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Critical Behavior in Gravitational Collapse of a Yang-Mills Field
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We present results from a numerical study of spherically symmetric collapse of a self-gravitating,
SU(2) gauge field. Two distinct critical solutions are observed at the threshold of black hole formation.
In one case, the critical solution is discretely self-similar, and black holes of arbitrarily small mass
can form. However, in the other instance, the critical solution isrthe 1 static Bartnik-Mckinnon
sphaleron, and black hole formation turns on at finite mass. The transition between these two scenarios
is characterized by the superposition of both types of critical behavior. [S0031-9007(96)00656-4]

PACS numbers: 04.25.Dm, 04.40.Nr, 04.70.Bw

In a recent numerical study of gravitational collapsecountable familyX, (n € N) of spherically symmetric,
of a massless scalar field, a type of critical behaviormsymptotically flat, regular, but unstable, configurations.
was found at the threshold of black hole formation [1]. Our main new result is the observation that for certain
More precisely, in the analysis of spherically symmetricfamilies of initial data the static BK solutior¥;, plays
evolution of various one-parameter families of initial datathe role of a critical solution separating collapse from
describing imploding scalar waves, it was observed thatlispersal. Since in this case there is a finite gap in
there is generically a critical parameter valye= p™,  the spectrum of black hole masses, we call this “type I”
which signals the onset of black hole formation. In
the subcritical regimep < p*, all of the scalar field
escapes to infinity leaving flat spacetime behind, while ;’

7

for supercritical evolutionsp > p*, black holes form ’y

with masses well fit by a scaling lawfgy = (p — p™)”. Type I BH

sense of being independent of the details of the initial
data. Thus, the transition between no-black-hole and
black-hole spacetimes may be viewed as a continuous

Here, the critical exponenty = 0.37, is universal in the
NRRNNEREN

phase transition with the black hole mass playing the - : \\g\f\?\\i\\i\
role of order parameter. In the intermediate asymptotic A ‘ \1\\i\\\ \i\
regime (i.e., before a solution “decides” whether or not QOB

to form a black hole) near-critical evolutions approach

a universal attractor, called the critical solution, which No BH

exhibits discrete self-similarity (echoing). Using the same o

basic technique of studying families which “interpolate”
between no-black-hole and black-hole spacetimes, similar
critical behavior has been observed in several other
models of gravitational collapse [2—-4]. FIG. 1. Schematic representation of “phase space” for
In this Letter we summarize results from the numericalSPherically symmetric Yang-Mills collapse, showing possible

tudv of th Iuti f If itati Abeli end states of evolutions from a sufficiently general two-
study of the evolution ol a seli-gravitating non-Abefian parameter family of initial conditions. The critical lin@O’

gauge field modeled by the $2) Einstein-Yang-Mills  demarks the threshold of black hole formation. An interpolat-
(EYM) equations. In addition to its intrinsic physical ing family such asAA’ exhibits type | behavior: The critical
interest, we have chosen this model because, in contrast gglution is the static BK solutioiX;, and the smallest black
all previously studied models, it contains static solutiong'0!e formed has finite mass. Families such &' exhibit
hich we suspected could affect the qualitative picture o ype Il behavior: The critical solution is discretely self-similar
W,_ .p q 4 P h A = 0.74), black hole formation turns on at infinitesimal
critical behavior. Let us recall that these static solutionsmass, and mass scaling with= 0.20 is observed. AL, the

discovered by Bartnik and Mckinnon (BK) [5,6], form a two types of critical behavior coexist.
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behavior (in analogy to a first order phase transition)were generated using a modified version of the adaptive-
to distinguish it from “type II” behavior (which we mesh algorithm used to perform the original scalar field
also observe), where black hole formation turns on atalculations [1]. The sensitivity of the mesh-refinement
infinitesimal mass. As sketched in Fig. 1, suitable two-algorithm was again very helpful in efficiently computing

parameter families of initial data exhibit both types of near-critical solutions, but was not nearly as crucial as it

behavior.

We consider spherically symmetric Einstein-Yang-
Mills equations with the gauge group 8). We write
the time-dependent, spherically symmetric metric as

ds* = —a*(r,0)dt* + a*(r,0)dr* + r*dQ%. (1)
For the Yang-Mills (YM) field, we assume the purely

was for the scalar case. In fact, we have also reproduced
most of the following results using a uniform-grid code
much like the one described in [8].

As stated above, depending on the particular form of
initial data used, we have found two types of critical
behavior.

Type Il behavior—In this case, we observe a continu-

magnetic ansatz which in the Abelian gauge has the formus no-black-hole—black-hole phase transition, and the

[7] F=dW A Q — (1 — WH)73dd A sindde, where
Q = 7dY¥ + msindde and ther; are Pauli matrices.

overall picture of criticality is very much analogous to
that of scalar field collapse. For a generic type Il family,

Thus, the matter content of the model is described by @and in the near-critical, nonlinear regime, we conjecture

single function,W(r,t), which we call the Yang-Mills
potential. As follows from this ansatz, the vacuua of
the YM field are given byW = =1. Using overdots
and primes in the following to denote/dr and o/dr,
respectively, we introduce auxiliary YM variable®: =

W' andIl = aW/a. The dynamics of the EYM model
can then be computed from (see [7])

. / . !
b = (in>, 1= <iq>> + W - W),
a a r
(2)
a/ 1 - a2 1 2 2 (12 2 2)
— = + — + %2+ — (1 -
a 2r r <q) 1 2r2 (=W,
3)
a 2r r (q) 1 2r2 (1 =w5),
(4)
W(r,t) = 1 + [ (7, 1)dF . (5)
0

We have solved the initial value problem for many one-
parameter families of asymptotically flat, regular initial

data, some of which are listed in Tablel. To ensure

regularity at the origin we require th&i (r,r) — =1 +
O(r?) asr — 0. The numerical results described below

TABLE I. Initial data families used and type(s) of critical
behavior observed. Adjustable parameters are encloged Jn
Initial data for F, is time symmetric(W(r,0) = 0); for all
other families, the initial data are ingoing only:(r,s) = (1 +
a(l + br/s) exd—2(r/s)*]) with constants: andb chosen so
that W(0,0) = 1 andW'(0,0) = 0.

Family W(r,0) Type
Fulx;s] C(r,s)tanH(x — r)/s] I, 1l
Fpla; 8;q] 1+ aexp( — [(r — 20)/6]%) Il

F.[8] [1— (r/8)21/(1 — (r/8)*F + 4r)/? '
Fula; q] =1 + 2aexp( — [(r — 17)/4]%) I, 1l

that the evolution asymptotes to a locally unique (up
to r, t — or, ot, for arbitrary o > 0) discretely self-
similar solution, with an echoing exponent,=~ 0.74. As
with the scalar field case, we expect that the precisely
critical solution echoes an infinite number of times,
exhibits unbounded growth of curvature near= 0,
and is singular at the origin at some finite value of
central proper time,T*. Figure 2 shows profiles of
various echoing quantities af =~ T* from a family
F, calculation (see Table 1) withs — s*|/s* = 10715,
Typical evidence for scale periodicity is shown in Fig. 3.
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FIG. 2. Late time profiles of marginally subcritical type Il
collapse using familyF, (see Table I). Note that the mass
aspectyn(r, 1), is defined viaa®> = (1 — 2m/r)”'. The large
number of echoes visible here (for fixga — p™|/p™), relative

to the scalar case, is a reflection of the relatively small
value of the echoing exponend{y = 0.74 vs Agg = 3.44).
However, this is partly offset by the fact that the mass
scaling exponents for the two models also differ significantly.
In general, dimensional/scaling considerations suggest that
Aén = —yém, where 6n and 67 are the changes in echo
number,n, and7 = In|p — p*|, respectively [9].
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as the one described here, is of codimension one. This
picture, which predicts tha is the reciprocal of the Lya-
punov exponent of a single growing mode associated with
a critical solution, has now been validated for at least two
distinct matter models witksontinuouslyself-similar crit-
ical solutions [4,12—-15]. Perturbative treatment of crit-
ical solutions with discrete symmetry is more involved,
although considerable progress has been made for the
scalar case [16]. Here we remark only that any techniques
= &(ln(r) + ZAp'Tz) which work for the scalar field should be largely applica-
Ly v Ly ble to this solution.
-8 -4 _2 0 Type | behavior—As stated previously, solutions in
In(r) + n A, a type | interpolating family asymptote to ttsatic BK
solution, X,, asp — p™. This behavior appears gener-
FIG. 3. Scale periodicity of the type Il solution. This plot jcally for kink-type initial profiles of the YM potential
shows the superposition of a near-critical profile ®f (at a W, such asF, in Table I. In this case it has already

particular time) with the first two echoes which subsequently, . .
develop. The central proper tim&,, at which the earliest been established that each of the BK solutiakis, has

profile is monitored is arbitrary; timeg and7, and the rescal- €Xactly n _unstable modes (within the purely magnetic

ing exponent,A,, are then chosen to minimizé[In(r) +  ansatz), hence we are certain that the stable manifold

nl,,T,] — ®[In(r),To]. Anindependent estimate d&fis gen-  of the critical solution has codimension one. Initial data

erated by first estimating the critical tim&,", for the family,  with small lp — p*| results in an evolution which ap-

and then computing, = In[(T* = T,)/(T* = T,+1)]. proachesX; and stays in its vicinity for central proper

time, 7 = —AIn|p — p*|. The configuration then ei-

As expected, type Il families also exhibit mass scalingther disperses to infinityp < p™) or collapses to a black

in the supercritical regime¥gy = (p — p™)?. Typical  hole with finite mass(p > p™). Typical results from

results are shown in Fig. 4, and we estimate that the valua marginally subcritical type | evolution are shown in

v = 0.20 is accurate to a few percent. We note in pass¥ig. 5.

ing that this result is another piece of the growing body of Our calculations are somewhat complementary to those

evidence which has shown thatis notconstant across all performed by Zhou and Straumann [8]. Those authors

collapse models [4,10,11]. As argued in [12], mass scal-

ing and universality (initial-data independence), strongly
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FIG. 4. Mass scaling of type Il solutions. Each marker type In(r)

corresponds to a different family of supercritical computations.

For each family, constants; and g8; are chosen to unit FIG.5. Marginally subcritical type | evolution. Here we plot
normalize thex range and place the first data point (smallestthe dynamical evolution oW(r, ¢) (solid line) and superimpose
black hole) at the origin. For all data sets, the least squares fthe static BK configurationX; (dashed line). Initially, the
for the slope,y, is 0.20, with an estimated uncertainty of a few evolution (family F,, |8 — 6%|/6™ =~ 107'%) is nearly linear
percent. In addition, for all families, the unnormalizedrange  and almost purely ingoing. When the pulse arrives at the
was 18; thus, in each case, the black hole mass spans a factenter, it sheds off YM radiation, approachésand stays near
of 37 = 37, it for some time, then disperses to infinity.
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generally used initial conditions describing small devia-have preliminary evidence that further phenomenological
tions from the static solutionX;, and studied the sub- richness lurks there. In particular, we have observed an
sequent evolution to verify the prediction of perturbativeintriguing discontinuity in the spectrum of black hole
instability [17]. Here, by construction, wgenerateX; masses which suggests the existence of another type of
as the boundary between collapse and dispersal, and thastical behavior in the formation of black holes [18].
immediately verify its instability. In this case, the re- M.W.C. would like to thank Peter Forgacs for help-
ciprocal Lyapunov exponent of the single unstable moddul discussions. We acknowledge the hospitality of the
yields the characteristic time scale,for X;’s decay. Us- Erwin Schrodinger Institute in Vienna, where this work
ing central-proper-time normalization, the value computedvas initiated. The research of M. W. C. was supported in
from perturbation theory [17] ia = 0.5519.... We can part by NSF PHY9310083, PHY9318152, and Metacen-
measure this exponent quite directly from our simulationger Grant MCA94P015, and by a Cray Research Grant to
by computing the variation of the lifetime of near-critical R. Matzner. The research of T.C. and P.B. was sup-
solutions with respect to variations in = In|p — p™|.  ported in part by the KBN Grant PB750/P3/94/06. T.C.
Specifically, definingl’, (7) to be the central proper time acknowledges the financial support of the Kosciuszko
at which the zero crossing d¥(r, ) reaches radiug Foundation.

as it propagates outward, we expeetdT,/dm — A as

7 — —o and for sufficiently larger. Some numeri-

cal regularization is provided by monitorirfig at several ) )
discrete radiir;, i = 1,...,n, and computing the aver- *On leave of absence from N. Copernicus Astronomical

s - . Center, Cracow, Poland.
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