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Metastability and Crystallization in Hard-Sphere Systems
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We present results of large-scale molecular dynamics simulations of hard sphere systems at values of
the volume fractionp along the disordered, metastable branch of the phase diagram up to random close-
packinge.. By quantifying the degree of local order, we determine the necessary conditions to obtain a
truly random system, enabling us to compute the pressure carefully along the entire metastable branch.

Near ¢. we show that the pressure scales(as — ¢)~ 7, wherey = 1 and ¢, = 0.644 * 0.005.
Contrary to previous studies, we find no evidence of a thermodynamic glass transition and find that
after long times the system crystallizes for @llabove the melting point. [S0031-9007(96)01661-4]

PACS numbers: 05.20.—y, 05.70.Fh, 61.20.—p

Random packings of hard spheres have received coffiec crystal in the radial distribution function are often used
siderable attention since they serve as a useful model fdo determine whether the system has left the metastable
a number of physical systems, such as simple liquids [1]pranch [8,9]. Unfortunately, this method is not sensitive
glasses [2], colloidal dispersions, and particulate compogo crystallite formation in very dense amorphous systems.
ites [3]. The hard-sphere model turns out to approximatén these “supercooled” systems, small amounts of crystal-
well the structure of dense-particle systems with mordization can dramatically change the behavior of the sys-
complicated potentials (e.g., Leonard-Jones interactionsgm, especially near random close packing.
because short-range interparticle repulsion is the major ef- Previous studies [9—11] have found evidence of a so-
fect in determining the structure. called “glass transition” at volume fractioth,, where

There is strong numerical evidence for the existence ot = ¢, = ¢.. Itis an open question as to whether this
a first-order disorder/order phase transition in hard sphergansition is a true thermodynamic phase transition, or just
systems [4,5]. There are four important branches showa continuous change in the dynamic variables caused by the
in the phase diagram (Fig. 1), where the presspres  increase in density. Ifitis a second-order phase transition,
plotted versus the sphere volume fraction= 47ap/3, as many believe, very precise values of the presgure
with p and a being the number density and radius of must be calculated since one must be able to detect a
the spheres, respectively. There is a fluid branch thadiscontinuity in the first derivative op as a function of
starts at¢p = 0 and continues up to the freezing-point ¢ at¢ = ¢,. This emphasizes even more the necessity
volume fraction,¢, =~ 0.494. At this point, the phase
diagram splits into two parts. One part is a metastable
extension of the fluid branch which follows continuously To RCP
from the previous branch and is conjectured to end at
the random close-packingtate [6],¢ = 0.64 [7]. The
other branch that splits off the freezing point represents Metastable
the thermodynamically stablpart of the phase diagram. branch
Both fluid and solid can coexist along the tieline until the
melting point¢,, = 0.545 is reached. The portion of the
curve which continues above the melting point is referred
to as the solid or ordered branch, ending at the close-> ;
packed fcc crystal volume fraction ef27/6 = 0.7405. Freezing g

There are many difficulties one encounters when simu- A ~_
lating hard spheres at densitiés> ¢,. One cannot melt Melting
a crystal at high densities and expect it to spontaneously g¢
into the metastable phase. One must start with a system &
a lower density and carefully “compress” the fluid, being
cautious not to allow crystallization to occur. Therefore,
the system must be evolved in time while still remaining
on the disordered metastable branch. There is currently 0.494 0.64
no explicit test for determining whether or not the system Volume Fraction, ¢ 0.545 0.74
is on the metastable branch of the phase diagram. ImpresG. 1. Phase diagram in the pressure-volume fraction plane
cise methods such as looking for peaks associated with ther the hard-sphere system.
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of being able to precisely tell when the system is in thetem begins to crystallize, the drops further. This drop in
metastable state, the crystalline state, or somewhere inis not as smooth as that due to the equilibration process.
between. It is sometimes characterized by sharp drops, especially at

The intent of this Letter is to carefully study the densities close to RCP, caused by the sudden crystalliza-
metastable branch and answer the questions posed abotien of parts of the system.

Specifically we will employ a quantitative measure of the Previous studies have attempted to determine the onset
local order to probe for signs of crystallization, and showof crystallization by studying the radial distribution func-
that g(r) is not sensitive to crystallite formation. Using tion [9]. The quantityp47r2drg(r) gives the average
this local-order measure, we will carefully calculate thenumber of particle centers in a shell of thickness at
pressure as a function @ along the metastable branch, a radial distance of from the center of a particle. Ef-
ie., ¢ = ¢ < ¢., and determine whether there existsfectively, the RDF distribution function measures the ex-
a thermodynamic glass transition. Finally, we carry outtent to which the position of the particle centers deviates
an asymptotic study of how the pressure in the systenfrom that of an uncorrelated ideal gas. As crystallization
diverges near random close-packing and compare it tbegins to occur, a very small peak begins to appear for
previous works. In what follows we describe briefly our values ofr which correspond to the next nearest neighbor
new results; further details are given elsewhere [12]. in the fcc lattice. For a close-packed system, this occurs

Most techniques that are used to create random dense r/o = +/2, but for the small crystallites that appear in
hard-sphere (RDHS) systems create nonequilibrium syghe random system it occurs at approximatelyr = 1.5
tems. However, we are interested in an equilibrium[13]. Previous investigators assumed that there was no
RDHS system which, along the metastable brangh £  crystallization if the peak was not seen. This method is
¢ = ¢.), will generally have significantly different prop- very unsatisfying since the lack of its appearance does not
erties than the nonequilibrium systems. In theory, it is anecessarily mean that crystallization is not occurring, and
simple matter to equilibrate RDHS systems using simplet is difficult to determine exactly when this peak appears.
molecular dynamics (MD) or Monte Carlo (MC) tech-  Steinhardt, Nelson, and Ronchetti [14] have proposed
niques, but in practice this is very difficult. The processa more quantitative measure of local order in the system
of going from the initial nonequilibrium RDHS system to that is often used in studies of crystallization. First, one
the equilibrium RDHS system fsindamentato the study must define a set of bonds connecting neighboring spheres
of RDHS systems. This has generally not been noted bin the system. One then assigns the value
previous studies. _

The question of equilibration is a subtle one because Qin(r) = Yin(0(x), (1)) (1)
there are two phenomena which occur simultaneousljo each bond oriented in a directien where they;,, are
during the equilibration process for the rangg = ¢ =  the spherical harmonics. These values are then averaged
¢.. The first is that of the system moving from the over all bonds to get
nonequilibrium state to a final equilibrium state. However, 0, = (0p(r) . )
at the same time, the RDHS system is crystallizing. This fm m
is due to the fact that the equilibrium RDHS system isThe quantityQ,,, for a specific andm, is dependent on
metastable, and further evolution of the system moves thihe coordinate system, but an invariant quanglycan be
system toward the stable branch of the dense hard-spheétained in the following manner:
system which is the crystalline branch for densities above ) 12

0 —<Zl — Z |sz|> (3)

the melting-point volume fractio,, (see Fig. 1). The
time scale for the nonequilibrium to metastable equilibrium
transitionr,, is generally much shorter than the time scaleWe are specifically interested ifds, as it will approach
related to the transition from the metastable to the stabl® for a completely disordered system and will have a
ordered branchr., i.e., 7. > 7,. However,r. and7,, nonzero value in the presence of any sort of crystalliza-
can be similar in some cases, and vary depending on th@®n. For our simulations, we have chosen bonds to be
density and nature of the initial nonequilibrium system. defined between spheres separated by a distanebere
Accordingly, it is important that the systems be care-oc = r = 1.5¢.
fully monitored during the equilibration process. The most The initial random dense hard-sphere (RDHS) systems
important property of the system is the pressure which isvere created using the technique described by Clarke
trivially related to the contact value of the radial distri- and Wiley [15]. The systems were equilibrated using
bution function (RDF)g(o) by the relationp/pkpT =  standard hard-sphere molecular dynamics [16]. The time
1 + 4¢g(o) [1], wherep is the number density arilis  scale used in the figures is arbitrary, but is scaled in
the absolute temperature. Initiallp, or g(o) is usually such a way that it was equivalent for systems of any
much higher in the nonequilibrium configurations createchumber of particles. One primary advantage of using
by most algorithms which involve a “quenching” proce- the MD equilibration over the MC technique is that the
dure, so there is a steady, exponential-like decay ofpthe pressure could be measured directly via the virial or by
as the system settles into the equilibrium state. As the sy®xtrapolatingg(r) to the contact valuér = o). Unless
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otherwise specified, the number of spheres used for each A similar behavior is seen at other values @fabove
simulation was 2000. This is significantly larger thanthe freezing poinkp,. The implication is that there is a
many previous simulations which usually started with 500constant rearrangement occurring in these systems which
or 864 spheres. is driving the pressure down. The effect is seen in the
To illustrate the utility ofQ¢ as an appropriate signature RDF only after significant rearrangement has taken place.
of the local order in the system, we have plotted the scaled By monitoring the local-order measu¢;, we are able
order parameteQg vs ¢ and the corresponding contact to identify the metastable state and compute the contact
value g(o) vs t at ¢ = 0.58 (Fig. 2) for asmall time value of the RDF (or pressure) along the entire metastable
interval in our simulations Here, Q¢ is multiplied by branch. The data in Fig. 3 are calculated from the virial
the square root of the number of bonds so that valueising MD methods. The curve shows a steady increase,
of Q¢ for a finite spatially uncorrelated system 481  but does not show a discontinuity in the first derivative as
(see Ref. [12] for details). This volume fraction waswould be expected from a second-order phase transition.
specifically chosen because it is close to the point at which The argument for the existence of the glass transition
many studies have noticed a discontinuity in the firstin simulations of hard spheres is usually based on the fact
derivative of the pressure as a function of volume fractionthat when the system is brought to a dense state by quickly
i.e., a glass transition. The time does not start at 0, asxpanding the spheres (or “quenching”), it does not crys-
we are trying to demonstrate the slow crystallization oftallize for long periods of equilibration. It is then sup-
an equilibrium random system, and not the equilibrationposed that the system is locked into the amorphous state
of a nonequilibrium system. The contact value shows and cannot reach the crystalline state. After performing
steady drop, while the order paramef®y shows a steady many such equilibrations, we have found that this effect
rise above its completely random value of approximatelyis primarily due tosystem size By performing equili-
1.0. AsQg approaches 2.0, there is significant disorder irbrations between melting,, and random close-packing
the system, and the contact value is significantly changeé., we have found that if one waits for long enough
from its value wherQs was closer to 1.0. This gives clear times (typically 10’-10® collisions in some cases), the
evidence thathe system is forming crystallites, even for systems will eventually equilibrate and crystallize. We
the small interval shownHowever, the RDF showed no emphasize that crystallization occurred even for systems
signs of a peak for/o around 1.4-1.5. For times much very close top,. (¢ = 0.63-0.64). We have encountered
greater than those shown in Fig. 2, the system eventualljnany smaller systems that do not crystallize, but most of
crystallizes [12], as discussed below. We have foundhese had at most 500 particles. Once the system size was
that once the value oDs (scaled by the square root on the order of 2000—5000 particles, crystallization usu-
of the number of bonds) rises above a value=of.5, ally occurred at shorter time scales.
there is significant crystallization, and it can no longer be Interestingly, recent Shuttle experiments of hard-sphere
considered to lie on the metastable branch. colloidal dispersions carried out in microgravity showed a
very similar crystallization behavior for volume fractions
betweeng,, = 0.545 and¢ = 0.62 [17]. These systems
consisted of approximatelg X 10'> PMMA spheres of

1.0 ' 2.0 diameter 0.518m, which supports our point that finite-
— g)(c()scale 9 size effects keep smaller systems from crystallizing. (Of
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FIG. 2. Plot of the contact value of the RQ¥o) (solid line)
and the scaled value @y as a function of time for a random ¢

hard sphere system &t = 0.58. The scale forg(o) is shown 09 5 05 060 065
on the left while the scale foQg is on the right. AsQs ’ ’ o ' '
decreases with timeg(o) decreases. Note that at very large

times ¢ = 10°—10* on this time scale), the system eventually FIG. 3. Plot of simulation data for the equilibrium contact
crystallizes [12]. value of dense random hard-sphere systems.
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course, hydrodynamic effects in the Shuttle experimentleviation from prediction for values which are in-between

are ignored in our simulations, albeit under the absence ap, and ¢, however [12].

gravity.) Similar experiments done under normal surface We have established a quantitative means of testing for

gravity indicate that crystallization does not occur forlocal order in a system of dense hard spheres. By using

RDHS systems that have densities which are roughlyhis technique, we are not only able to establish when the

betweeng,, and ¢.. system is truly random, but have also shown that previous
It is also possible to see why previous simulations werenethods of looking for the next-nearest-neighbor peak in

perhaps able to see a change in the first derivativp of the RDF are not precise enough. Using this technique, we

as a function of density for values @f close to where have measured precise values of the contact valae

they thought a second-order phase transition existed. Wer the hard sphere system on the metastable branch for

first note that at a volume fraction op = 0.59, the values¢,, = ¢ < ¢.. With these new accurate results,

time required for metastable equilibrium, was greater we see no evidence of a second-order phase transition in

than that of the time required for crystallizatiep. The the vicinity of the so-called “glass transition”. We also

value of p in this case had to be determined by lookingfind thatg(o) diverges near RCP dg. — ¢)~!, where

at times at which crystallization had not yet occurred¢. = 0.644. We do not see any indication of a fractal

and extrapolating those values for long times, assumingxponent, as indicated by earlier studies.

an exponential decay to a final value. We believe that The authors thank R. Speedy, G. Grest, P. Debenedetti,

the fact that the crystallization time scale is so short inJ. Zhu, and P. Chaikin for useful conversations. We grate-

this case is the main cause for a belief that there isully acknowledge the support of the OBES, U.S. Depart-

a “transition” near this volume fraction. The pressurement of Energy under Grant No. DE-FG02-92ER14275.
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