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Width of the Darwin Table for Forbidden Reflections
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It is shown that reflections with structure factor equal to zero are not absent, but have very small
Darwin table width, which is determined by a shift of the Bragg point and by structure factors of
another type. It is pointed out that this effect cannot be obtained within the Ewald theory of dynamical
diffraction on single crystals. [S0031-9007(96)01593-1]
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In neutron, x-ray, and electron diffraction on sing
crystals the reflections, for which structure factorFsqd ­
0, are called forbidden because the kinematical the
and the Ewald theory of dynamical diffraction pred
zero intensity for theseq. Here q ­ kd 2 k0 is the
momentum transfer,k0 is the wave vector of the inciden
andkd of the diffracted beam. We want to show here t
these reflections, strictly speaking, are not forbidden. T
are the same as nonforbidden ones with the only differe
being that the Darwin table width (DTW) for them is ve
narrow, and only for that reason is their intensity mu
smaller than the intensity of nonforbidden reflections.

It is well known that the forbidden reflections we
experimentally observed in x-ray [1], neutron [2], a
electron [3–6] diffraction. However, they are imitat
by two successive nonforbidden ones (so-called “umw
effect). To see this effect in the case of x-ray and neu
diffraction, it is necessary to have a special orienta
of crystals, while in the case of electrons the umw
effect exhibits itself very easily because the diffracti
especially at high energies, proceeds via many diffe
waves. Moreover, since the interaction between elec
and matter is strong, some forbidden reflections can
observed when few atomic layers have an incomp
elementary cell, as may happen on surfaces or in stac
faults [7].

We shall show that nothing of that is required
observe forbidden reflections. An ideal crystal witho
incomplete cells, without stacking faults, and without
umweg effect of any kind totally reflects in the directio
for which the structure factor is zero.

To prove this assertion, and to make the ideas of
proof as simple as possible, we consider here only neu
diffraction from a semi-infinite single crystal in Brag
geometry. For even more simplification we shall us
very artificial model of a single crystal with two identic
motionless nonabsorbing atoms in an elementary
with very short crystalline parametersa in a, b plane,
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which coincides with the crystal surface, and a long per
s in the c direction along the normal to the surface. Th
model permits us to reduce the problem of diffraction
one-dimensional scattering and to make an estimation
the magnitude of the effect, which is also valid for re
crystals. In some respect, this model can be visualized
some kind of multilayer mirror.

Our main theoretical tool is the dynamical diffractio
theory based on the multiple wave Darwin (MWD) a
proach [8,9]. We use the artificial model because, in t
case, our approach is reduced to the single wave Dar
one. It means that the crystal is imagined to be cut
slices [10] parallel to the entrance surface, the width o
slice being that of a single period [such a slicing is ve
common in electron diffraction], and the scattering on
slice is described by direct transmission and specular
flection. If we know reflectionr and transmissiont of
a single period, we can find an equation for reflectionR
from a semi-infinite set of such slices:

R ­ r 1 tRt 1 tRrRt 1 · · · 1 tRsrRdnt 1 · · · ,
(1)

where thenth term in this sum means transmission throu
the first slice,n times multiple reflection between the firs
slice and remaining set, and finally transmission back
the vacuum through the first slice. The terms in the rig
hand side represent a geometrical progression, which
be easily summed, and as a result we get the equation

R ­ r 1 t2Rys1 2 rRd , (2)

whose solution can be represented [10] in the form

R ­

p
s1 1 rd2 2 t2 2

p
s1 2 rd2 2 t2p

s1 1 rd2 2 t2 1
p

s1 2 rd2 2 t2
. (3)

The amplitudesr andt depend on neutron energyk2, and,
for somek ­ kB, the expression (3) becomes of the for
R ­ sa 2 ibdysa 1 ibd with real a and b. It means
© 1996 The American Physical Society
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that for thesek we have total (Bragg) reflection becaus
jRj ­ 1. Reflection remains total in some range, call
the “Darwin table,” which widthDk2 is called the “Darwin
table width” (DTW).

Our approach helps to predict the effect discussed h
and we shall show why, in the Ewald theory of dynamic
diffraction, this effect was missed.

Our main result is that the ratio of intensities of forbid
denIf and nonforbiddenIn reflections, which is equal to
the ratio of the widths of the Darwin tables, is of the ord

IfyIn ­ uyk2
B , (4)

whereu is the optical potential of the crystalu ­ 4pN0b,
N0 is the atomic density,b is the coherent scattering
amplitude,kB ­ pnys is the Bragg wave number, andn is
an integer. For a majority of crystals in the case of neut
scattering, the ratio (4) is of the orderø1025.

Now let us return to our model of a semi-infinite cryst
consisting of crystalline planes parallel to the entrance s
face. The elementary cell of a plane is a square with
lattice parametera being considerably smaller than th
period s in the direction of the normal to the surfac
The period consists of two identical planes separated
distancea along the normal. All the atoms of the cryst
are motionless, nonabsorbing, and have the same scatt
amplitudebs, which, for a single atom isolated from th
crystal and placed into vacuum, is represented in the fo

bs ­ b0ys1 1 ikb0d , (5)

whereb0 is a real magnitude, called the “scattering length
andk is the wave number of the incident neutron. Such
representation of the amplitude automatically satisfies
requirements of optical theorem: Imbs ­ kjbsj

2.
We consider the reflection of neutrons from this crys

when neutrons have the wave numberk ø 2pya. For
such neutrons we can neglect diffraction on a sin
crystalline plane and describe the scattering on a pl
with the help of only two scalar parameters, reflectionr
and transmissiont ­ 1 1 r amplitudes.

Our goal is to calculater and t for a single period,
to substitute them into (3), to show that there is a to
reflection at the position of the forbidden reflection, a
to calculate its DTW.

To calculater andt we must first calculate reflectionr
and transmissiont amplitudes of the single atomic plane
and then calculate reflectionr12 and transmissiont12 of
two planes constituting a single period.

Reflection amplituder from a plane is equal to

r ­ 2ipysk' 1 ipd , p ­ 2pN2b , (6)

whereN2 is the two-dimensional density of atomsN2 ­
1ya2, and b is a somewhat renormalized amplitudeb0

[see (5)], which was calculated in [8]. The expression
can be obtained with the help of the multiple wave sc
tering theory [8] or with the one-dimensional Schröding
equation in which the crystalline plane is represented
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a potential of the form2pdsxd such as in the Kronnig-
Penney potential. In the following we shall omit the su
script'.

Now we consider reflectionr12 and transmissiont12
amplitudes for the system of two planes separated b
distancea. Using the same method as in (1) withR in
the right hand side replaced byr exps2ikad, we get

r12 ­ r 1 t2e2ikarys1 2 r2e2ikad

­ r
1 1 st2 2 r2d exps2ikad

1 2 r2 exps2ikad
, (7)

and, similarly,

t12 ­ t2 expsikadyf1 2 r2 exps2ikadg .

Substitution oft ­ 1 1 r and r from (6) in these rela-
tions gives

r12 ­ 22ipeika

3
k cosskad 1 p sinskad

k2 1 2ipk 1 2ip2 sinskad cosskad 2 2p2 sin2skad
,

(8)

t12 ­ eika

3
k2

k2 1 2ipk 1 2ip2 sinskad cosskad 2 2p2 sin2skad
.

(9)

Now we must define reflection from a period. To d
that, it is necessary to choose the form of the period.
choose it to be symmetrical, as is shown in Fig. 1.

The reflection amplitude from the periodr is r ­
expfikss 2 adgr12, where the first factor appears becau
before and after reflection from two planes the wave pro
gates through the vacuum gap of the widthss 2 ady2.
Substitution of (8) in this formula leads to

r ­ 22ipeiks

3
k cosskad 1 p sinskad

k2 1 2ikp 1 2ip2 sinskad cosskad 2 2p2 sin2skad
.

(10)

In the same way, we get the transmission amplitudet of
the period

t ­ eikss2adt12 ­ eiks

3
k2

k2 1 2ipk 1 2ip2 sinskad cosskad 2 2p2 sin2skad
.

(11)

FIG. 1. The single period of the model. It contains two plan
at distancea and two vacuum gaps on both sides of them. T
total width s is the length of the period.
4203
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r and
Now we substitute (10) and (11) into (3). Before doing that, it is helpful to modify (3) by dividing the numerato
denominator by

p
s1 1 r 1 td s1 2 r 1 td. As a result we get

R ­

p
s1 2 t 1 rdys1 1 t 2 rd 2

p
s1 2 t 2 rdys1 1 t 1 rdp

s1 2 t 1 rdys1 1 t 2 rd 1
p

s1 2 t 2 rdys1 1 t 1 rd
. (12)
From (10) and (11) it follows thatt 6 r can be
represented in the form

t 6 r

­ eiks k2 7 2ipfk cosskad 1 p sinskadg
k2 1 2ikp 1 2p2 sin2skad 1 2ip2 sinskad cosskad

­ expsiks 2 id6d ,
e
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4204
with d6 ­ 7f1 2 f2, and

f1 ­ arctan

µ
2pfk cosskad 1 p sinskadg

k2

∂
, (13)

f2 ­ arctan

µ
2pk 1 2p2 sinskad cosskad

k2 2 2p2 sin2skad

∂
. (14)

After substitution into (12), we get
R ­

p
tansksy2 1 f1y2 2 f2y2d 2

p
tansksy2 2 f1y2 2 f2y2dp

tansksy2 1 f1y2 2 f2y2d 1
p

tansksy2 2 f1y2 2 f2y2d
. (15)
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If two tan have a different sign, this expression b
comes of the formR ­ sa 2 ibdysa 1 ibd with real a
and b. In that casejRj ­ 1, and we have the total o
Bragg reflection. It happens when

ks 2 f1 2 f2 # np # ks 1 f1 2 f2 , (16)

where n is the integer. The inequalities (16) can b
reduced to the form

jkB 2 k 2 f2ysj # f1ys, kB ­ pnys ,

from which it follows thatf2 determines the position o
the Bragg peak centerkc, and2f1 determines DTW.

Now, let us remember how the structure factor of t
elementary cell is defined. Usually it is defined as

Fsqd ­
X

j

bj expsiqrjd ,

wherebj is the scattering amplitude of an atom at poi
rj , and q is the momentum transfer. We use a sligh
modified definition:

Fsqd ­
X

j

bj expsiqrjd, bj ­ bj

. X
l

bl .

In our model we have two atoms, so the structure facto
equal to

Fsqd ­ cossqay2d ,

if the origin is chosen in the middle between the plan
For specular reflection we haveq ­ 2k, so, in our case,
Fsqd ­ cosskad.

In expressions (13) and (14),Fsqd enters with another
structure factor, which is represented by sinskad, and
which we shall denote byGsqd. Thus expressions (13
and (14) can be represented in the form

f1 ­ arctan

µ
2pkFs2kd 1 2p2Fs0dGs2kd

k2

∂
, (17)

f2 ­ arctan

µ
2pkFs0d 1 2p2FskdGs2kd

k2 2 2p2G2s2kd

∂
. (18)
-

e

e

t
y

is

s.

whereFs0d ­ 1 is introduced to get a structure factor f
every entry ofp.

It may be supposed that it isGsqd which is important
for the determination of the DTW for forbidden refle
tions, but it is not the full truth.

To get the width of the Darwin table it is necessa
to find 2jf1skcdj, wherekc is the solution of the equatio
skc 2 kBds ­ f2skcd. Let us suppose thata ­ sy4. The
forbidden reflection should be atkB ­ 2pys, but, because
of the small shift, the center of the reflection is not atkB.
It is shifted to kc ­ kB 1 2pyskB. Substitution of this
value into (13) gives

f1skcd ­
2p
kB

µ
2

p
2kB

1
p
kB

∂
­

p2

k2
B

. (19)

If we take into account thatp ­ 2pN2b ; usy4, where
u ­ 4pN0b is the optical potential of the medium (w
can also represent it in the formu ­ uFs0d, sinceFs0d ­
1) and N0 is the number of atoms in a unit volume, w
find that the DTW in the considered case is equal to

Dk ­ 2
f1

s
­

p

4
u2

k3
B

or Dk2 ­ 2kBDk ­
p

2
u

k2
B

u .

(20)

For nonforbidden reflection (for instance, fork ø pys),
we haveDk2 ­ 2uFskBd ­

p
2 u, and from (20) immedi-

ately follows the ratio of intensities pointed out in (4).
It follows from (19) that the DTW is determined no

only by the additional structure factor but also by the m
structure factor which is zero only precisely at the Bra
point, and is not zero at the shifted position. For instan
let us suppose that there are no additional struc
factors, i.e., we calculatef1 and f2 by perturbation
theory and get

f1 ­ arctanf2pFs2kdykg, f2 ­ arctans2pykd .

Since forp . 0 the reflection takes place fork . kB, and
the phasef1 , 0 for thesek, the inequality (16) must be
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represented in the form
ks 1 f1 2 f2 # np # ks 2 f1 2 f2

or jkBs 2 ks 1 2pykj # js2pykd cosskadj , (21)
which determines the DTW of the reflection. Usua
this DTW is of the same order of magnitude as (20),
does not necessarily coincide with it, as happened pu
accidentally in our model.

The physical nature of the obtained result can
explained as follows. To have a total reflection it
necessary to have, first, the nonzero reflectionr of a
single period and, second, the phase difference2pn of
waves reflecting on two consecutive periods. The
condition can be satisfied only fork ­ kB.

Forbidden reflections are those for whichr ­ 0. It is
zero because reflections from consecutive planes in
one period cancel each other.

However, first, it is easy to show thatr can never
be zero. Indeed, the first plane screens the sec
one, so amplitudesA1 and A2 of the waves reflected
by two planes are different and cannot completely c
cel each other. It follows from (7) thatA1 ­ r and
A2 ­ rt2 exps2ikadyf1 2 r2 exps2ikadg. Thus even if
exps2ikad ­ 21, we getjA1 1 A2j . 0.

Such a screening was observed in numerical calc
tions of many beam diffractions of electrons on an
crystal [3], but from these calculations it was not cle
whether the screening is a physical effect or the re
of insufficient approximation, i.e., of an insufficient num
ber of diffracting waves taken into account. Howev
the magnitude of that screening permitted good agreem
of the calculations with experimental results. In our a
proach the screening is marked by the additional struc
factor Gsqd. It follows immediately that the greater th
scattering the greater the effect, and that absorption
inelastic scattering enhance the effect. In Ewald the
the screening is not taken into account.

Second, if k is slightly increased byDk, the phase
difference of the waves reflected on consecutive per
becomes2pn 1 d. This mismatch violates the conditio
of total reflection, but at the same time it decreases
negative interference on the planes inside a single pe
which leads to the increase ofr. The magnitude ofr
is complex. It contains a phasef which is negative (for
positive p) and compensates the mismatchd. It is this
compensation which gives a finite width to the Darw
table. This compensation provides the finite DTW
forbidden reflections also. In Ewald theory,r contains
FskBd ­ 0, which is a number and does not change w
the change ofk, thus no compensation can be obtained

In conclusion, we proved that forbidden reflectio
differ from nonforbidden ones only by the width of th
Darwin table. This width is provided by an addition
structure factor and by the shift of the central point in
main structure factor. The forbidden reflections obser
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in polycrystals or deformed and vibrating crystals (s
for example, [11–14]) are usually ascribed to dou
nonforbidden ones. In our opinion they can be due to
discussed effect. The bends and vibrations create s
quasimosaicity which increases the intensity of forbidd
reflections in the same way as it increases nonforbid
ones. Of course, these considerations do not exclude
possibility of double reflection and umweg effect.

The considerations presented here are also applic
to x-ray diffraction. We hope that the predicted effec
can be easily observed with intense synchrotron radiat
In electron diffraction the forbidden reflections must
especially well seen because of the strong scattering
electrons on atoms, thus, in the case when the observa
of forbidden reflections is interpreted in terms of stacki
faults and incomplete cells, the results should be modifi
For high energy electrons the umweg effect is ve
strong, and the fine features following from our approa
might be important only in some special cases. W
hope, nevertheless, that our approach will give be
agreement of numerical calculations with experiment e
with fewer numbers of waves inn-beam approximation.
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