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Why do Chaotic Orbits Converge under a Random Velocity Reset?
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When an ensemble of interacting identical particles is put inside a confining potential it is usually the
case that the particle trajectories are chaotic and thus exhibit sensitive dependence on initial conditions.
However, if their velocities are randomly reset at a regular time intervatcording to a prescribed
probability distribution, then it might happen that all the particles will eventually converge to some
unique yet irratic orbit in the physical space, depending on the pertinent physical parameters of the
system andr. We suggest that this is a rather general phenomenon, and give an argument in favor of
this view. Scaling properties for the threshold reset time are also derived. [S0031-9007(96)01681-X]

PACS numbers: 05.45.+b

In many applications one usually is concerned abouprogress and potential applications have been reported [4—
how to impose a certain behavior on a dynamical systenf] concerning possibility (1), here we will concentrate on
using some conveniently chosen driving mechanism. A{2) only.
the heart of this type of control is that the dynamical To set the stage, we assume that an ensemble of
response of the system under consideration be stable withteracting identical particles is put inside a confining
respect to the driving reset signal, for otherwise a runawagorce field so that total potential energyVigx) when the
situation will ensue. The study of this type of stability for configuration space coordinate of the systent.is(For
a physical system is quite interesting when the system ian n-body system moving in @-dimensional spacex
already in a chaotic state, and even more so when thieasN = nD components.) For simplicity, we assume the
resetting signal itself is also random or chaotic, becauspotentialV(x) is a smooth function which never blows up
there is no telling how compounded seemingly randonunless||x|| — . The equation of motion for the system
events will exhibit themselves. In this sense, we carthen reads

say that the work of Pecora and Carroll [1] and that of dx — 5 and dv __lov . (1)
Fahy and Hamann [2] represent one intriguing feature of dt v dt m ox Yv.

a chaotic system, namely, wa&n maintain stability on where m is the mass of the particles; the velocity
an otherwise chaotic system using either a chaotic or aonjugate tox, and we have included a damping factor
random resetting signal. v = 0 to take into account a possible dissipative effect.
To see this similarity more clearly, we recall that in The system will freely evolve for a time before suffering
the original implementation of the synchronization of an instantaneous reset in the velocityfrom an external
chaos [1] one simply channels one output of a chaotiagent. The new velocityp,., after reset takes the
driving system to replace the corresponding variable ofollowing form:
an identical response system, and observes that the other VUnew = @VUold + Urandom » (2)
variables of the response system evolve into the same staighere the parameter is included to simulate a certain
as the driver, irrespective of the initial conditions. Onmemory effect, and,,,qom iS @ velocity randomly se-
the other hand, for the Fahy and Hamann implementatiotected from a prescribed distribution. In the following dis-
[2,3], one starts with two noninteracting particles movingcussion we shall confine ourselves to the dase o < 1
chaotically inside a confining potential. The velocities[2,3]. Disregarding the possible gain from the random
of both particles are then randomly reset according taeset, the system tends to lose a fraction of its kinetic en-
the Maxwellian distribution at a regular time interval ergy after each reset when< 1. We thus expect and
7, and it is observed that for less than a threshold + (=0) to play a similar role in the formalism.
value the trajectories always tend to converge to the same In order to study the linear stability of the system, we
orbit, independent of their initial conditions. In these twowill have to calculate the time evolution of the small
examples, the only difference in their resetting mechanisrdeviation between two nearby orbits in the phase space
is that in the former the reset is done continuously in timeand see if it converges exponentially. The deviatiéis
whereas in the latter it is done at a discrete time intervaland 57 satisfy
This suggests two possible immediate generalizations ofddx . ddv 1 9%V . .
the cited work: (1) We can investigate synchronous g; év and dr m R ox — yév. (3)
chaos within the Pecora-Carroll implementation using éSuppose the system is allowed to evolve for a short time
discrete time reset, and (2) we can study the generality, then we can integrate Eg. (3) forward in time and
of the Fahy-Hamann result. Because some interestingxpress the answer in a Taylor series7of Correct to
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second order ir, one has
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where the subscript “0” means that a quantity is evalucan be factored intg; (x) - f2(]|v]]) for some functiong;
ated at the reference time. After this brief free evolv-andf,. Borrowing an idea from statistical mechanics, we
ing moment, the system is subjected to a reset describedill further make the (as yet unsubstantiated) assumption
by Eqg. (2). But since the two nearby orbits suffer thethat f1(x) = g(V(x)) for some monotonically decreasing
same amount of random reset from the tefm.qom, function g(V) which vanishes quickly ad/ tends to
the v after the reset is necessarily times that com- infinity.

puted in Eq. (4). Therefore, the (linear) relation between To evaluate the average value of the various matrix

(8%, 8v9) of the previous reset an(bx, 5v) after the  elements, we first note that the averagé.gt i/, vanishes
new reset can be succinctly organized in the matrix fornjue to symmetry inf>(||5oll). Then all that remains to

(6x,80)" = H(5%, 519)", with evaluate is

I 0 0 Vi
o ) ot [

0 al —ooa —ayl LEL<8YO>:ifg(V)a*Vd;

2 PV, m\ 0x2 m 9x2
- T—( o " ) | [ dg oV av
3Vy > a2V, 9*V, > -
2\ ity — ay alt = amy’ “ ) W ®
5)

wherel is anN X N identity matrix. The investigation after integration by parts. (The angular brackets stand for
of the stability of the system then reduces to solving forthe phase space average of a quantity.) The potential
the compounded effect of the matuk at different times energy resulting from the pairwise mutual interactions
and verifying that it does not blow up in the long run. between the particles has a reflection symmetry under
But since this obviously presents a tremendous challenge— —x. Hence the tensoll is a positive-definite
for analytical treatment, we will resort to a less direct butoperator if the external potential also has a reflection
more intuitive approach: trying to evaluate the average ofymmetry, because then the cross ter%s% @@ #J)
H and obtaining its stability criterion, which, in this case, will cancel out, leaving only the diagonal elements, and
is simply that the magnitude of the eigenvalues of thebecauselg/dV is negative by assumption. We therefore
averagedd are less than unity. further restrict ourselves to the case when the external
But before we proceed, a few remarks are in orderconfining field possesses a reflection symmetry from now
First, in view of the fact that the system is roamingon. This much said, now we can proceed with the analysis
erratically in the phase space, it seems reasonable ftf the eigenvalues aff.
assume that after a long time there will be a steady Because the matrix elements &f now involve only
probability distribution f(x,v) for the system to be the two commuting operatorg and L, solving the
found at the state(x,7). By our very construction, eigenvalue problently = Ay becomes quite trivial. In
the isotropic velocity distribution is independent of thefact, denoting the eigenvalue &f by I/, one can easily
position distribution after each reset, implying thf&t, 7) | derive

1 |+ al — ay?
)L=—[l+a—ay7'— ( « ¥y )TziA1/2i|, @
2 2
A=(0—a)P+2a(1 - a)yr — [(1 + @)l — aQRa — Dy*]r* + Bl + al — ayHayr®
+ [ + al — ay??/4 — al*]r*. (8)
If « <1, then for all small enough- we may further| A=1— l1l+te 72,
expand Eq. (7) in powers of. This yields 21—«
1 1+«
11+ . 1+——12> if y=0. 10
/\zl—sliah'z, a(l = yr) ify >0, “( 21— )" (10)
- o

Therefore the system is stable for all small enough
(9) provided thate < 1. Similarly, Eq. (7) predicts that for
and the casex > 1 the system is unstable 4f = 0, no matter
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how smallr is. In this sense we see that the dissipative The fact that the random reset velocity does not
nature ofa < 1 andy > 0 has a stabilizing effect on the explicitly come into sight in the previous analysis also
system, just as one has expected. suggests that the detailed form of the distribution law

At this point our analysis suggests only that thefor the random reset velocity should be inessential. This
configuration of the system will converge to a uniquewe have verified for at least two cases: the Maxwellian
orbit in the phase space, and not that every single particldistribution and the uniform distribution with a cutoff.
in the system will eventually converge onto a uniqueOn the other hand, a statement of this generality puts
trajectory in the physical space. However, because thas directly in a paradoxical situation, because by “toning
particles are identical, we know that {ft(z),v(z)) is down” the random velocity, i.e., setting.,qom to infinity,
an admissible solution to the equation of motion, therone would predict exactly the same synchronous behavior,
the vector(x'(z), v'(¢)) obtained by exchanging only one which looks ridiculous due to the fact that a system
pair of the particle indices ofx(z), v(z)) must also be a satisfying the stability condition and subject to no random
solution. In other words, we may vieW(s),v(z)) and  velocity reset will keep losing the kinetic energy either
(x'(z), v'(r)) as two admissible evolving configurations in continuously via the damping (if ¥ > 0) or discretely
the phase space. But if this is true, then it means theiat each reset viax (if « < 1) until it comes to a
difference (6x(z), 5v(¢)) necessarily obeys Eq. (3); and complete stop when the potential energy achieves its
our previous analysis goes through. In effect, this therlocal minimum. Yet there is no guarantee that particles
implies that if at any moment two particles chance intoarranged in a configuration of minimum potential energy
each other's neighborhood, they will eventually follow will collapse into the same spatial point—they do not
the same path whenever the stability criterion we derivedn general; and this is especially true if their mutual
above is satisfied. This is demonstrated in Fig. 1 forinteraction is repulsive. So what is happening here?
three particles of masa = 20 moving in the confining The answer to this difficulty seems to lie in the time
potential [2] scales involved: When the random reset is weaker in

o . s magnitude, it will take a considerably longer time for
Vix,y) = sin2mx)/2mx + sin2my)/2my + r*/16m, oo system to experience many potential lows and highs
(11) before the phase space averaging can make any sense.

with s = 4 and under the influence of a mutuadpul- Besides, the same long waiting time is needed for the
sive potential Vi, (1% — ;1) = 50/(|I%; — X;/I> + 1)  random reset to drive the system to a configuration that
between the particles when the reset timis 0.1. Here is favorable for particle collapse if the external potential
a =y =0, and the random velocity,.qom has an is incapable of counteracting the repulsion between the
average magnitude of 250. particles initially. However, a quantitative analysis of this

idea still needs to be worked out.

Because too long a waiting timeis like not perturbing
the originally chaotic system at all, we also expect there to
10 . l , ‘ be a threshold value. above which orbital convergence

is impossible. But how does. depend on the system
parameters? Indeed, our analysis also provides a hint to
this question; and to simplify the matters we will treat the
casey = 0 in the following as an illustration.

Clearly, convergence of orbits is possible only if the
eigenvalue A of Eg. (7) has a norm less than unity.
Although we cannot directly set the norm of Eq. (7) to
unity to computer. (because this equation is derived with
the understanding that is small, an assumption which is
rendered invalid whem gets to as large as.), at least we
are sure that the dimensionless paramétérmust have
increased to order one when instability sets in. Therefore,
7. should obey the scaling law

7o 1712, (12)

0 50 100 150 200 250 where a prefactor which might depend @nin some
complicated way has been dropped because our simple
. _ theory is incapable of determining its precise form. But
FIG. 1. Convergence of orbits for three mutually repulsweby Eq. (6) we see that may be estimated using~

particles put inside a confining potential. The high lying curve Y =5
is the distance of one reference particle to the origin; thelV )/m{x*). Hence Eq. (12) becomes « y'm(x*)/{V).

remaining three (converging) curves are the relative distances TO check the validity of this prediction, we may
of the particles. consider specific examples fdf. For instance, if we
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FIG. 2. The scaling behavior of the threshold reset tirpeon (a) 8, the strength of velocity reset when the particle mass

20, and on (b) the mass of the particle wherg = 0.1. (In both cases the average random reset velocity is 250.) The numerical
values of the slope in (a) and (b) are0.68 and 0.17, respectively, comparing favorably with the theoretical value-f3
and1/6.

have V(x) « x* as ||x]| tends to infinity, thenr. «  of sophistication a complete theory should have. For one
m'/2(V)y":*% when the average potential energy of thething, we are unable to assess the validity of substituting

system is large. Since we also hafié) ~ %marzandom: the actual evaluation of the.stability matrix by its phase
space average; and the various assumptions explicitly or

implicitly woven into the formalism are subject to open
criticism and further investigation. We hope issues like
these will be clarified in the future.
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velocity reset from an external agent, then the predictiofoundation.

the answer becomes. = m!/5(#2.40m) 3. Therefore,
if we somehow normalize a velocity distribution,,gom
such that(||#andom|l) is a fixed number and rewrite the
reset velocity as

is
T mPBTIE, (14)
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