VOLUME 77, NUMBER 20 PHYSICAL REVIEW LETTERS 11 NVEMBER 1996

Width of the Darwin Table for Forbidden Reflections
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It is shown that reflections with structure factor equal to zero are not absent, but have very small
Darwin table width, which is determined by a shift of the Bragg point and by structure factors of
another type. It is pointed out that this effect cannot be obtained within the Ewald theory of dynamical
diffraction on single crystals. [S0031-9007(96)01593-1]

PACS numbers: 61.12.Bt

In neutron, x-ray, and electron diffraction on single which coincides with the crystal surface, and a long period
crystals the reflections, for which structure fackg) = s in the ¢ direction along the normal to the surface. This
0, are called forbidden because the kinematical theorynodel permits us to reduce the problem of diffraction to
and the Ewald theory of dynamical diffraction predict one-dimensional scattering and to make an estimation of
zero intensity for these;. Here q = k; — ko is the  the magnitude of the effect, which is also valid for real
momentum transfek is the wave vector of the incident, crystals. In some respect, this model can be visualized as
andk, of the diffracted beam. We want to show here thatsome kind of multilayer mirror.
these reflections, strictly speaking, are not forbidden. They Our main theoretical tool is the dynamical diffraction
are the same as nonforbidden ones with the only differenctheory based on the multiple wave Darwin (MWD) ap-
being that the Darwin table width (DTW) for them is very proach [8,9]. We use the artificial model because, in that
narrow, and only for that reason is their intensity muchcase, our approach is reduced to the single wave Darwin
smaller than the intensity of nonforbidden reflections.  one. It means that the crystal is imagined to be cut in

It is well known that the forbidden reflections were slices [10] parallel to the entrance surface, the width of a
experimentally observed in x-ray [1], neutron [2], andslice being that of a single period [such a slicing is very
electron [3—6] diffraction. However, they are imitated common in electron diffraction], and the scattering on a
by two successive nonforbidden ones (so-called “umwegslice is described by direct transmission and specular re-
effect). To see this effect in the case of x-ray and neutrofilection. If we know reflectionp and transmissiorr of
diffraction, it is necessary to have a special orientatiora single period, we can find an equation for reflection
of crystals, while in the case of electrons the umwedrom a semi-infinite set of such slices:
effect exhibits itself very easily because the diffraction,
especially at high energies, proceeds via many differentX — # * TRT * TRpR7 + .-+ TR(pR)"T + -+,
waves. Moreover, since the interaction between electron (1)

and matter is strong, some forbidden reflections can bghere thesth term in this sum means transmission through
observed when few atomic layers have an incompletgne first slice, times multiple reflection between the first
elementary cell, as may happen on surfaces or in stackingice and remaining set, and finally transmission back to
faults [7]. _ , _ the vacuum through the first slice. The terms in the right
We shall show that nothing of that is required topang side represent a geometrical progression, which can

observe forbidden reflections. An ideal crystal withoutpe gasily summed, and as a result we get the equation
incomplete cells, without stacking faults, and without an

umweg effect of any kind totally reflects in the directions R=p + 7°R/(1 = pR), 2)
for which the structure factor is zero.

To prove this assertion, and to make the ideas of th
proof as simple as possible, we consider here only neutron Jad +p)2—72 -0 —p)?2—r12
diffraction from a semi-infinit.e si_n_gle_ crystal in Bragg - JITpZ -2+ J0-pF -2 (3)
geometry. For even more simplification we shall use a
very artificial model of a single crystal with two identical The amplitudegp andr depend on neutron energy, and,
motionless nonabsorbing atoms in an elementary celfor somek = kg, the expression (3) becomes of the form
with very short crystalline parametees in a,b plane, R = (a — ib)/(a + ib) with real @ and b. It means

gvhose solution can be represented [10] in the form
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that for thesek we have total (Bragg) reflection becausea potential of the form2pd(x) such as in the Kronnig-
IR| = 1. Reflection remains total in some range, calledPenney potential. In the following we shall omit the sub-
the “Darwin table,” which widthA k? is called the “Darwin  script L.
table width” (DTW). Now we consider reflection, and transmission;,

Our approach helps to predict the effect discussed heremplitudes for the system of two planes separated by a
and we shall show why, in the Ewald theory of dynamicaldistancea. Using the same method as in (1) wighin

diffraction, this effect was missed. the right hand side replaced byexp2ika), we get
Our main result is that the ratio of intensities of forbid- 2 2ika 2 2ika
; ; S rp =r + t7e“™r/(1 — ree ™)
den/, and nonforbidderd, reflections, which is equal to
the ratio of the widths of the Darwin tables, is of the order _ rl + (1> — r?) exp2ika) @
) 1 — rZexpika)
If/ln = “/kBa (4)

and, similarly,
whereu is the optical potential of the crystal= 47 Nyb, 5 ) 2 )
Ny is the atomic densityp is the coherent scattering fip = 1" explika)/[1 — r” exp2ika)].
amplitude kg = 7n/s is the Bragg wave number, ands  Substitution ofr = 1 + r and r from (6) in these rela-
an integer. For a majority of crystals in the case of neutroriions gives
scattering, the ratio (4) is of the order10>.

— . ika
Now let us return to our model of a semi-infinite crystal riz = —2ipe _
consisting of crystalline planes parallel to the entrance sur- k codka) + p sin(ka)
face. The elementary cell of a plane is a square with the = k2 + 2ipk + 2ip? sin(ka) coska) — 2p? sirt(ka)’
lattice parameterr being considerably smaller than the (8)

period s in the direction of the normal to the surface.  ika
The period consists of two identical planes separated by'12 = €

distancea along the normal. All the atoms of the crystal k?
are motionless, nonabsorbing, and have the same scattering” k2 + 2ipk + 2ip? sin(ka) codka) — 2p? sirt(ka)
amplitudebd,, which, for a single atom isolated from the Q)

crystal and placed into vacuum, is represented in the form , i i
Now we must define reflection from a period. To do

by = bo/(1 + ikby), (5) that, it is necessary to choose the form of the period. We

] ) ] choose it to be symmetrical, as is shown in Fig. 1.
whereb, is a real magnitude, called the “scattering length,”  The reflection amplitude from the period is p =

andk is the_wave number qf the incident_neutron._ Such %xlik(s — a)]r12, where the first factor appears because
representation of the amplitude automatically satisfies thgafore and after reflection from two planes the wave propa-

requirements of optical theorem: Ity = k|b,[>. gates through the vacuum gap of the widsh— a)/2.
We consider the reflection of neutrons from this crystalg,pstitution of (8) in this formula leads to

when neutrons have the wave numlie 27 /a. For

: . : — ik
such neutrons we can neglect diffraction on a single? = —2ipe™

crystalline plane and describe the scattering on a plane k cogka) + p sin(ka)

with the help of only two scalar parameters, reflection T 2ikp + 2ip? sin(ka) coska) — 2p? sir(ka)
and transmission = 1 + r amplitudes. (10)

Our goal is to calculatep and = for a single period, o )
to substitute them into (3), to show that there is a totaln the same way, we get the transmission amplituctef
reflection at the position of the forbidden reflection, andthe period
to calculate its DTW. 7= k= = ks
To calculatep andr we must first calculate reflection k2
and transmissiom amplitudes of the single atomic plane, X K2 + 2ipk + 2ip? sin(ka) codka) — 2p2 sirt(ka) °
and then calculate reflection, and transmission;, of (11)
two planes constituting a single period.
Reflection amplitude from a plane is equal to

S
r=—ip/(ky +ip), p=2mNb, (6)

whereN, is the two-dimensional density of atomg = l i
1/a?, andb is a somewhat renormalized amplitudg . ’ .
[see (5)], which was calculated in [8]. The expression (6) (s-a)/2 | a | (s-a)/2

can be obtained with the help of the multiple wave SCalyiG 1. The single period of the model. It contains two planes

tering theory [8] or with the one-dimensional Schrodingerat distance: and two vacuum gaps on both sides of them. The
equation in which the crystalline plane is represented byotal width s is the length of the period.
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Now we substitute (10) and (11) into (3). Before doing that, it is helpful to modify (3) by dividing the numerator and
denominator by/(1 + p + 7)(1 — p + 7). As a result we get

N —r+p)/U+7r-p-JU-7—-p)/0+71+p)

R . (12)
V-7 +p)/0+7-p)+J0-7—-p)/0+71+p)
From (10) and (11) it follows that = p can be | with 8+ = ¢ — ¢y, and
represented in the form 1 s
e b — arctar(zP[k c:os(ka;{2 pSIn(ka)]>’ (13)
, k> ¥ 2ip[k cogka) + p sin(ka)] 29k + 2p2si
_ ks _ p p*~ sin(ka) cogka)
“ k2 + 2ikp + 2p?siri(ka) + 2ip? sin(ka) codka) b2 = afCta’( 2 — 2p2 i (ka) ) (14)
= expliks — id+), | After substitution into (12), we get
_ Wtanks/2 + ¢1/2 — $2/2) — \Jtanks/2 — ¢1/2 — $2/2) (15)

 Vianks/2 + $1/2 — $2/2) + Jtanks/2 — ¢1/2 — $2/2)

If two tan have a different sign, this expression bLe-whereF(O) = 1 is introduced to get a structure factor for
comes of the formR = (a — ib)/(a + ib) with reala  every entry ofp.
and b. In that casglR| = 1, and we have the total or It may be supposed that it i5(g) which is important

Bragg reflection. It happens when for the determination of the DTW for forbidden reflec-
tions, but it is not the full truth.
ks =1 = p=nm =ks + 1= ¢, (16) To get the width of the Darwin table it is necessary
where n is the integer. The inequalities (16) can beto find2|¢;(k.)|, wherek, is the solution of the equation
reduced to the form (ke — kp)s = ¢a(k.). Letus suppose that= s/4. The
forbidden reflection should be & = 27 /s, but, because
lkp — k = ¢a/sl = b1/s, kg = mn/s, of the small shift, the center of the reflection is notkgt
from which it follows that¢, determines the position of It is shifted tok. = kg + 2p/skg. Substitution of this
the Bragg peak centdt., and2¢; determines DTW. value into (13) gives
Now, let us remember how the structure factor of the ) )
elementary cell is defined. Usually it is defined as b1(k.) = _p<_L n ﬂ) — p_2 (19)
ks\ 2kp ki) K2
Flq) = Z}.:bf expligr), If we take into account that= 27 N>b = us/4, where

u = 47 Nyb is the optical potential of the medium (we
whereb; is the scattering amplitude of an atom at pointcan also represent it in the form= uF(0), sinceF(0) =
rj, andg is the momentum transfer. We use a slightly 1) and N, is the number of atoms in a unit volume, we

modified definition: find that the DTW in the considered case is equal to
= . [T .= h. 2
Fl) = 2B extiar). B, b’/;bl' Ak =280 T o AR — bk = T
J S 4 kB 2 kB
In our model we have two atoms, so the structure factor is (20)
equal to , . .
B For nonforbidden reflection (for instance, fbr= = /s),
F(g) = cosqa/2), we haveAk? = 2uF(kg) = /2 u, and from (20) immedi-

if the origin is chosen in the middle between the planesately follows the ratio of intensities pointed out in (4).
For specular reflection we have= 2k, so, in our case, It follows from (19) that the DTW is determined not
F(q) = codka). only by the additional structure factor but also by the main

In expressions (13) and (14F,(g) enters with another Structure factor which is zero only precisely at the Bragg
structure factor, which is represented by (ki), and Point, and is not zero at the shifted position. For instance,
which we shall denote by;(g). Thus expressions (13) let us suppose that there are no additional structure

and (14) can be represented in the form factors, i.e., we calculate; and ¢, by perturbation
_ arotad 2PRF@K) + 2p*F(0)G(2k) - theory and get
¢ = arcta k2 . (A7) ¢ = arctafi2pF (2k)/k], ¢, = arctari2p /k) .

Since forp > 0 the reflection takes place fér> kg, and
the phasep,; < 0 for thesek, the inequality (16) must be

2pkF(0) + 2p2F(k)G(2k)> (18)

= arct
$2 = ar a’( K2 — 2p2G2(2k)
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represented in the form in polycrystals or deformed and vibrating crystals (see,
ks + ¢ — pr=nm <ks — b1 — b for example, [11-14]) are u'sgally ascribed to double
nonforbidden ones. In our opinion they can be due to the
or lkps — ks + 2p/kl = |2p/k)coska)l,  (21)  giscussed effect. The bends and vibrations create some

which determines the DTW of the reflection. Usually quasimosaicity which increases the intensity of forbidden
this DTW is of the same order of magnitude as (20), buteflections in the same way as it increases nonforbidden
does not necessarily coincide with it, as happened purelgnes. Of course, these considerations do not exclude the
accidentally in our model. possibility of double reflection and umweg effect.

The physical nature of the obtained result can be The considerations presented here are also applicable
explained as follows. To have a total reflection it isto x-ray diffraction. We hope that the predicted effects
necessary to have, first, the nonzero reflectiorof a  can be easily observed with intense synchrotron radiation.
single period and, second, the phase differesa of |n electron diffraction the forbidden reflections must be
waves reflecting on two consecutive periods. The lasespecially well seen because of the strong scattering of
condition can be satisfied only fér= kg. electrons on atoms, thus, in the case when the observation

Forbidden reflections are those for whiph= 0. Itis  of forbidden reflections is interpreted in terms of stacking
zero because reflections from consecutive planes insidaults and incomplete cells, the results should be modified.
one period cancel each other. For high energy electrons the umweg effect is very

However, first, it is easy to show that can never strong, and the fine features following from our approach
be zero. Indeed, the first plane screens the secondlight be important only in some special cases. We
one, so amplitudest; and A, of the waves reflected hope, nevertheless, that our approach will give better
by two planes are different and cannot completely canagreement of numerical calculations with experiment even
cel each other. It follows from (7) that; = r and  with fewer numbers of waves in-beam approximation.

A; = ri*exp2ika)/[1 — r?exp2ika)]. Thus even if Two authors (V.K.I. and M. U.) want to express their
exp2ika) = —1, we get|lA; + Az| > 0. gratitude to the Ministry of Education, Science, Sport

Such a screening was observed in numerical calculaand Culture of the Japanese Government for the opportu-
tions of many beam diffractions of electrons on an Aunity it gave to them to work together, to M. Ono for useful
crystal [3], but from these calculations it was not cleardiscussions, and to our referees who, with their construc-
whether the screening is a physical effect or the resulfive criticism, helped to improve our paper considerably.
of insufficient approximation, i.e., of an insufficient num- One of the authors (V.K.l.) also thanks I. Carron for his
ber of diffracting waves taken into account. However,gracious assistance. D.P. expresses gratitude to his coor-
the magnitude of that screening permitted good agreemeainator E. Borca and to W. Furman for the invitation to
of the calculations with experimental results. In our ap-work in JINR and for hospitality in Dubna.
proach the screening is marked by the additional structure
factor G(gq). It follows immediately that the greater the
scattering the greater the effect, and that absorption and
inelastic scattering enhance the effect. In Ewald theory , ,
the screening is not taken into account. *Present address_: Research Reactor Institute, Kyoto Uni-

Second, ifk is slightly increased byAk, the phase versity, Kumatori-cho, Sennan-gun, 590-04 Osaka, Japan.
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