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Strong Induced-Dipole-Field Oscillations of thedtm System above thetmsssn 5 2ddd Threshold
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Elastic, inelastic, and muon transfer processes of thedtm system above thetmsn ­ 2d threshold are
studied theoretically using the hyperspherical coordinate method. Strong oscillation structures in the
cross sections for these processes due to strong, attractive dipole potentials in this system are found.
In addition to the expected Gailitis-Damburg Stark mixing oscillations, unexpected oscillations due to
diabatic couplings of channels lacking attractive dipole potentials with those that have them are evident.
The two types of oscillations interfere to produce the structure that appears in the computed cross
sections. [S0031-9007(96)01715-2]
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Investigations of elementary atomic processes for
dtm molecule are important for disentangling complicat
phenomena underlying muon catalyzed fusionsmCFd
and, further, to understand the general Coulomb thr
body problem beyond the validity of the infinite nuclea
mass approximation conventionally applied to diatom
molecules and two-electron atoms [1]. Recently,
particular interest inmCF are muon transfers in then $ 2
manifolds and Feshbach resonances thought to p
decisive roles for realizing a high formation rate of th
resonant complexfsdtmdpdeeg below the tmsn ­ 2d
threshold [2]. Both processes may be important
resolving a long-standing puzzle of discrepancy that
experimentally measured muon cycling rate is smal
than that predicted by theory [3]. Such atomic proces
relevant to exciteddtm molecules are influenced by
a long-range attractive dipole interaction2ays2MR2d,
wherea is associated with a dipole moment of degenera
states oftm sdmd atoms induced by collision partner
d std at a distanceR with the reduced massM. The
dipole interaction produces an infinite number of bou
or resonance states below threshold, and oscillati
of cross sections with energy above threshold. T
latter effect is called the Gailitis-Damburg (GD) oscilla
tion [4]. Exploration of this threshold behavior in th
electron-hydrogen collision has proved difficult due to i
negligibly weak influences upon the overall cross sectio
[5,6]. To our knowledge, there is no report on this effe
in extremely low-energy ion-atom collisions. Stron
dipole interactions of electrons with permanent dipo
moments produce analogous effects in electron scatte
by polar molecules [7].

Strong GD oscillations are expected indtm. The
magnitudes ofa are 66.25 and 68.70 [in the muon atom
unit (m.a.u.)] for the respective fragments ofd-tmsn ­
2d andt-dmsn ­ 2d with total angular momentumJ ­ 0.
These values are more than ten times greater than
corresponding ones, of the order of 5.08 (in the us
310 0031-9007y96y77(21)y4310(4)$10.00
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atomic unit) for the electron-hydrogen system. Such lar
magnitudes ofa in dtm are related to its large reduced
mass M of about 10 (m.a.u.) [8]. In this Letter, we
investigate the effect of oscillations in this system. Suc
oscillations for dtm molecules have not been studied
previously. Our calculations are limited to onlyJ ­
0, where the GD oscillations are strongest. The G
oscillations are present for values ofJ up to J ­ 7 in the
n ­ 2 manifolds with their frequency gradually deceasin
with increasingJ. We defer calculations for higherJ to
a subsequent paper [9]. Moreover, Lamb shift splitting
(about 0.2 eV) of the2s and2p states are not considered
The muon atomic unit is used throughout unless otherwi
stated. The physical values adopted here for masses
the Rydberg constant were taken from [10].

We employ the hyperspherical coordinate method
analyze the Coulomb three-body system ofdtm since it
treats all three particles on equal footing, irrespective
mass and charge ratios [11]. This method also guarant
exact dissociation energies ofdm andtm fragments. Hy-
perspherical adiabatic potential curves and channel fun
tions are first computed and used to set up hyperspheri
close coupling equations. The hyperspherical multicha
nel equations with suitable scattering boundary conditio
are solved, and the scattering matrix is extracted.

The adiabatic potential curves are obtained by expan
ing channel wave functions in hydrogenic basis sets si
ated around both nuclei ofd and t. Thirty hydrogenic
bases up to then ­ 5 states are incorporated [12]. In
addition to these, fifteen hyperspherical harmonics are
cluded to improve numerical convergences in the sm
hyperradiuss rd region. The nonorthogonal basis set i
transformed to an orthogonal basis set by prediagon
izing its overlap matrix and eliminating the ill-behaved
eigenvectors whose eigenvalues are negative or posit
and very small.

Evaluating integrals for different-center matrix ele
ments is the most critical step in our calculation. It is th
© 1996 The American Physical Society
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main cause of numerical inaccuracies and the most tim
consuming step because of the cumbersome presenc
the Coulomb singularities in the two-dimensional plan
Here we have to evaluate the matrix elements of differe
center hydrogenic bases. For this purpose, the Lague
polynomials in the hydrogenic basis of either center a
expanded in terms of the Gaussian basis set with h
accuracy. The Gaussian functions are amenable to
rect transformation from one coordinate system into t
other [9]. As a result, all different-center matrix elemen
are reduced to one-dimensional integrals over a single
perangle, and the locus of Coulomb singularities in th
two-dimensional plane is transformed to just points in th
coordinate.

In Fig. 1 we show four of the calculated potentia
curves converging to then ­ 2 manifolds. We label
these potentials astms1d, tms2d, dms1d, anddms2d in
the order of increasing energy in the diabatic sense.
the smallr regions r # 100d, the obtained accuracy is to
about five figures. In the larger regions r $ 300d, high
accuracy is indispensable since, as seen later, we deal w
the extremely low-energy collisions at 0.001 eVs1.778 3

1027 m.a.u.d. The high accuracy to ten figures wa
reached since the eigenfunctions are well approxima
by the well-behaved hydrogenic basis functions in th
asymptotic region.

Expanding the total wave functionC in terms of

Cns r, Vd ­
X
m

Fms r, VdFmns rd , (1)

whereFms r, Vd is a channel wave function withV being
all angular variables, yields the adiabatic expression
the hyperspherical multichannel equation forF:

F00 1 2PF0 1

∑
1

4r2
1 2sE 2 Ud 1 W

∏
F ­ 0 . (2)

Here the matrix notations are used.P and W are
derivative coupling matrices defined bykF j F0l and

FIG. 1. Hyperspherical adiabatic potentialsUs rd (m.a.u.)
converging to then ­ 2 dissociation limits forJ ­ 0 versus
hyperradiusr (m.a.u.).
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kF j F00l, respectively.U is the adiabatic potential matrix
mentioned above.

We first divide ther interval into a number of small
sectors and inspect whether or not there exist stro
avoided crossings within each sector. If so, the adiaba
expression of Eq. (2) is not suitable as it is. In th
case,P is partitioned asP ­ P0 1 Px, where Px has
nonzero elements pertaining to the avoided crossin
and the remainderP0 is a smooth function ofr. The
partial diabatic transformationF ­ AF̃ is done to remove
sharp spike couplings ofPx [13]. The unitary matrix
A is obtained by solvingA0 ­ 2PxA within the sector.
Multichannel equations forF̃ are obtained using this
transformation. They are similar to Eq. (2).P, W,
and U are replaced by the respective tilded quantitie
P̃ ­ A21P0A, W̃ ­ A21fW 2 sP 0

x 1 P2
x d 2 2P0PxgA,

and Ũ ­ A21UA. W̃ is a smooth function ofr since
sharp couplings inW are cancelled byP0

x 1 P2
x .

The S matrix S0 in the dipole representation, i.e.
the representation that diagonalizes the long-range dip
interaction, is obtained using the matching procedure
Christensen-Dalsgaard [14] with free-field wave function
for then ­ 1 manifolds and dipole-field ones for then $

2 manifolds [15]. This matrix is furthermore transforme
into the S matrix S in the usual angular momentum
representation by

S ­ V s1dS0V s2dy, (3)
where the transformation matricesV s6d are unitary [4].

The twenty-channel coupled equations were solv
with the matching radius chosen to be 20 000 m.a.u. T
calculation includes channels up to then ­ 4 manifolds.
Such a large distance is required to impose dipo
field boundary conditions safely upon the radial wav
function F even at the lowest energy of 0.001 eV. Th
convergence of the present calculations was confirmed
comparison with corresponding twelve- and six-chann
calculations, which include channels up to then ­
3 and n ­ 2 manifolds, respectively. The six-channe
calculations reproduce the results by the twenty-chan
ones fairly well.

The squared magnitudes of the transition matrix el
ments in the dipole representationjT 0

f 0i0 j2 for the elas-
tic and inelastic processes within thetmsn ­ 2d manifold
and for the muon transfer processes from thedmsn ­ 2d
to the tmsn ­ 2d manifold are shown in Figs. 2 and 3
As seen in Fig. 2, the series of the Feshbach resonan
converging to thedmsn ­ 2d dissociation limit are found
at 8.24, 10.29, 11.21, and 11.63 eV.

Strong oscillations are observed in every process abo
their respective thresholds. To examine the origin
the oscillation structures, notice that the asymptotic wa
function Fmm for the attractive dipole channelm incor-
porates the known phasefmskm, bmd dependent on the
argumentbm lnskmy2d, with bm and km associated with
the strength of the potential and momentum of the disso
ated fragment [15]. In the lower-energy region, where th
4311
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FIG. 2. jT 0
f0 ,i0 j2 versus the incident energy (eV) in the cente

of-mass frame measured from thetmsn ­ 2d threshold. The
solid, the long-dashed, and the short-dashed lines are
twenty-channel calculations forjT 0

tms1d,tms1dj
2, jT 0

tms2d,tms2dj
2,

and jT 0
tms2d,tms1dj

2, respectively. The thin solid line is the six-
channel pilot calculation forjT 0

tms1d,tms1dj
2. Here,jT 0

tms1d,tms2dj
2

is equal tojT 0
tms2d,tms1dj

2. The arrow at 12.01 eV indicates the
dissociation limit ofdmsn ­ 2d. The vertical lines just below
this are a series of the Feshbach resonances (see text).

couplings with other channels are still negligibly sma
the phase shiftdmskmd exhibits the weak energy depen
dence in the present dipole representation. The c
plings become more dominant with increasing incide
energy. Specifically, the coupling with other attractiv
dipole channels, say,n, would cause a noticeable oscil
lating energy dependence of the phase shiftdmskmd in the
mth channel throughfnskn , bnd. Similar energy depen-
dences would also appear in phase shifts pertinent to

FIG. 3. jT 0
f0 ,i0 j2 versus the incident energy (eV) in the

center-of-mass frame measured from thedmsn ­ 2d threshold.
The solid, the long-dashed, the short-dashed, and the ch
lines are the twenty-channel calculations forjT 0

tms2d,dms1dj
2,

jT 0
tms1d,dms1dj

2, jT 0
tms1d,dms2dj

2, and jT 0
tms2d,dms2dj

2, respectively.
The thin solid line is the six-channel pilot calculation fo
jT 0

tms2d,dms1dj
2.
4312
r-

the

ll,
-
ou-
nt
e
-

re-

ain

r

pulsive dipole channels via a combination of coupling
with nearby attractive dipole channels.

To confirm this speculation we implemented six
channel pilot calculations by turning off all nonadiabatic
couplings in P and W between the upper channels
dms6d and the lower onestms6d but retaining the
Landau-Zener type crossing betweendms1d and tms2d
in the vicinity of r ­ 179.50. Without this crossing little
muon transfers from the upper to the lower channels tak
place. This result seen in Fig. 2 shows no oscillatio
in energy for the elastic processtms1d ! tms1d. In
Fig. 3, the result of the pilot calculation for the transfe
process dms1d ! tms2d is shown. The oscillations
seen above,5 eV are thought to be due to oscillation
via fmskm, bmd of the dms1d channel since there are no
couplings of the upper channels with the lower attractiv
channeltms1d.

Figures 4 and 5 show the squares of the transitio
matrix elementsjTfi j

2 in the usual representation. The
conspicuous GD oscillations result from the strong Star
mixing between2s and 2p states of the same manifold
through the transformation of Eq. (3). Irregular oscilla
tion patterns arising above,5 10 eV are thought to be
due to the interferences of the Stark mixing componen
with components attributed to the above-mentioned di
batic coupling mechanism.

Finally, we examine whether or not the rate constantl

still shows these oscillations. The Stark mixing proces
d 1 tms2sd ! d 1 tms2pd is considered as an illustra-
tion. The discussion below would also hold correctly
in other processes.jTtms2pd,tms2sdj

2 in Fig. 4 is well ex-
pressed as the closed analytic form14 sin2s b

2 ln e

e0
d. This

is obtained by using the two-channel approximation ofS0

including only tms6d channels. Heree is the incident

FIG. 4. jTf,ij
2 versus the incident energy (eV) in the center

of-mass frame measured from thetmsn ­ 2d threshold. The
solid, the long-dashed, and the short-dashed lines are t
twenty-channel calculations forjTtms2sd,tms2sdj

2, jTtms2pd,tms2pdj
2,

and jTtms2pd,tms2sdj
2, respectively. Here,jTtms2sd,tms2pdj

2 is equal
to jTtms2pd,tms2sdj

2.
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FIG. 5. jTf,ij
2 versus the incident energy (eV) in the

center-of-mass frame measured from thedmsn ­ 2d
threshold. The solid, the long-dashed, the short-dash
and the chain lines are the twenty-channel calculatio
for jTtms2pd,dms2sdj

2, jTtms2sd,dms2sdj
2, jTtms2sd,dms2pdj

2, and
jTtms2pd,dms2pdj

2, respectively.

energy in the center-of-mass frame, andb ­p
a2 2 1y4. e0 is a weakly energy-dependent pa

rameter upon theS matrix elements ofS0. For the
sake of simplicity, this parameter is regarded as co
stant. Averaging the associated cross section over
Maxwellian velocity distribution yields the approximate
expression ofl besides an unimportant multiplicative
constant asl , t21y2f1 2 cspbd cossb ln t

e0
dg, where

t is temperature multiplied by the Boltzmann consta
and csxd ­

p
xy sinhx. Exact values ofl obtained by

direct numerical integration of the calculated cross secti
shown in Fig. 4 can be well reproduced up tot of about
a few eV by this simple expression.

According to this analytic form, the appearance of th
oscillations with respect tot is suppressed by a negligibly
small value of the factorcspbd in the present case,
where b ­ 8.12 sa ­ 66.25d. The fine structures of
rapid oscillations in the cross section resulting from
large b are completely smoothed out in the associat
rate constant by the Maxwellian average. However, it
expected that more coarse structures of oscillations due
a smallerb would remain in the rate constant. Such
smaller value ofb would be realized in the contribution
of higher partial waves ofJ in the present process since
larger centrifugal barriers reduce the magnitude of t
attractive dipole potential to some extent. This simp
model shows that, forb smaller than about 2,l begins to
exhibit oscillations.

We conclude that the strong dipole fields induced
dtm systems yield noticeable oscillation structures
T0 due to the diabatic couplings with attractive dipol
channels. These oscillations would be retained ev
in the nondegenerate system, such as a more reali
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system incorporating Lamb shift splittings, since the effe
originates from the presence of the attractive dipo
potentials in the outer region ofr roughly from 100
to 1000 m.a.u., where the Lamb shift is small compare
with the channel potentials. In such a nondegeneratedtm
system, however, the GD oscillations inT owing to the
Stark mixing would be absent for energies between 0 a
about 0.2 eV. These oscillations appear in the high
energy region in an irregular way due to interferences wi
oscillations connected with diabatic couplings. They ar
also present for values of higherJ up to J ­ 7 in the
n ­ 2 manifolds. Additionally, for such higher values of
J, oscillations may be present in the corresponding ra
constants as well.
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