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Localization in Two Dimensions, Gaussian Field Theories, and Multifractality
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We calculate nonperturbatively the multifractal scaling exponents of the critical wave function for
two dimensional Dirac fermions in the presence of a random magnetic field. We do so by arguing
that the multifractal scaling exponents can be expressed in terms of the free energy of random directed
polymers on a Cayley tree. We find a weak-strong disorder transition for the multifractal scaling
exponents of the wave function that is parallel to the freezing or glassy transition of the random
polymer model. [S0031-9007(96)01600-6]
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Starting with the work of Wegner, it has been propos
that at the localization transition the critical wave functio
are multifractal [1]. Early predictions of multifractality i
the theory of localization have relied on renormalizat
group arguments applied to various nonlinears models.
Although the validity of such perturbative approaches
been questioned [2], a consensus has developed on
multifractal nature of wave functions at the localizati
transition on the basis of numerical simulations [3].

In this Letter, we will approach multifractality at the lo
calization transition from the following perspective. W
consider Dirac fermions moving in a plane and with
static random magnetic field normal to the plane. T
pure model can be derived by taking the continuum li
of various tight-binding Hamiltonians. Examples are t
Chalker-Coddington network model,d-wave supercon
ductors, and degenerate semiconductors [4], for wh
typically, the density of states for the pure system ha
V -shaped singularity at the Fermi energy. General c
siderations on the conductivity tensor [5] and calculatio
of the inverse participation ratio [6] predict that the ra
dom magnetic field localizes wave functions with en
gies close to the Fermi energy, whereasexactly at the
Fermi energy the (critical) wave functions remain e
tended. Thus the model describes a metal-insulator t
sition in two dimensions.

A very useful property of this model is that the wa
function at the Fermi energy can be calculated exa
for any realization of the random magnetic fieldbsxd ­
=2Fsxd, and is given bycsxd ­ expf2Fsxdg [7]. It
has been suggested [8] that the multifractal propertie
the critical wave functionsc are closely related to thos
of the so-called prelocalized states of a two-dimensio
metallic cavity [9]. We will view the Dirac fermion prob
ability density ~jcj2 as a random surface with a distr
bution controlled by the disorder. We will explore th
connection between spatial averages of powers of
density and the partition function for random direct
polymers. From this point of view, we will be able
explore nonperturbatively the multifractal nature of t
critical wave functions. We will assume that the rando
94 0031-9007y96y77(20)y4194(4)$10.00
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magnetic fieldbsxd ­ =2Fsxd is Gaussian distributed
through PfFg ~ exph2 1

2g

R
d2xf=Fsxdg2j. Here thedi-

mensionlessvarianceg measures the disorder strengt
Thus the total flux through the plane is constant in o
model, although it may fluctuate locally.

The multifractal nature of the wave function is man
fest in the complex scaling of the inverse participation
tios: P sq, a

L d ­
R d2x

a2 jCsxdj2q, whereCsxd is obtained
by normalizing c . Roughly, one expects scaling wit
system sizeP sq, a

L d , sLyad2tsqd, with a and L being
microscopic and macroscopic cutoff lengths, respectiv
More precisely, the exponentstsqd should be obtained
from ensemble averaging according to

tsqd ­ lim
ayL!0

kln P sq, ayLdl
lnsayLd

. (1)

The exponentstsqd probe spatial variations of the wav
functions, and a nonlinear dependence onq is the signa-
ture of intricate multifractal scaling. One of the results
this work is to show thattsqd is a self-averaging quan
tity; i.e., it is independent of the disorder realization in t
thermodynamic limit. Hence the ensemble average is
dundant in Eq. (1).

The calculation oftsqd is a complicated task. A
simplified version is easily done assuming “ergodicity
i.e., that the space integrals inP sq, ayLd (including the
normalization of the wave function) can be substituted
ensemble averages:Z d2x

a2
e22qFsxd !

µ
L
a

∂2

ke22qFsxdl .

In this case it is possible to calculate the scaling expon
tpsqd defined by

P psq, ayLd ­
sLyad2ke22qFsxdl

fsLyad2ke22Fsxdlgq ,
µ

a
L

∂tpsqd
. (2)

One then finds the parabolatpsqd ­ s2 2
g
p qd sq 2 1d

for each critical point labeled byg [6]. This is a remark-
ably simple result which is again characteristic of a lo
normal distribution. The same parabolic approximati
tpsqd was obtained in Ref. [5] using a naive replica lim
© 1996 The American Physical Society
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to calculatetsqd. Unfortunately, it is clear thattsqd must
differ from tpsqd for largeq, since one verifies thattsqd
can never decrease withq. Therefore we can conclud
that ergodicity cannot be true (at least forall q), and that
the naive replica limit is ill-defined.

In this Letter we obtain the full functiontsqd for all
q. Our results allow us to understand the limitations
the parabolic approximation and the breakdown of
assumptions leading to it. We find that the “ergod
assumption holds only forjqj # qc ­

p
2pyg.

We will gain physical insights into this result by relyin
on a parallel with a model for random directed polyme
on the basis of which we also find thattsqd as defined in
Eq. (1) is a self-averaging quantity. To this end, we fi
it convenient to interpret

Zsqd ­
Z d2x

a2 e22qFsxd

as a random partition function with the momentq playing
the role of inverse temperature. This will allow us
draw analogies betweenZsqd and the random partitio
function in various random energy models introduced
Derrida [10], sinceF can be thought of as a rando
energy. The problem of calculating the scaling expone
in Eqs. (1) and (2) thus amounts to the calculation of
thermodynamic averages

tsqd ­ lim
ayL!0

1
lnsayLd

fkln Zsqdl 2 qkln Zs1dlg , (3)

tpsqd ­ lim
ayL!0

1
lnsayLd

flnkZsqdl 2 q lnkZs1dlg , (4)

respectively. In this paper we will also address
question of when quenched and annealed averages
Zsqd agree, i.e., whether or not

ysqd ­ lim
ayL!0

kln Zsqdl
lnsLyad

(5)

and

ypsqd ­ lim
ayL!0

lnkZsqdl
lnsLyad

are equal. We will show thatysqd is self-averaging, so
that the average in the definition Eq. (5) is redundan
the thermodynamic limit. The equalityysqd ­ ypsqd is
then a statement on ergodicity: It means that the r
between spatial and ensemble averages does not
with system size (although it need not be unity).

We will give below strong evidences that

ysqd ­ ypsqd ­ 2

µ
1 1

q2

q2
c

∂
, jqj # qc ­

s
2p

g
.

(6)
In other words, for sufficiently small moments (hig
temperatures) the quenched and annealed averag
Zsqd agree. For momentsjqj . qc, our analysis sugges
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a linear behavior

ysqd ­ 4
jqj

qc
, jqj . qc ­

s
2p

g
. (7)

Our evidences for Eqs. (6) and (7) come from a mapp
to a random polymer model and numerical calculatio
Let us discuss them in turn.

ysqd and ypsqd are more likely to be equal if fluctu
ations of Zsqd are small. To study the strength of th
fluctuations, we consider the following ratios of powe
of the partition function:

Rnsqd ­
kZnsqdl
kZsqdln

$ 1 .

In the calculation, we will need the two-point correlatio
function

kFsxdFsydl ­ 2
g

2p
ln

jx 2 yj

L
,

a # jx 2 yj # L . (8)

With our choice of boundary condition in Eq. (8), we fin
that

Rnsqd ,
Z d2x1

L2
· · ·

d2xn

L2

Y
i,j

Å xi 2 xj

L

Å22gq2yp

, cns gq2d 1

µ
a
L

∂2sn21d s12ngq2y2pd
. (9)

In the thermodynamic limit, the right hand side
a finite number for n # s2pdys gq2d (assuming
n . 1). In this case Znsqd fluctuates weakly. But
for n . 2pygq2, Rnsqd diverges, and thusZnsqd fluc-
tuates strongly. There are important consequen
that follow from Eq. (9): (i) There exists asequence
of critical qn given by q2

n ­
2p

ng ; q2
c

n , below which
lnkZnsqdly lnsayLd ­ lnkZsqdlny lnsayLd. The appear-
ance of these critical moments is due to the competit
of two terms in Eq. (9). The first term is entropic an
comes from integrating over phase space. The sec
comes from the short distance enhancements of the
point function in Eq. (8). Remarkably, theexactly same
sequence of critical moments is shared by the random
ergy models studied in [10]. This example demonstra
the origin of the critical moments. (ii) Caution is need
when using the replica trickkln Zsqdl ­ limn!0

kZnsqdl21
n .

Indeed kZnsqdl is not an analytic function ofn due to
singularities atn ­ 2pyq2g and n ­ 1, and caution
must be used when using the replica trick to calcul
ysqd.

We will now draw a parallel between our problem
localization and a model of random directed polyme
studied by Derrida and Spohn [11]. We will consider
K-nary tree. The polymer model is defined by first a
signing random variablesfij to each branch of a tre
made ofN levels. The first indexi labels the levels in
the tree, the second onej labels any of theKi branches
4195
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on a given leveli. A random energy is then assigne
to all KN directed pathsP on the tree according t
FN sP d ­

P
ij[P fij. An example of a binary tree with

two levels is shown in Fig. 1.
The polymer model is related to the random wa

function e2Fsxd in the following way. We first partition
the macroscopic volumeL2 into K boxes of equal size
The same partitioning is then iteratedN times, thereby
generatingKN different boxes with the microscopic are
a2 ­ K2N L2. Each box can be associated with a direc
pathP on theK-nary tree and can thus be labeled byP .
In this way, the polymer energyFN sP d can be viewed as
a function ofx and is related toFsxd. In the following
we will show that by properly choosing the distributio
of fij, the random functionFN sP d shares many known
properties with the random functionFsxd.

To study the relation between the two random distri
tions FN sP d and Fsxd, we consider the two-point func
tion kFN sP dFN sP 0dl. It depends on the choice for th
probability distribution of the random variablesfij. It
will also depend on the distance between the two pa
P and P 0 on the tree. Such a distance is called an
trametric. It essentially counts the number of comm
branchesIP P 0 shared by the two paths and is defined

dsP , P 0d ­ K2
IP P 0

2 . Anticipating a little,dsP , P 0d is re-
lated to the Euclidean distancejx 2 x0j through

ln dsP , P 0d ø ln
jx 2 x0j

L
1 O s1d . (10)

To make a connection with our problem of localizatio
we require that the theory on the tree be Gaussian; i.e.
are considering only Gaussian probability distributions
thefij although possibly with varying widths. Such mo
els have been systematically studied in [10–12]. We t
require thatkFN sP dFN sP 0dl dependslogarithmically on
the ultrametric, very much in the same way that the tw
point function in Eq. (8) depends logarithmically on t
Euclidean metric. The latter condition is very restrictiv
It can only be satisfied if allfij are identically distributed
Gaussian random variables of widthgt , in which case one
easily verifies that

kFN sP dFN sP 0dl ­ 2
2gt

ln K
ln dsP , P 0d . (11)

Equation (10) then follows with the help of Eq. (8), a
by requiring thatgt ­ fln Kys4pdgg. Note that a Gauss
ian field theory on a tree with two-point functions depen
ing algebraically on the ultrametric is easily implemen
when the width depends on the leveli of the tree.

FIG. 1. K-nary tree withK ­ 2 and two levels.
4196
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All n-point correlations in the tree model depend e
actly in the same way on the ultrametric as their co
terparts in the continuum model do on the Euclide
metric, since both theories are Gaussian with logar
mic two-point functions. Hence then-point functions
in the random polymer model and in the continuu
field theory have thesamescaling exponents. We ca
also calculatekZN sqdl and ytreesqd in the random poly-
mer model, whereZN sqd ­

P
P expf22qFN sP dg, and

ytreesqd ­ limN!`
2

ln K
ln ZN sqd

N . Derrida and Spohn [11
have studiedZN sqd and lnZN sqd under the condition
Eq. (11) and calculatedytreesqd exactly. The moments
kZn

N sqdl yield the same sequence of critical tempe
tures as obtained from the ratiosRnsqd in Eq. (9) and
Eqs. (6) and (7) are obtained, provided we choosegt ­
fln Kys4pdgg. Moreover, it is known that lnZN sqdyN is
a self-averaging function in the limitN ! ` [12]. We
would like to stress that the above results are indepen
of K. This indicates that tree models with differentK
produce distributionsFN sP d with the same scaling prop
erties. In other words, the scaling properties are not
fected by different choices of ultrametrics. In turn, th
strongly suggests that the scaling exponentysqd is not af-
fected by the differences between the ultrametrics and
Euclidean metric. To support this hypothesis, we pres
below Monte Carlo (MC) calculations of the scaling e
ponentysqd for theL ­

1
2g s=fd2 field theory.

We work on a square lattice made of512 3 512 sites
and choose periodic boundary conditions. In Fig.
we have plotted the four realizations ofyMCsqd ;
ln ZMCsqdy lns512d in a log-log plot. Also shown is the
exact result for the treeytreesqd ­ ln ZN sqdy ln KNy2.
Two facts are immediately obvious. First, within st
tistical fluctuations from finite size effects, the four M
realizations fall right on top of the exact result for t
tree model. Second, there appears to be the precu
of a discontinuity in the second derivative ofyMCsqd
as indicated in Fig. 2 (inset). In this regard, there
noticeable statistical fluctuations in a narrow crosso
region from quadratic to linear behavior, as one wo
expect from a phase transition. In summary, based on
parallel between the tree model and theL ­

1
2g s=fd2

field theory, as well as on the MC evidence above, wecon-
jecturethatysqd is self-averaging and that its dependen
on q is quadratic forjqj # qc and linear forjqj . qc

with a discontinuity atqc in its second derivative, as i
Eqs. (6) and (7).

Next we assume the validity of our conjectureysqd ­
ytreesqd, and apply it to the calculation oftsqd. There are
two distinct regimes depending on the strengthg of the
disorder. In the weak disorder regime defined byqc . 1,
we find

tsqd ­

8<: 2s1 2
sgnq

qc
d2q, qc , jqj ,

2s1 2
1
q2

c
qd sq 2 1d, qc $ jqj ,
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FIG. 2. ysqd ­ ln Zsqdy lnsLyad, as a function ofqyqc [qc ­
s2pygd1y2]. The exact results for the tree model are sho
together with four MC results for a discrete version of
L ­ 1

2g s=fd2 theory on a 512 3 512 square lattice. The
MC results follow closely (with small fluctuations) the on
for the N ! ` tree, suggesting thatysqd is a self-averaging
quantity as predicted by the tree model. The dashed l
show the asymptotic behavior ofysqd for large and smallq.
The inset shows the second derivative ofysqd, showing strong
evidence for a discontinuity atqc.

in the limit ayL ! 0. In the weak disorder regime, th
parabolic approximationtpsqd ­ Dpsqd sq 2 1d, where
Dpsqd ­ 2 2 s2yq2

cdq, is exact for all momentsq (in-
cluding some integer ones) satisfyingjqj # qc. Here the
parabolic approximation (PA) is obtained from thean-
nealeddisorder average Eq. (4) instead of the quenc
average Eq. (3). In the strong disorder regime defined
qc # 1, the quenched and annealed averages ofZsqd are
unequal for all momentsqc # jqj including the integer
ones, and the PA completely breaks down:

tsqd ­

8<: 4
qc

sq 2 jqjd, qc , jqj ,

22s1 2
q
qc

d2, qc $ jqj .

In the strong coupling regime, the inverse participat
ratios for all positive integer moments do not scale w
system size, i.e.,tsqd ­ 0. Such a behavior is usual
interpreted as characteristic of a localized wave funct
In this regard, it would be highly interesting to calcula
the dc conductivity along the lineg . 0. In the random
directed polymer model, the phase transition atqc is
interpreted as freezing at low temperatures, since the
capacity vanishes abruptly forq . qc. In the problem
of localization, the glassy regimeand the condition of
normalization of the wave function conspire to yie
inverse participation ratios which do not scale with
system size for large values of the disorder strengthg .
n
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gc ; 2p. The value of the disorder strengthgc ­ 2p

signals that the quenched and annealed averages ove
wave function normalization factorZs1d are not equa
anymore.

The corresponding multifractal scaling exponentfsad
obtained through a Legendre transformation oftsqd and
defined ond2 # a # d1 is given by

fsad ­ 8
sd1 2 ad sa 2 d2d

sd1 2 d2d2 ,

whered6 ­ 2s1 6

q
g

2p d2 for g , 2p andd1 ­ 8
q

g
2p ,

d2 ­ 0 for g . 2p. Notice thatfsad is positive.
To conclude, we believe that the tree model is

proper regularization of the Euclidean Gaussian field t
ory L ­

1
2g s=fd2 with regard to the scaling exponen

for the inverse participation ratios. It is an important op
problem to investigate further (i) the validity of ourcon-
jecture that the exponentsysqd are the same for the Eu
clidean field theory and for the field theory constructed
the tree and (ii) whether other scaling exponents agre
both models.
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