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Metastability and Crystallization in Hard-Sphere Systems
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We present results of large-scale molecular dynamics simulations of hard sphere systems at va
the volume fractionf along the disordered, metastable branch of the phase diagram up to random
packingfc. By quantifying the degree of local order, we determine the necessary conditions to obt
truly random system, enabling us to compute the pressure carefully along the entire metastable b
Near fc we show that the pressure scales assfc 2 fd2g , whereg ­ 1 and fc ­ 0.644 6 0.005.
Contrary to previous studies, we find no evidence of a thermodynamic glass transition and find
after long times the system crystallizes for allf above the melting point. [S0031-9007(96)01661-4]

PACS numbers: 05.20.–y, 05.70.Fh, 61.20.–p
c
l
[1

po
a
o
on
r

e
he
ow

o
th
in

b
l

n
.

h
e
re
s

m
t
ly
m

in
re
in
n

e
p

h

ed
ble

ve
s.

tal-
ys-

so-

is
ust
the

ion,
e
ct a

ity

ane
Random packings of hard spheres have received
siderable attention since they serve as a useful mode
a number of physical systems, such as simple liquids
glasses [2], colloidal dispersions, and particulate com
ites [3]. The hard-sphere model turns out to approxim
well the structure of dense-particle systems with m
complicated potentials (e.g., Leonard-Jones interacti
because short-range interparticle repulsion is the majo
fect in determining the structure.

There is strong numerical evidence for the existenc
a first-order disorder/order phase transition in hard sp
systems [4,5]. There are four important branches sh
in the phase diagram (Fig. 1), where the pressurep is
plotted versus the sphere volume fractionf ­ 4pa3ry3,
with r and a being the number density and radius
the spheres, respectively. There is a fluid branch
starts atf ­ 0 and continues up to the freezing-po
volume fraction,ff ø 0.494. At this point, the phase
diagram splits into two parts. One part is a metasta
extension of the fluid branch which follows continuous
from the previous branch and is conjectured to end
the random close-packingstate [6],f ø 0.64 [7]. The
other branch that splits off the freezing point represe
the thermodynamically stablepart of the phase diagram
Both fluid and solid can coexist along the tieline until t
melting pointfm ø 0.545 is reached. The portion of th
curve which continues above the melting point is refer
to as the solid or ordered branch, ending at the clo
packed fcc crystal volume fraction of

p
2py6 ­ 0.7405.

There are many difficulties one encounters when si
lating hard spheres at densitiesf . ff. One cannot mel
a crystal at high densities and expect it to spontaneous
into the metastable phase. One must start with a syste
a lower density and carefully “compress” the fluid, be
cautious not to allow crystallization to occur. Therefo
the system must be evolved in time while still remain
on the disordered metastable branch. There is curre
no explicit test for determining whether or not the syst
is on the metastable branch of the phase diagram. Im
cise methods such as looking for peaks associated wit
0031-9007y96y77(20)y4198(4)$10.00
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fcc crystal in the radial distribution function are often us
to determine whether the system has left the metasta
branch [8,9]. Unfortunately, this method is not sensiti
to crystallite formation in very dense amorphous system
In these “supercooled” systems, small amounts of crys
lization can dramatically change the behavior of the s
tem, especially near random close packing.

Previous studies [9–11] have found evidence of a
called “glass transition” at volume fractionfg, where
ff # fg # fc. It is an open question as to whether th
transition is a true thermodynamic phase transition, or j
a continuous change in the dynamic variables caused by
increase in density. If it is a second-order phase transit
as many believe, very precise values of the pressurp
must be calculated since one must be able to dete
discontinuity in the first derivative ofp as a function of
f at f ­ fg. This emphasizes even more the necess

FIG. 1. Phase diagram in the pressure-volume fraction pl
for the hard-sphere system.
© 1996 The American Physical Society
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of being able to precisely tell when the system is in
metastable state, the crystalline state, or somewhe
between.

The intent of this Letter is to carefully study th
metastable branch and answer the questions posed a
Specifically we will employ a quantitative measure of t
local order to probe for signs of crystallization, and sh
that gsrd is not sensitive to crystallite formation. Usin
this local-order measure, we will carefully calculate
pressure as a function off along the metastable branc
i.e., ff # f , fc, and determine whether there exi
a thermodynamic glass transition. Finally, we carry
an asymptotic study of how the pressure in the sys
diverges near random close-packing and compare
previous works. In what follows we describe briefly o
new results; further details are given elsewhere [12].

Most techniques that are used to create random d
hard-sphere (RDHS) systems create nonequilibrium
tems. However, we are interested in an equilibri
RDHS system which, along the metastable branch (ff #

f # fc), will generally have significantly different prop
erties than the nonequilibrium systems. In theory, it i
simple matter to equilibrate RDHS systems using sim
molecular dynamics (MD) or Monte Carlo (MC) tec
niques, but in practice this is very difficult. The proce
of going from the initial nonequilibrium RDHS system
the equilibrium RDHS system isfundamentalto the study
of RDHS systems. This has generally not been noted
previous studies.

The question of equilibration is a subtle one beca
there are two phenomena which occur simultaneo
during the equilibration process for the rangeff # f #

fc. The first is that of the system moving from t
nonequilibrium state to a final equilibrium state. Howev
at the same time, the RDHS system is crystallizing. T
is due to the fact that the equilibrium RDHS system
metastable, and further evolution of the system moves
system toward the stable branch of the dense hard-sp
system which is the crystalline branch for densities ab
the melting-point volume fractionfm (see Fig. 1). The
time scale for the nonequilibrium to metastable equilibri
transitiontm is generally much shorter than the time sc
related to the transition from the metastable to the st
ordered branch,tc, i.e., tc ¿ tm. However,tc and tm

can be similar in some cases, and vary depending on
density and nature of the initial nonequilibrium system

Accordingly, it is important that the systems be ca
fully monitored during the equilibration process. The m
important property of the system is the pressure whic
trivially related to the contact value of the radial dist
bution function (RDF)gssd by the relationpyrkBT ­
1 1 4fgssd [1], wherer is the number density andT is
the absolute temperature. Initially,p or gssd is usually
much higher in the nonequilibrium configurations crea
by most algorithms which involve a “quenching” proc
dure, so there is a steady, exponential-like decay of thp
as the system settles into the equilibrium state. As the
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tem begins to crystallize, thep drops further. This drop in
p is not as smooth as that due to the equilibration proc
It is sometimes characterized by sharp drops, especial
densities close to RCP, caused by the sudden crysta
tion of parts of the system.

Previous studies have attempted to determine the o
of crystallization by studying the radial distribution fun
tion [9]. The quantityr4pr2drgsrd gives the average
number of particle centers in a shell of thicknessdr at
a radial distance ofr from the center of a particle. Ef
fectively, the RDF distribution function measures the e
tent to which the position of the particle centers devia
from that of an uncorrelated ideal gas. As crystallizat
begins to occur, a very small peak begins to appear
values ofr which correspond to the next nearest neigh
in the fcc lattice. For a close-packed system, this occ
at rys ­

p
2, but for the small crystallites that appear

the random system it occurs at approximatelyrys ø 1.5
[13]. Previous investigators assumed that there was
crystallization if the peak was not seen. This method
very unsatisfying since the lack of its appearance does
necessarily mean that crystallization is not occurring,
it is difficult to determine exactly when this peak appea

Steinhardt, Nelson, and Ronchetti [14] have propo
a more quantitative measure of local order in the sys
that is often used in studies of crystallization. First, o
must define a set of bonds connecting neighboring sph
in the system. One then assigns the value

Qlmsrd ; Ylmsusrd, fsrdd (1)

to each bond oriented in a directionr, where theYlm are
the spherical harmonics. These values are then aver
over all bonds to get

Qlm ; kQlmsrdl . (2)

The quantityQlm, for a specificl andm, is dependent on
the coordinate system, but an invariant quantityQl can be
obtained in the following manner:

Ql ;

√
4p

2l 1 1

lX
m­2l

Ä
Qlm

Ä
2

!1y2

(3)

We are specifically interested inQ6, as it will approach
0 for a completely disordered system and will have
nonzero value in the presence of any sort of crystall
tion. For our simulations, we have chosen bonds to
defined between spheres separated by a distancer , where
s # r # 1.5s.

The initial random dense hard-sphere (RDHS) syste
were created using the technique described by Cla
and Wiley [15]. The systems were equilibrated us
standard hard-sphere molecular dynamics [16]. The t
scale used in the figures is arbitrary, but is scaled
such a way that it was equivalent for systems of a
number of particles. One primary advantage of us
the MD equilibration over the MC technique is that t
pressure could be measured directly via the virial or
extrapolatinggsrd to the contact valuesr ­ sd. Unless
4199
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otherwise specified, the number of spheres used for e
simulation was 2000. This is significantly larger th
many previous simulations which usually started with 5
or 864 spheres.

To illustrate the utility ofQ6 as an appropriate signatu
of the local order in the system, we have plotted the sca
order parameterQ6 vs t and the corresponding conta
value gssd vs t at f ­ 0.58 (Fig. 2) for a small time
interval in our simulations. Here, Q6 is multiplied by
the square root of the number of bonds so that va
of Q6 for a finite spatially uncorrelated system isø1
(see Ref. [12] for details). This volume fraction w
specifically chosen because it is close to the point at wh
many studies have noticed a discontinuity in the fi
derivative of the pressure as a function of volume fracti
i.e., a glass transition. The time does not start at 0
we are trying to demonstrate the slow crystallization
an equilibrium random system, and not the equilibrat
of a nonequilibrium system. The contact value show
steady drop, while the order parameterQ6 shows a steady
rise above its completely random value of approximat
1.0. AsQ6 approaches 2.0, there is significant disorde
the system, and the contact value is significantly chan
from its value whenQ6 was closer to 1.0. This gives clea
evidence thatthe system is forming crystallites, even f
the small interval shown.However, the RDF showed n
signs of a peak forrys around 1.4–1.5. For times muc
greater than those shown in Fig. 2, the system eventu
crystallizes [12], as discussed below. We have fou
that once the value ofQ6 (scaled by the square roo
of the number of bonds) rises above a value ofø1.5,
there is significant crystallization, and it can no longer
considered to lie on the metastable branch.

FIG. 2. Plot of the contact value of the RDFgssd (solid line)
and the scaled value ofQ6 as a function of time for a random
hard sphere system atf ­ 0.58. The scale forgssd is shown
on the left while the scale forQ6 is on the right. AsQ6
decreases with time,gssd decreases. Note that at very lar
times (t ø 103 104 on this time scale), the system eventua
crystallizes [12].
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A similar behavior is seen at other values off above
the freezing pointff . The implication is that there is a
constant rearrangement occurring in these systems w
is driving the pressure down. The effect is seen in
RDF only after significant rearrangement has taken pla

By monitoring the local-order measureQ6, we are able
to identify the metastable state and compute the con
value of the RDF (or pressure) along the entire metasta
branch. The data in Fig. 3 are calculated from the vir
using MD methods. The curve shows a steady incre
but does not show a discontinuity in the first derivative
would be expected from a second-order phase transitio

The argument for the existence of the glass transit
in simulations of hard spheres is usually based on the
that when the system is brought to a dense state by qui
expanding the spheres (or “quenching”), it does not cr
tallize for long periods of equilibration. It is then sup
posed that the system is locked into the amorphous s
and cannot reach the crystalline state. After perform
many such equilibrations, we have found that this eff
is primarily due tosystem size. By performing equili-
brations between meltingfm and random close-packin
fc, we have found that if one waits for long enoug
times (typically 107 108 collisions in some cases), th
systems will eventually equilibrate and crystallize. W
emphasize that crystallization occurred even for syste
very close tofc (f ø 0.63 0.64). We have encountere
many smaller systems that do not crystallize, but mos
these had at most 500 particles. Once the system size
on the order of 2000–5000 particles, crystallization u
ally occurred at shorter time scales.

Interestingly, recent Shuttle experiments of hard-sph
colloidal dispersions carried out in microgravity showed
very similar crystallization behavior for volume fraction
betweenfm ­ 0.545 andf ­ 0.62 [17]. These systems
consisted of approximately2 3 1013 PMMA spheres of
diameter 0.518mm, which supports our point that finite
size effects keep smaller systems from crystallizing.

FIG. 3. Plot of simulation data for the equilibrium conta
value of dense random hard-sphere systems.
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course, hydrodynamic effects in the Shuttle experim
are ignored in our simulations, albeit under the absenc
gravity.) Similar experiments done under normal surf
gravity indicate that crystallization does not occur
RDHS systems that have densities which are roug
betweenfm andfc.

It is also possible to see why previous simulations w
perhaps able to see a change in the first derivative op
as a function of density for values off close to where
they thought a second-order phase transition existed.
first note that at a volume fraction off ø 0.59, the
time required for metastable equilibriumtm was greater
than that of the time required for crystallizationtc. The
value of p in this case had to be determined by looki
at times at which crystallization had not yet occurr
and extrapolating those values for long times, assum
an exponential decay to a final value. We believe
the fact that the crystallization time scale is so shor
this case is the main cause for a belief that there
a “transition” near this volume fraction. The pressu
calculated at this volume fraction in most simulatio
contains significant crystallization and therefore the va
of p is too low. Even if the pressure is measured caref
within the region aroundf ­ 0.59, the errors associate
with the pressure measurement are really still too la
to say conclusively that a transition does exist since
second derivative is also increasing rapidly along with
first derivative.

Using this data, we can study the behavior ofgssd as
f ! fc. There is strong numerical evidence thatgssd
diverges assfc 2 fd2a asf ! fc. By fitting the our
data forf $ 0.60 on a log-log plot, we found thata ø 1,
within the errors of our simulation. An extrapolation
gssd21 ­ ` gives a value of0.644 6 0.005 for fc.

Our results forfc and a are somewhat similar t
previous numerical results, but do clear up some
crepancies between them. Tobochnik and Chapin
studied the behavior ofgssd for f nearfc and arrived
at the valuesa ­ 1 andfc ­ 0.69. Their value offc is
much larger than the results given by most other sim
tions of fc ø 0.64, due in part to the small system siz
(,500 spheres) and becausegssd is more difficult to es-
tablish in MC simulations. Songet al. [19] also attempted
to evaluatea and fc, using data from Alder and Wain
wright [16], and Erpenbeck and Wood [20]. They obtain
a value offc ­ 0.6435 and a value ofa ­ 0.76 6 0.02.
This value offc is much more in line with previous est
mates as well as our estimate. The error associated
their estimate ofa did not seem to be derived in a system
tic way, and it was probably much too small.

We can also use these very precise results to ch
the analytical predictions of Torquato [6] ofgssd for
fc # f # fc. The theoretical prediction has the corre
asymptotic behavior ofsfc 2 fd21 as well as the correc
value ofgsffd built into it, and is therefore very accura
for most values ofgssd in this range. There is a sligh
nt
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deviation from prediction for values which are in-betwe
ff andfc, however [12].

We have established a quantitative means of testing
local order in a system of dense hard spheres. By u
this technique, we are not only able to establish when
system is truly random, but have also shown that previ
methods of looking for the next-nearest-neighbor peak
the RDF are not precise enough. Using this technique,
have measured precise values of the contact valuegssd
for the hard sphere system on the metastable branch
valuesfm # f , fc. With these new accurate result
we see no evidence of a second-order phase transitio
the vicinity of the so-called “glass transition”. We als
find thatgssd diverges near RCP assfc 2 fd21, where
fc ­ 0.644. We do not see any indication of a fract
exponent, as indicated by earlier studies.
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