
the isotropic velocity distribution is independent of th
position distribution after each reset, implying thatfs $x, $yd
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can be factored intof1s $xd ? f2sk $ykd for some functionsf1

andf2. Borrowing an idea from statistical mechanics, w
will further make the (as yet unsubstantiated) assump
that f1s $xd ­ gsssV s $xdddd for some monotonically decreasin
function gsV d which vanishes quickly asV tends to
infinity.

To evaluate the average value of the various ma
elements, we first note that the average of≠3V0

≠$x3 $y0 vanishes
due to symmetry inf2sk $y0kd. Then all that remains to
evaluate is

L ;
1
m

ø
≠2V0

≠ $x2

¿
­

1
m

Z
gsV d

≠2V
≠ $x2

d $x

­ 2
1
m

Z dg
dV

≠V
≠ $x

≠V
≠ $x

d $x (6)

after integration by parts. (The angular brackets stand
the phase space average of a quantity.) The pote
energy resulting from the pairwise mutual interactio
between the particles has a reflection symmetry un
$x ! 2$x. Hence the tensorL is a positive-definite
operator if the external potential also has a reflect
symmetry, because then the cross terms≠V

≠xi
≠V
≠xj (i fi j)

will cancel out, leaving only the diagonal elements, a
becausedgydV is negative by assumption. We therefo
further restrict ourselves to the case when the exte
confining field possesses a reflection symmetry from n
on. This much said, now we can proceed with the analy
of the eigenvalues ofH.

Because the matrix elements ofH now involve only
the two commuting operatorsI and L, solving the
eigenvalue problemHc ­ lc becomes quite trivial. In
fact, denoting the eigenvalue ofL by l, one can easily
derive
l ­
1
2

∑
1 1 a 2 agt 2

sl 1 al 2 ag2d
2

t2 6 A1y2

∏
, (7)

A ; s1 2 ad2 1 2as1 2 adgt 2 fs1 1 ad2l 2 as2a 2 1dg2gt2 1 s3l 1 al 2 ag2dagt3

1 fsl 1 al 2 ag2d2y4 2 al2gt4. (8)
4319
If a , 1, then for all small enought we may further
expand Eq. (7) in powers oft. This yields

l ø 1 2
1
2

1 1 a

1 2 a
lt2, as1 2 gtd if g . 0 ,

(9)
and
l ø 1 2
1
2

1 1 a

1 2 a
lt2,

a

µ
1 1

1
2

1 1 a

1 2 a
lt2

∂
if g ­ 0 . (10)

Therefore the system is stable for all small enought,
provided thata , 1. Similarly, Eq. (7) predicts that for
the casea . 1 the system is unstable ifg ­ 0, no matter
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how smallt is. In this sense we see that the dissipat
nature ofa , 1 andg . 0 has a stabilizing effect on the
system, just as one has expected.

At this point our analysis suggests only that th
configuration of the system will converge to a uniqu
orbit in the phase space, and not that every single part
in the system will eventually converge onto a uniq
trajectory in the physical space. However, because
particles are identical, we know that ifsss $xstd, $ystdddd is
an admissible solution to the equation of motion, th
the vectorsss $x0std, $y0stdddd obtained by exchanging only on
pair of the particle indices ofsss $xstd, $ystdddd must also be a
solution. In other words, we may viewsss $xstd, $ystdddd and
sss $x0std, $y0stdddd as two admissible evolving configurations
the phase space. But if this is true, then it means th
difference sssd $xstd, d $ystdddd necessarily obeys Eq. (3); an
our previous analysis goes through. In effect, this th
implies that if at any moment two particles chance in
each other’s neighborhood, they will eventually follo
the same path whenever the stability criterion we deriv
above is satisfied. This is demonstrated in Fig. 1
three particles of massm ­ 20 moving in the confining
potential [2]

V sx, yd ­ sins2pxdy2px 1 sins2pydy2py 1 rsy16p ,

(11)
with s ­ 4 and under the influence of a mutualrepul-
sive potential Vrepsk $xi 2 $xjkd ­ 50ysk$xi 2 $xjk

2 1 1d
between the particles when the reset timet is 0.1. Here
a ­ g ­ 0, and the random velocity$yrandom has an
average magnitude of 250.

FIG. 1. Convergence of orbits for three mutually repulsi
particles put inside a confining potential. The high lying cur
is the distance of one reference particle to the origin;
remaining three (converging) curves are the relative distan
of the particles.
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The fact that the random reset velocity does n
explicitly come into sight in the previous analysis als
suggests that the detailed form of the distribution la
for the random reset velocity should be inessential. T
we have verified for at least two cases: the Maxwelli
distribution and the uniform distribution with a cutoff
On the other hand, a statement of this generality p
us directly in a paradoxical situation, because by “toni
down” the random velocity, i.e., setting$yrandom to infinity,
one would predict exactly the same synchronous behav
which looks ridiculous due to the fact that a syste
satisfying the stability condition and subject to no rando
velocity reset will keep losing the kinetic energy eith
continuously via the dampingg (if g . 0) or discretely
at each reset viaa (if a , 1) until it comes to a
complete stop when the potential energy achieves
local minimum. Yet there is no guarantee that particl
arranged in a configuration of minimum potential ener
will collapse into the same spatial point—they do n
in general; and this is especially true if their mutu
interaction is repulsive. So what is happening here?

The answer to this difficulty seems to lie in the tim
scales involved: When the random reset is weaker
magnitude, it will take a considerably longer time fo
the system to experience many potential lows and hig
before the phase space averaging can make any se
Besides, the same long waiting time is needed for
random reset to drive the system to a configuration t
is favorable for particle collapse if the external potent
is incapable of counteracting the repulsion between
particles initially. However, a quantitative analysis of th
idea still needs to be worked out.

Because too long a waiting timet is like not perturbing
the originally chaotic system at all, we also expect there
be a threshold valuetc above which orbital convergenc
is impossible. But how doestc depend on the system
parameters? Indeed, our analysis also provides a hin
this question; and to simplify the matters we will treat th
caseg ­ 0 in the following as an illustration.

Clearly, convergence of orbits is possible only if th
eigenvaluel of Eq. (7) has a norm less than unity
Although we cannot directly set the norm of Eq. (7)
unity to computetc (because this equation is derived wit
the understanding thatt is small, an assumption which is
rendered invalid whent gets to as large astc), at least we
are sure that the dimensionless parameterlt2

c must have
increased to order one when instability sets in. Therefo
tc should obey the scaling law

tc ~ l21y2, (12)

where a prefactor which might depend ona in some
complicated way has been dropped because our sim
theory is incapable of determining its precise form. B
by Eq. (6) we see thatl may be estimated usingl ø
kV lymk $x2 l. Hence Eq. (12) becomestc ~

p
mk $x2 lykV l.

To check the validity of this prediction, we ma
consider specific examples forV . For instance, if we
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erical

FIG. 2. The scaling behavior of the threshold reset timetc on (a) b, the strength of velocity reset when the particle massm is
20, and on (b) the massm of the particle whenb ­ 0.1. (In both cases the average random reset velocity is 250.) The num
values of the slope in (a) and (b) are20.68 and 0.17, respectively, comparing favorably with the theoretical value of22y3
and1y6.
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have V s $xd ~ $xs as k $xk tends to infinity, thentc ~

m1y2kV l2 1

2
1 1

s when the average potential energy of th
system is large. Since we also havekV l ø 1

2 m $y2
random,

the answer becomestc ~ m1yss $y2
randomd2 1

2
1 1

s . Therefore,
if we somehow normalize a velocity distribution$urandom
such thatkk $urandomkl is a fixed number and rewrite the
reset velocity as

$ynew ­ a $yold 1 $yrandom ; a $yold 1 b $urandom (13)

so that the parameterb signifies the strength of the
velocity reset from an external agent, then the predicti
is

tc ~ m1ysb
211 2

s , (14)

which we have verified for the potential of Eq. (11) wit
s ­ 4 and s ­ 6, respectively. The latter is shown in
Fig. 2.

In summary, generalizing previous works [2,3,8] i
several respects, we have shown that randomly reset
the particle velocity at a suitably chosen discrete tim
interval can bring the individual particle trajectories int
convergence, even if there is a repulsive force betwe
any two particles. And for this to occur, the detailed for
of the velocity distribution is not essential, either. Th
threshold reset timetc depends on system properties suc
as the particle mass, the amplitude of the velocity res
and the form of the potential energy. Under appropria
limits, we have also derived its dependence on the
parameters. Despite all its apparent success, we sho
also keep in mind that our argument still lacks the kin
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of sophistication a complete theory should have. For o
thing, we are unable to assess the validity of substitut
the actual evaluation of the stability matrix by its pha
space average; and the various assumptions explicitl
implicitly woven into the formalism are subject to ope
criticism and further investigation. We hope issues li
these will be clarified in the future.
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