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We present results from a numerical study of spherically symmetric collapse of a self-gravit
SU(2) gauge field. Two distinct critical solutions are observed at the threshold of black hole form
In one case, the critical solution is discretely self-similar, and black holes of arbitrarily small m
can form. However, in the other instance, the critical solution is then ­ 1 static Bartnik-Mckinnon
sphaleron, and black hole formation turns on at finite mass. The transition between these two sc
is characterized by the superposition of both types of critical behavior. [S0031-9007(96)00656-4
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In a recent numerical study of gravitational collap
of a massless scalar field, a type of critical behav
was found at the threshold of black hole formation [1
More precisely, in the analysis of spherically symmet
evolution of various one-parameter families of initial da
describing imploding scalar waves, it was observed t
there is generically a critical parameter value,p ­ pp,
which signals the onset of black hole formation.
the subcritical regime,p , pp, all of the scalar field
escapes to infinity leaving flat spacetime behind, wh
for supercritical evolutions,p . pp, black holes form
with masses well fit by a scaling law,MBH ~ sp 2 ppdg .
Here, the critical exponent,g . 0.37, is universal in the
sense of being independent of the details of the ini
data. Thus, the transition between no-black-hole a
black-hole spacetimes may be viewed as a continu
phase transition with the black hole mass playing
role of order parameter. In the intermediate asympto
regime (i.e., before a solution “decides” whether or n
to form a black hole) near-critical evolutions approa
a universal attractor, called the critical solution, whi
exhibits discrete self-similarity (echoing). Using the sam
basic technique of studying families which “interpolat
between no-black-hole and black-hole spacetimes, sim
critical behavior has been observed in several ot
models of gravitational collapse [2–4].

In this Letter we summarize results from the numeri
study of the evolution of a self-gravitating non-Abelia
gauge field modeled by the SUs2d Einstein-Yang-Mills
(EYM) equations. In addition to its intrinsic physica
interest, we have chosen this model because, in contra
all previously studied models, it contains static solutio
which we suspected could affect the qualitative picture
critical behavior. Let us recall that these static solutio
discovered by Bartnik and Mckinnon (BK) [5,6], form
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countable familyXn sn [ Nd of spherically symmetric,
asymptotically flat, regular, but unstable, configurations

Our main new result is the observation that for cert
families of initial data the static BK solution,X1, plays
the role of a critical solution separating collapse fro
dispersal. Since in this case there is a finite gap
the spectrum of black hole masses, we call this “type

FIG. 1. Schematic representation of “phase space”
spherically symmetric Yang-Mills collapse, showing possib
end states of evolutions from a sufficiently general tw
parameter family of initial conditions. The critical lineOO0

demarks the threshold of black hole formation. An interpol
ing family such asAA0 exhibits type I behavior: The critica
solution is the static BK solutionX1, and the smallest black
hole formed has finite mass. Families such asBB0 exhibit
type II behavior: The critical solution is discretely self-simil
sD ø 0.74d, black hole formation turns on at infinitesima
mass, and mass scaling withg ø 0.20 is observed. AtC, the
two types of critical behavior coexist.
© 1996 The American Physical Society



VOLUME 77, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 15 JULY 1996

o

y

o

e

r

w

l

ive-
eld
nt
g

s it
ced
e

of
al

u-
the

to
ly,
ure
up

ely
s,

of
f

.

II
s

all

ss
tly.
that
o

behavior (in analogy to a first order phase transition
to distinguish it from “type II” behavior (which we
also observe), where black hole formation turns on
infinitesimal mass. As sketched in Fig. 1, suitable tw
parameter families of initial data exhibit both types o
behavior.

We consider spherically symmetric Einstein-Yang
Mills equations with the gauge group SUs2d. We write
the time-dependent, spherically symmetric metric as

ds2 ­ 2a2sr, tddt2 1 a2sr , tddr2 1 r2dV2. (1)

For the Yang-Mills (YM) field, we assume the purel
magnetic ansatz which in the Abelian gauge has the fo
[7] F ­ dW ^ V 2 s1 2 W2dt3dq ^ sinq dw, where
V ­ t1dq 1 t2 sinqdw and theti are Pauli matrices.
Thus, the matter content of the model is described by
single function,W sr , td, which we call the Yang-Mills
potential. As follows from this ansatz, the vacuua
the YM field are given byW ­ 61. Using overdots
and primes in the following to denote≠y≠t and ≠y≠r,
respectively, we introduce auxiliary YM variables:F ;
W 0 andP ; a ÙWya. The dynamics of the EYM model
can then be computed from (see [7])

ÙF ­

µ
a

a
P

∂0

, ÙP ­

µ
a

a
F

∂0

1
aa
r2

Ws1 2 W2d ,

(2)

a0

a
­

1 2 a2

2r
1

1
r

µ
F2 1 P2 1

a2

2r2 s1 2 W2d2

∂
,

(3)

a0

a
­

a2 2 1
2r

1
1
r

µ
F2 1 P2 2

a2

2r2
s1 2 W2d2

∂
,

(4)

W sr , td ; 61 1
Z r

0
Fsr̃ , tddr̃ . (5)

We have solved the initial value problem for many on
parameter families of asymptotically flat, regular initia
data, some of which are listed in Table I. To ensu
regularity at the origin we require thatW sr , td ! 61 1

Osr2d as r ! 0. The numerical results described belo

TABLE I. Initial data families used and type(s) of critica
behavior observed. Adjustable parameters are enclosed inf· · ·g.
Initial data for Fa is time symmetrics ÙW sr, 0d ­ 0d; for all
other families, the initial data are ingoing only.Csr , sd ­ sss1 1
as1 1 brysd expf22srysd2gddd with constantsa andb chosen so
that Ws0, 0d ­ 1 andW 0s0, 0d ­ 0.

Family W sr , 0d Type

Fafx; sg Csr , sd tanhfsx 2 rdysg I, II
Fbfa; d; qg 1 1 a expsss 2 fsr 2 20dydgqddd II

Fcfdg f1 2 srydd2gysssf1 2 srydd2g2 1 4r2ddd1y2 I
Fdfa; qg 21 1 2a expsss 2 fsr 2 17dy4gqddd I, II
),
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were generated using a modified version of the adapt
mesh algorithm used to perform the original scalar fi
calculations [1]. The sensitivity of the mesh-refineme
algorithm was again very helpful in efficiently computin
near-critical solutions, but was not nearly as crucial a
was for the scalar case. In fact, we have also reprodu
most of the following results using a uniform-grid cod
much like the one described in [8].

As stated above, depending on the particular form
initial data used, we have found two types of critic
behavior.

Type II behavior.—In this case, we observe a contin
ous no-black-hole–black-hole phase transition, and
overall picture of criticality is very much analogous
that of scalar field collapse. For a generic type II fami
and in the near-critical, nonlinear regime, we conject
that the evolution asymptotes to a locally unique (
to r , t ! sr , st, for arbitrary s . 0) discretely self-
similar solution, with an echoing exponent,D ø 0.74. As
with the scalar field case, we expect that the precis
critical solution echoes an infinite number of time
exhibits unbounded growth of curvature nearr ­ 0,
and is singular at the origin at some finite value
central proper time,Tp. Figure 2 shows profiles o
various echoing quantities atT ø Tp from a family
Fa calculation (see Table I) withjs 2 spjysp ø 10215.
Typical evidence for scale periodicity is shown in Fig. 3

FIG. 2. Late time profiles of marginally subcritical type
collapse using familyFa (see Table I). Note that the mas
aspect,msr , td, is defined viaa2 ­ s1 2 2myrd21. The large
number of echoes visible here (for fixedjp 2 ppjypp), relative
to the scalar case, is a reflection of the relatively sm
value of the echoing exponent (DYM ø 0.74 vs DSF ø 3.44).
However, this is partly offset by the fact that the ma
scaling exponents for the two models also differ significan
In general, dimensional /scaling considerations suggest
Ddn ­ 2gdp, where dn and dp are the changes in ech
number,n, andp ; ln jp 2 ppj, respectively [9].
425
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FIG. 3. Scale periodicity of the type II solution. This plo
shows the superposition of a near-critical profile ofF (at a
particular time) with the first two echoes which subsequen
develop. The central proper time,T0, at which the earliest
profile is monitored is arbitrary; timesT1 andT2 and the rescal-
ing exponent,Dr , are then chosen to minimizeFflnsrd 1
nDr , Tng 2 Fflnsrd, T0g. An independent estimate ofD is gen-
erated by first estimating the critical time,Tp, for the family,
and then computingDt ; lnfsTp 2 TndysTp 2 Tn11dg.

As expected, type II families also exhibit mass scali
in the supercritical regime:MBH ~ sp 2 ppdg . Typical
results are shown in Fig. 4, and we estimate that the va
g ø 0.20 is accurate to a few percent. We note in pa
ing that this result is another piece of the growing body
evidence which has shown thatg is not constant across al
collapse models [4,10,11]. As argued in [12], mass sc
ing and universality (initial-data independence), strong
suggest that the stable manifold of a type II solution, su

FIG. 4. Mass scaling of type II solutions. Each marker ty
corresponds to a different family of supercritical computatio
For each family, constantsai and bi are chosen to unit
normalize thex range and place the first data point (smalle
black hole) at the origin. For all data sets, the least square
for the slope,g, is 0.20, with an estimated uncertainty of a fe
percent. In addition, for all families, the unnormalizedp range
was 18; thus, in each case, the black hole mass spans a f
of e18g ø 37.
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as the one described here, is of codimension one. T
picture, which predicts thatg is the reciprocal of the Lya-
punov exponent of a single growing mode associated w
a critical solution, has now been validated for at least tw
distinct matter models withcontinuouslyself-similar crit-
ical solutions [4,12–15]. Perturbative treatment of cr
ical solutions with discrete symmetry is more involve
although considerable progress has been made for
scalar case [16]. Here we remark only that any techniq
which work for the scalar field should be largely applic
ble to this solution.

Type I behavior.—As stated previously, solutions in
a type I interpolating family asymptote to thestatic BK
solution, X1, as p ! pp. This behavior appears gene
ically for kink-type initial profiles of the YM potential
W , such asFc in Table I. In this case it has alread
been established that each of the BK solutions,Xn, has
exactly n unstable modes (within the purely magnet
ansatz); hence we are certain that the stable mani
of the critical solution has codimension one. Initial da
with small jp 2 ppj results in an evolution which ap-
proachesX1 and stays in its vicinity for central prope
time, T ø 2l ln jp 2 ppj. The configuration then ei-
ther disperses to infinitysp , ppd or collapses to a black
hole with finite masssp . ppd. Typical results from
a marginally subcritical type I evolution are shown
Fig. 5.

Our calculations are somewhat complementary to th
performed by Zhou and Straumann [8]. Those auth

FIG. 5. Marginally subcritical type I evolution. Here we plo
the dynamical evolution ofWsr , td (solid line) and superimpose
the static BK configurationX1 (dashed line). Initially, the
evolution (family Fc, jd 2 dpjydp ø 10215) is nearly linear
and almost purely ingoing. When the pulse arrives at t
center, it sheds off YM radiation, approachesX1 and stays near
it for some time, then disperses to infinity.
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generally used initial conditions describing small dev
tions from the static solution,X1, and studied the sub
sequent evolution to verify the prediction of perturbati
instability [17]. Here, by construction, wegenerateX1
as the boundary between collapse and dispersal, and
immediately verify its instability. In this case, the re
ciprocal Lyapunov exponent of the single unstable mo
yields the characteristic time scale,l, for X1’s decay. Us-
ing central-proper-time normalization, the value compu
from perturbation theory [17] isl ­ 0.5519 . . . . We can
measure this exponent quite directly from our simulatio
by computing the variation of the lifetime of near-critica
solutions with respect to variations inp ; ln jp 2 ppj.
Specifically, definingTr spd to be the central proper time
at which the zero crossing ofW sr , td reaches radiusr
as it propagates outward, we expect2dTrydp ! l as
p ! 2` and for sufficiently larger. Some numeri-
cal regularization is provided by monitoringTr at several
discrete radiiri , i ­ 1, . . . , n, and computing the aver
aged quantitȳTrspd ; n21

P
Tri spd. When this is done

for Fc data with r1 ­ 400, rn ­ 475, n ­ 16, we find
0.5520 , 2dT̄r ydp , 0.5525 for 219 , p , 210.
In addition, we can get a good estimate of the unsta
eigenmodeby studying near-critical departures from th
static solution.

As noted in the introduction, type I behavior is clear
characterized by a gap in the black hole mass spectrum
threshold. We conjecture that the mass gap is univer
and observe that our calculations suggest that it is v
close (1% or less) to the total mass,m1 ­ 0.828640 . . . ,
of X1.

Type I and II coexistence.—We can only briefly
describe what is one of the more interesting featu
of critical behavior in the EYM model: the fact tha
for certain two-parameter families—such asFa and Fd

in Table I—there exists a critical line in paramet
space (see Fig. 1) which interpolates between type I
type II behavior. The results we have obtained le
us to conjecture that the transition point (C in Fig. 1)
represents the coexistence of the two distinct criti
solutions described above. In other words, nearC, we
see echoing occurring in the context of the staticX1
background. Thus, we can have arbitrarily small bla
hole formation within a configuration which itself i
arbitrarily close to forming a finite-mass black hole. W
end by noting that although the supercritical regime in t
model—especially in the cross-hatched overlap reg
sketched in Fig. 1—is still very muchterra incognita, we
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have preliminary evidence that further phenomenologic
richness lurks there. In particular, we have observed a
intriguing discontinuity in the spectrum of black hole
masses which suggests the existence of another type
critical behavior in the formation of black holes [18].
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