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Statistical Entropy of Nonextremal Four-Dimensional Black Holes andU Duality
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We identify the states in string theory which are responsible for the entropy of near-extremal rotatin
four-dimensional black holes inN ­ 8 supergravity. For black holes far from extremality (with
no rotation), the Bekenstein-Hawking entropy is exactly matched by a mysterious duality invaria
extension of the formulas derived for near-extremal black holes states. [S0031-9007(96)00453-X]
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Recent developments in string theory have led, for
first time, to an understanding of black hole entropy fro
a microscopic point of view. In [1] it was shown that th
Bekenstein-Hawking entropy of an extremal, nonrotati
five-dimensional black hole precisely counts the num
of Bogomol’nyi-Prasad-Sommerfeld (BPS) states in str
theory with the given charges (in the limit of larg
charges). This agreement has since then been exte
in a number of directions. Extreme 5D black holes w
rotation [2], extreme 4D black holes [3], and slight
nonextreme 5D black holes [4–6] have all been sho
to have a Bekenstein-Hawking entropy which agrees w
the number of corresponding states in string theory. O
goal of the present work is to show that this agreem
continues to hold for slightly nonextremal 4D black hole

The restriction to extreme or near-extreme black ho
arises since we can count only states at weak coup
while black holes exist only at strong coupling. For e
tremal configurations, one can argue that interactions
absent on the basis of supersymmetry and the extrap
tion of the number of states from weak to strong coupl
is justified. For near-extremal black holes there are si
tions in which the interactions are again suppressed.
black holes far from extremality, there appears to be
reason why a weakly coupled description is applicable

Nevertheless, it was shown in [7] that there is a se
in which even black holes far from extremality can
thought of as composed of weakly interacting fundam
tal objects in string theory. The objects one needs
the same ones which yield the states of extremal b
holes: extended solitons known asD-branes and fun
damental strings. More precisely, Ref. [7] considere
class of five-dimensional black holes labeled by the
ergy, three charges, and the asymptotic values of
scalars. The three charges are carried by onebranes,
branes, and strings (or antibranes, which are just bra
with the opposite orientation and with the opposite sign
the charge). One can replace the original six parame
in the solution by the number of branes, antibranes,
strings sN1, N1, N5, N5, nR , nLd by matching the energy
three gauge charges, and two scalar charges of these
interacting objects with that of the black hole. In terms
these new variables the black hole entropy takes the
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S ­ 2p

≥p
N1 1

p
N1

¥ ≥p
N5 1

p
N5

¥ ≥p
nL 1

p
nR

¥
.

(1)
This expression applies to all black holes, even those
from extremality. The symmetry of (1) is consistent wit
U duality which permutes the three types of fundamen
objects. It was argued [7] that (1) arises naturally fro
counting states in string theory, in the sense that
correctly reproduces the number of string states in th
different weak-coupling limits, and is the simplest duali
invariant expression with this property. However, n
derivation of the general formula directly from countin
states in string theory is currently available.

Since the significance of the above expression
the black hole entropy is not yet well understood, it
important to know whether it is special to five dimension
or if it applies more generally. In this Letter we wil
show that the entropy of four-dimensional black hol
can be expressed in a form directly analogous to (
In [3] it was shown that the states of extremal fou
dimensional black holes can be described in terms
D-twobranes, solitonic fivebranes,D-sixbranes, and open
strings. We will consider the nonextremal version
these solutions which is an eight parameter family of fou
dimensional black holes. By comparing the mass, gau
charges, and scalar charges (which are pressures in
internal directions) of the black hole with those of a s
of noninteractingbranes and antibranes, we will rewrit
the Bekenstein-Hawking entropy in a form analogous
(1). We will show that in certain limits (corresponding t
near-extremal black holes), the entropy formula we obt
indeed represents the number of states of this collec
of branes at weak coupling.

The generalization of these black hole solutions
include rotation has recently been found [8]. We will sho
that in the limit of small rotation and near extremalit
the black hole entropy again agrees with the number
string states.

We will be considering type II string theory compact
fied onT 6 ­ T4 3 S1 3 Ŝ1, which givesN ­ 8 super-
gravity in four dimensions. In Ref. [9] general spherical
symmetric black hole solutions ofN ­ 4 supergravity in
© 1996 The American Physical Society
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four dimensions were considered. Using these soluti
it is straightforward to construct the general class of bla
holes inN ­ 8 supergravity. The starting point for thi
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construction is a solution with four nonzero U(1) gau
fields (carrying two electric and two magnetic charg
and three nontrivial scalars [9]. The Einstein metric is
ds2 ­ 2f21y2srd
µ

1 2
r0

r

∂
dt2 1 f1y2srd

∑µ
1 2

r0

r

∂21

dr2 1 r2sdu2 1 sin2 udf2d
∏

,

fsrd ­

µ
1 1

r0 sinh2 a2

r

∂ µ
1 1

r0 sinh2 a5

r

∂ µ
1 1

r0 sinh2 a6

r

∂ µ
1 1

r0 sinh2 ap

r

∂
.

(2)
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This metric is parametrized by the five independent qu
tities a2, a5, a6, ap , and r0. The event horizon lies
at r ­ r0. The special casea2 ­ a5 ­ a6 ­ ap cor-
responds to the Reissner-Nordström metric. The ove
solution contains three additional parameters which are
lated to the asymptotic values of the three scalars. F
the ten-dimensional viewpoint, these are the volume of
4-toruss2pd4V , and the radii ofS1 andŜ1, R1 andR2.

The physical charges are expressed in terms of th
quantities as

Q2 ­ sr0Vygd sinh2a2 ,

Q5 ­ r0R2 sinh2a5 ,

Q6 ­ sr0ygd sinh2a6 ,
(3)

n ­ sr0VR2
1R2yg2d sinh2ap ,

where g is the ten-dimensional string coupling and w
have chosen conventions such thata0 ­ 1 and the four-
dimensional Newton constant isG4 ­ g2y8VR2R2. Note
that in these conventions the string coupling is such t
g ! 1yg underS duality.

The Arnowitt-Deser-Misner (ADM) mass of the solu
tion is

M ­
r0VR1R2

g2
s cosh2a2 1 cosh2a5 1 cosh2a6

1 cosh2apd (4)

and the Bekenstein-Hawking entropy is
S ­ Ay4G4

­
8pr2

0 VR1R2

g2
cosha2 cosha5 cosha6 coshap . (5)

There are three nontrivial scalar fields present in
solution and associated with these scalar fields are t
pressures (scalar charges)

P1 ­
r0VR1R2

g2 scosh2a2 1 cosh2a6 2 cosh2a5

2 cosh2apd ,

P2 ­
r0VR1R2

g2
scosh2a2 2 cosh2a6d ,

(6)

P3 ­
r0VR1R2

g2
scosh2a5 2 cosh2apd .

In the ten-dimensional theory, the four charges
are carried by twobranes, fivebranes, sixbranes,
n-
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strings. TheD-sixbranes wrap aroundT4 3 S1 3 Ŝ1,
the solitonic fivebranes wrap aroundT4 3 S1, and the
D-twobranes wrap aroundS1 3 Ŝ1. The strings carry
momentum along theS1 direction. In the spirit of [7]
we calculate the values for the mass and scalar cha
of each type of brane or string. This can be calcula
from the solution we have presented by taking the fo
extremal limits: r0 ! 0, ai ! 6` with Qi and aj

s j fi id fixed. We find thatD-twobranes have mass an
pressures

M ­ P1 ­ P2 ­ R1R2yg, P3 ­ 0 , (7)

while for the sixbranes we have

M ­ P1 ­ 2P2 ­ VR1R2yg, P3 ­ 0 . (8)

For the solitonic fivebrane we have

M ­ 2P1 ­ P3 ­ VR1yg2, P2 ­ 0 , (9)

and for the momentum we find

M ­ 2P1 ­ 2P3 ­ 1yR1, P2 ­ 0 . (10)

Using these relations plus the charges (3) we trade
the eight parameters of the solution for the eight quanti
snR , nL, N2, N2, N5, N5, N6, N6d which are the numbers
of right- (left-) moving momentum modes, twobrane
antitwobranes, fivebranes, antifivebranes, sixbranes,
antisixbranes. We do this by matching the mass
pressures (6), and gauge charges (3) with those o
collection of noninteracting branes. This leads to

nR ­ r0VR2
1R2e2ap y2g2, nL ­ r0VR2

1R2e22ap y2g2,

N2 ­ r0Ve2a2 y2g, N2 ­ r0Ve22a2 y2g,

N5 ­ r0R2e2a5 y2, N5 ­ r0R2e22a5 y2,
(11)

N6 ­ r0e2a6y2g, N6 ­ r0e22a6 y2g.

In terms of the brane numbers, the ADM mass is

M ­
1

R1
snR 1 nLd 1

R1R2

g
sN2 1 N2d

1
VR1

g2
sN5 1 N5d 1

VR1R2

g
sN6 1 N6d , (12)

the gauge charges are simply differences of the br
numbers, and the other parameters are

V ­
q

N2N2yN6N6 , R2 ­
q

N5N5yg2N6N6 ,

R2
1R2 ­

q
g2nRnLyN2N2 .

(13)
431
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The entropy (5) then takes the surprisingly simple fo

S ­ 2ps
p

nR 1
p

nL d
≥p

N2 1
p

N2

¥
3

≥p
N5 1

p
N5

¥ ≥p
N6 1

p
N6

¥
. (14)

This is the analog of (1) for four-dimensional black hole
When one term in each factor vanishes, the black h
is extremal. In this case, (14) agrees with the num
of bound states of these branes at weak coupling
Although we cannot derive the general formula fro
counting string states, we can do so in certain lim
corresponding to near-extremal black holes. Cons
the case whenN2 ­ N5 ­ N6 ­ 0 andR1 is large. We
see from (12) that the lightest excitations will be t
momentum modes. The extremal limit is obtained by a
setting the number of left movers to zeronL ­ 0. In that
case the entropy can be calculated [3] as the entrop
a one-dimensional gas of4N2N5N6 bosonic particles plus
an equal number of fermionic particles with total ener
E ­ nRyR1, which givesS ­ 2p

p
N2N5N6nR . In the

near-extremal limit we also include left movers, which w
be noninteracting ifR1 is large. Hence the entropy will b

S ­ 2p
p

N2N5N6 s
p

nR 1
p

nL d , (15)

which clearly agrees with (14) whenN2 , N5 , N6 , 0.
Note that these antibrane excitations are very mas
whenR1 is large, so one can see from (11) and (12) t
their number will be very small in the near-extremal lim
and their contribution to the entropy will be negligible. W
could do a similar calculation for the cases in which
lightest particles are the other branes. SinceU duality
interchanges different branes and strings, one expec
result similar to (15) with indices permuted. Equation (1
is a simple duality invariant expression which agrees w
different nonextremal limits.

We have considered only four types of charges.
ducing type II string theory to four dimensions onT 6

leads to a theory whose low energy limit isN ­ 8 su-
pergravity. This contains 28 gauge fields and 70 sca
The gauge fields can carry either electric or magn
charges, so there are 56 possible charges. Each of
charges is carried by a different type of soliton in t
ten-dimensional theory. From black hole uniqueness
orems [10] it is clear that the Bekenstein-Hawking e
tropy of the general solution depends on the ene
and 56 “solution generating parameters” that add cha
However, these parameters are not the physically norm
ized charges, but also involve the asymptotic values of
scalars. From the special form of the coupling of sca
to gauge fields inN ­ 8 supergravity [11], one sees th
a basis may be chosen for the scalars in which only
of them enter in the normalization of the gauge charg
One can view these parameters as 55 scalars and th
tal energy. The entropy can then be viewed as a func
of 56 1 56 parameters which may be interpreted as
number of solitons and antisolitons.
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Since the full theory should beE7 invariant, we should
be able to write the general entropy formula in a
invariant way. If we denote byV A

1 the 56-dimensional
vector giving the number of solitons and byV A

2 the
number of antisolitons, the formula for the entropy is

S ­ 2p
X

i,j,k,l

q
TABCDV A

i V B
j V C

k V D
l , (16)

whereTABCD is the quartic invariant considered in [12]
where this formula was derived for the extremal ca
sV A

2 ­ 0d. [Formula (16) has recently been proven [13]
We now consider adding rotation to the black hole

discussed above. Since the rotation dependent terms
the solution fall off faster at infinity than the charges, th
definition of the brane numbers (11) is unchanged. If w
again take nearly extremal black holes withN2 , N5 ,
N6 , 0 and R1 large, the Bekenstein-Hawking entrop
takes the form [8]

S ­ 2p

µp
nRN2N5N6 1

q
nLN2N5N6 2 J2

∂
, (17)

where J is the angular momentum of the black hole
(There is a difference in the definition ofJ from [8];
here we are measuringJ in units of ".) This agrees
precisely with the counting of string states as follow
With R1 much larger than the other compact dimensio
and with just twobranes and sixbranes present, theD-brane
excitations of this system are described by as1 1 1d-
dimensional field theory which turns out to be as4, 4d
superconformal sigma model [2]. The fivebrane breaks t
right-moving supersymmetry [14], leaving us withs0, 4d
superconformal symmetry. TheN ­ 4 superconformal
algebra gives rise to a left-moving SU(2) symmetry. Sin
fermionic states in the sigma model become spinors
spacetime, the action of O(3) spatial rotations has a natu
action on this SU(2). The chargeFL under one U(1)
subgroup of this SU(2) will then be related to the fou
dimensional angular momentum (along one of the thr
axes) carried by the left movers byJ ­ FLy2. Because
of the presence of the fivebrane the right-moving SU(
symmetry of the originals4, 4d superconformal field theory
is broken and the right movers cannot carry macrosco
angular momentum. The number of states with fixe
nL, nR , FL ¿ 1 may be computed as in [2,6] to yield the
entropy

S ­ 2p

q
cy6

≥p
nR 1

p
ñL

¥
, (18)

where ñL ­ nL 2 6J2yc is the effective number of left
movers that one is free to change once one has deman
that we have a given macroscopic angular momentum. F
our problem the central charge isc ­ 6N2N5N6 [3]; thus
the entropy (17) agrees with theD-brane formula (18).

It is interesting to take the extremal limit of these rota
ing black holes, when the mass takes the minimum va
consistent with given angular momentum and charg
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This happens wheñnL ­ 0, so the left movers are con
strained to just carry the angular momentum and do
contribute to the entropy. When the angular moment
is nonzero, even the extremal black hole is not supers
metric. Using (18) and writing the result in terms of th
chargen ­ nR 2 nL we find

S ­ 2p

q
J2 1 nQ2Q5Q6 , (19)

which indeed agrees with the entropy of an extrem
charged rotating black hole [8]. Notice that althou
we derived this formula in the largeR1 regime (and
JyM2 ø 1), it continues to be valid for arbitrary value
of the parameters. Since this is far from the BP
state, we had no reason to expect the weak-coup
counting to continue to agree with the black hole entro
[In five dimensions, taking the extremal limit of th
results in [6] one obtains the microscopic entropyS ­
2p

p
Q1Q5n 1 J1J2. This again agrees with the entrop

of a black hole with two rotation parameters. This bla
hole is supersymmetric only whenJ1 ­ 2J2 (and also for
J1 ­ J2 with the opposite sign of one of the charges).]

To summarize, we first considered four-dimension
nonrotating black holes. We argued that there is
sense in which one can view the general nonextre
black hole as composed of a collection of noninteract
branes and antibranes. The number of branes of e
type is determined by matching physical properties
the branes with those of the black hole. In terms
these numbers, the Bekenstein-Hawking entropy ta
the simple form (14). We were able to show that
certain limits this expression agrees with the num
of states of this collection of branes and antibranes
weak coupling. A complete derivation of this formu
remains an outstanding challenge. We also showed
for nearly extremalrotating black holes the entropy agai
agrees with the number of string states. Surprising
the extremal rotating black hole entropy was precis
matched by aD-brane counting argument, even f
beyond the regime in which this counting was done.

There have been earlier indications [4] that the count
of string states at weak coupling agrees with the bla
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hole entropy even in situations where one could not just
the extrapolation to strong coupling. We found anoth
example of this in the case of extremal rotating blac
holes. The surprising success of these weak-coupl
arguments indicates that understanding black hole entro
may be even simpler than it appears today.
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