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Statistical Entropy of Four-Dimensional Extremal Black Holes
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String theory is used to count microstates of four-dimensional extremal black holes in compac
tions with N ­ 4 andN ­ 8 supersymmetry. The result agrees for large charges with the Beken
Hawking entropy. [S0031-9007(96)00674-6]
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Recently it has been shown [1–5] that string theo
can, in some special cases, provide a statistical deriva
of the Bekenstein-Hawking entropy [6,7] by representin
the black holes as bound states ofD-branes and strings.
The statistical entropy is the logarithm of the boun
state degeneracy, which was counted usingD-technology
introduced in [8–10]. Curiously the results so far hav
been limited to five dimensions. The reason for this
that four-dimensional black holes with nonzero horizo
area cannot be constructed fromD-branes alone as in
[1]. Typically another type of object such as a symmetr
fivebrane or Kaluza-Klein monopole is required, an
further technology is needed. In this paper we w
find the missing piece of technology in Refs. [11,12
and use it to compute the statistical entropy of certa
four-dimensional extremal black holes inN ­ 4 and
N ­ 8 supergravity theories. The result agrees with t
Bekenstein-Hawking entropy, which was computed in
specialN ­ 4 case in [13], more generally forN ­ 4 in
[14,15] and forN ­ 8 in [16].

The statistical entropy of four-dimensional black hole
has been recently analyzed in [17] with methods see
ingly quite different from those used herein. It woul
be very interesting to understand the relation between
two approaches.

The required modification of [1] is rather simple an
this presentation will be accordingly brief. Let us beg
by rederiving the result of [1] in aT-dualized picture with
one extraŜ1-compactified dimension. Consider type IIA
string theory onX ­ Y 3 S1 3 Ŝ1, whereY is T 4 for
the N ­ 8 case andK3 for the N ­ 4 case. A dual
description of theD-brane configuration in [1] (obtained
by T dualizing along Ŝ1) consists of Q6 sixbranes
wrappingX, Q2 twobranes wrappingS1 3 Ŝ1, and right-
moving momentumn along theS1. We taken, Q2 .. 1.
The twobranes are marginally bound to the sixbranes [1
20]. For Q6 ­ 1 the momentum is carried by massles
right-moving modes of (2, 2) open strings that end on t
twobranes. It is sufficient to consider the caseQ6 ­ 1
because duality implies the results can depend only
the productQ2Q6. (This has been explicitly verified
in some cases [18–22].) BPS excitations of the
(2, 2) strings correspond to transverse motion of theQ2
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twobranes withinY (and the sixbrane). [Since the two
branes are separated inY the (2, 2) open strings going
between different twobranes are massive and do n
contribute to the extremal entropy as in [1]. (2, 6) string
also do not contribute in this casesQ6 ­ 1d because of
charge confinement.] BecauseY is four dimensional this
means there are4Q2Q6 bosons and their4Q2Q6 fermionic
superpartners available to carry the momentum. (W
suppress here the anomalous shift ofQ2 for K3 [20,21]
which is subleading for largeQ2). The number of BPS-
saturated states of this system as a function ofQ2, Q6, and
n follows from the standards1 1 1d-dimensional entropy
formula

S ­

s
ps2NB 1 NFdEL

6
, (1)

whereNB sNFd is the number of species of right-moving
bosons (fermions),E is the total energy, andL is the
size of the box. UsingNB ­ NF ­ 4Q2Q6 and E ­
2pnyL, we find theL-independent result for the largen
thermodynamic limit [1]

Sstat ­ 2p
p

Q2Q6n . (2)

The Bekenstein-Hawking entropy was computed fro
the corresponding four-dimensional extremal black ho
solutions in [13–16]. The result in our notation for eithe
N ­ 4 or N ­ 8 is

SBH ­ 2p
p

Q2Q6nm . (3)

The integerm here is the axion charge carried by
symmetric fivebrane which wrapsY 3 S1. [To facili-
tate comparison with [14,15], we note that under typ
II heterotic duality anm-wound symmetric fivebrane to-
gether with momentumn becomes a fundamental het
erotic string withswinding, momentumd ­ sm, nd around
S1. The twobranes and sixbranes become the ma
netic heteroticS duals of a fundamental heterotic string
with swinding, momentumd ­ sQ2, Q6d associated to the
(20, 4) part of the Narain lattice.] Since that charge
absent in thiŝS1 compactification of the configuration of
[1], SBH ­ 0. This is not a contradiction because in fou
dimensionsSBH as computed from the leading low en
ergy effective action always scales likescharged2, in con-
trast to five dimensions where it scales likescharged3y2.
© 1996 The American Physical Society
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Since (2) scales likescharged3y2, it appears at leading or-
der in five dimensions but is an invisible subleading co
rection in four. (In fact the four-dimensional solution
with m ­ 0 contains scalar fields that blow up at th
horizon, rendering the classical geometry at the horiz
singular.) These fivebranes do not break any additio
supersymmetry so that the final configuration still pr
serves one supersymmetry.

In order to get a nonzero area in four dimensions, w
must addm NS fivebranes wrappingY 3 S1. Hence we
need to understand the effect of fivebranes on the s
counting. Since we are counting BPS states, the res
is independent of the moduli ofY 3 S1 3 Ŝ1 and we
are free to work at any point in the moduli space.
is convenient to take all of the compactification radii t
be very large and the string coupling to be very sma
In this limit the transverse size of a fivebrane is muc
smaller than the radius of̂S1, and the locations of the
m fivebranes are described bym points alongŜ1. Since
the twobranes wrapS1 3 Ŝ1, topologically each of the
Q2 twobranes must intersect each of them fivebranes.
The mQ2 intersections are circles (for fixed time) whic
wrap S1. As explained in [11,12] a twobrane which
intersects a fivebrane can break along the intersect
line, just as a string can break along its intersecti
point with a D-brane. The two ends of the twobran
are then free to separate inY . When the volume ofY
is very large the ends of the twobranes will generica
be well separated: It cost energy to localize the wa
functions for the twobrane ends near one another. He
the originalQ2 twobranes wrapped onS1 3 Ŝ1 become
mQ2 open, toroidal twobranes which end on neighborin
fivebranes. The momentum is oriented around theS1

parallel to the twobrane boundaries. The momentu
carrying open strings now have an extra label describ
which pair of fivebranes they lie in between. Henc
the number of species becomesNB ­ NF ­ 4mQ2 ­
4mQ2Q6. Inserting this into (1) together withE ­
2pnyL we obtain

Sstat ­ 2p
p

Q2Q6nm , (4)

in agreement with the semiclassical result (3) forSBH.
For the N ­ 4 case there are, in general, 28 electr

charges $Q and 28 magnetic charges$P which lie in the
(22, 6) Narain lattice. In our notation2Q2Q6 ­ $P2 and
2nm ­ $Q2. Duality implies that the entropy depend
only on $P2, $Q2, and $Q ? $P. The general formula for the
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Bekenstein-Hawking entropy is [14,15]

SBH ­ p

q
$P2 $Q2 2 s $Q ? $Pd2 . (5)

For our example the last term vanishes. It would b
interesting to construct a more general example for whic
this last term does not vanish, and so verify the gen
eral formula.
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Note added.—After completing this work it has come
to our attention that related ideas are being pursued
C. Johnson, R. Khuri, and R. Myers.
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