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Localization in Two Dimensions, Gaussian Field Theories, and Multifractality
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We calculate nonperturbatively the multifractal scaling exponents of the critical wave function for
two dimensional Dirac fermions in the presence of a random magnetic field. We do so by arguing
that the multifractal scaling exponents can be expressed in terms of the free energy of random directed
polymers on a Cayley tree. We find a weak-strong disorder transition for the multifractal scaling
exponents of the wave function that is parallel to the freezing or glassy transition of the random
polymer model. [S0031-9007(96)01600-6]

PACS numbers: 05.20.—y, 02.50.Fz, 05.40.+]j, 64.60.Ak

Starting with the work of Wegner, it has been proposednagnetic fieldb(x) = V>®(x) is Gaussian distributed
that at the localization transition the critical wave functionsthrough P[®] o eXp{_i [ d*>x[V®(x)]*}. Here thedi-
are multifractal [1]. Early predictions of multifractality in mensionless/arianceg measures the disorder strength.
the theory of localization have relied on renormalizationThus the total flux through the plane is constant in our
group arguments applied to various nonlineamodels. model, although it may fluctuate locally.

Although the validity of such perturbative approaches has The multifractal nature of the wave function is mani-

been questioned [2], a consensus has developed on thest in the complex scaling of the inverse participation ra-
multifractal nature of wave functions at the localization jgg- P(q. %) = f%l‘l’(x)lz‘], where ¥ (x) is obtained

transitipn on the basi_s of numerical simulatiqns [3]. by normalizing. Roughly, one expects scaling with
In this Letter, we will approach multifractality at the lo- system sizeP(q, %) ~ (L/a) @, with a and L being
calization transition from the following perspective. We microscopic and macroscopic cutoff lengths, respectively.

consider Dirac fermions moving in a plane and with apiore precisely, the exponents(g) should be obtained
static random magnetic field normal to the plane. Th&rom ensemble averaging according to

pure model can be derived by taking the continuum limit InP
of various tight-binding Hamiltonians. Examples are the 7(g) = lim w‘ 1)
Chalker-Coddington network modefj-wave supercon- a/t—o  In(a/L)

ductors, and degenerate semiconductors [4], for whichrhe exponents(q) probe spatial variations of the wave
typically, the density of states for the pure system has @nctions, and a nonlinear dependenceqois the signa-
V-shaped singularity at the Fermi energy. General congre of intricate multifractal scaling. One of the results of
siderations on the conductivity tensor [5] and calculationghis work is to show that(q) is a self-averaging quan-
of the inverse participation ratio [6] predict that the ran-tity: j.e_, it is independent of the disorder realization in the
dom magnetic field localizes wave functions with ener-thermodynamic limit. Hence the ensemble average is re-
gies close to the Fermi energy, wheremsactly at the  gundant in Eq. (1).

Fermi energy the (critical) wave functions remain ex- The calculation ofr(q) is a complicated task. A
tended. Thus the model describes a metal-insulator trarsimplified version is easily done assuming “ergodicity,”
sition in two dimensions. i.e., that the space integrals fR(g,a/L) (including the

A very useful property of this model is that the wave normalization of the wave function) can be substituted by
function at the Fermi energy can be calculated exactlynsemble averages:

for any realization of the random magnetic figifx) = 5 2

V2d(x), and is given byy(x) = exd —®(x)] [7]. It d_xeﬁq‘D(X) - <£> (e~ 24Xy

has been suggested [8] that the multifractal properties of a? a

the critical wave functiongs are closely related to those In this case it is possible to calculate the scaling exponent
of the so-called prelocalized states of a two-dimensionat*(¢) defined by

metallic cavity [9]. We will view the Dirac fermion prob- (L/a)*(e~ 219 2\ @
ability density =||? as a random surface with a distri-  P*(q,a/L) = 2 20w <—> (2)
bution controlled by the disorder. We will explore the [(Z/a)*e )] L

connection between spatial averages of powers of th®ne then finds the parabol(q) = (2 — £¢) (g — 1)

density and the partition function for random directedfor each critical point labeled by [6]. This is a remark-

polymers. From this point of view, we will be able to ably simple result which is again characteristic of a log-
explore nonperturbatively the multifractal nature of thenormal distribution. The same parabolic approximation
critical wave functions. We will assume that the randomr*(¢) was obtained in Ref. [5] using a naive replica limit
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to calculater(g). Unfortunately, it is clear that(g) must  a linear behavior

differ from 7%(g) for large g, since one verifies that(q) lg] o

can never decrease with Therefore we can conclude v(g) = 4—, lgl > q. \/: (7)
that ergodicity cannot be true (at least &l ¢), and that qe

the naive replica limit is ill-defined. Our evidences for Egs. (6) and (7) come from a mapping

In this Letter we obtain the full functiom(g) for all  to a random polymer model and numerical calculations.
g. Our results allow us to understand the limitations ofLet us discuss them in turn.
the parabolic approximation and the breakdown of the wv(g) and v*(g) are more likely to be equal if fluctu-
assumptions leading to it. We find that the “ergodic” ations of Z(¢) are small. To study the strength of the

assumption holds only fdy| = ¢g. = /27 /g. fluctuations, we consider the following ratios of powers
We will gain physical insights into this result by relying of the partition function:
on a parallel with a model for random directed polymers, Z"(q))
on the basis of which we also find thaty) as defined in R.(q) = — =
Eq. (1) is a self-averaging quantity. To this end, we find (Z(q)
it convenient to interpret In the calculation, we will need the two-point correlation
P oo function
Z(qg) = | —e %% _
0=/ @@ = - L3
27T L

as a random partition function with the momenplaying

the role of inverse temperature. This will allow us to a=|x—-yl=L. (8)
draw analogies betweefi(¢) and the random partition \wjth our choice of boundary condition in Eq. (8), we find
function in various random energy models introduced bypat
Derrida [10], since® can be thought of as a random

energy. The problem of calculating the scaling exponents g (q) ~
in Egs. (1) and (2) thus amounts to the calculation of the L2 L? i<j

d2X1 dzx” l—[ X; — Xj |—2gq2/77
L

thermodynamic averages q \2(n=1 (1-ngq*/2m)
~ el + () NG
7(9) = a/L -0 In(a /L) [(nZ(g)) = qn ()], @) In the thermodynamic limit, the right hand side is
a finite number for n = (27)/(gg®) (assuming
7"(q) = [INZ(q)) — q¢In{Z(1))], (4) n>1). In this caseZ"(q) fluctuates weakly. But

”/L —~oIn(a /L) for n > 27 /gq* R,(q) diverges, and thug”(q) fluc-
respectively. In this paper we will also address thetuates strongly. There are important consequences
guestion of when quenched and annealed averages oviéwat follow from Eq. (9): (i) There eX|sts aequence

Z(q) agree, i.e., whether or not of critical ¢, given by ¢2 = i—” = L pelow which
(InZ(q)) In{Z"(g))/ In(a/L) = |n<Z(q)>”/|n(a/L) The appear-
v(q) = (5)  ance of these critical moments is due to the competition

a/bo In(L/a) of two terms in Eq. (9). The first term is entropic and

and comes from integrating over phase space. The second
IN(Z(q)) comes from the short distance enhancements of the two-
vi(q) = point function in Eq. (8). Remarkably, thexactly same
"/Lﬁo In(L/a) sequence of critical moments is shared by the random en-
are equal. We will show that(g) is self-averaging, so €rgy models studied in [10]. This example demonstrates
that the average in the definition Eq. (5) is redundant irfhe origin of the critical moments. (i) Caution is needed
the thermodynamic limit. The equality(q) = v*(¢) is  when using the replica trickn Z(g)) = lim,— M
then a statement on ergodicity: It means that the rationdeed(Z"(g)) is not an analyt|c function of: due to
between spatial and ensemble averages does not scaiegularities atn = 27/q%>g and n = 1, and caution

with system size (although it need not be unity). must be used when using the replica trick to calculate
We will give below strong evidences that v(q).
7 > We will now draw a parallel between our problem of
v(g) = v (q) = 2<1 + —2>, lgl = g, = \/7 localization and a model of random directed polymers
e studied by Derrida and Spohn [11]. We will consider a

(6) K-nary tree. The polymer model is defined by first as-
In other words, for sufficiently small moments (high signing random variables,;; to each branch of a tree
temperatures) the quenched and annealed averages rméde of N levels. The first index labels the levels in
Z(q) agree. For momentg| > ¢., our analysis suggests the tree, the second onjelabels any of thek’ branches
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on a given leveli. A random energy is then assigned All n-point correlations in the tree model depend ex-
to all KV directed paths? on the tree according to actly in the same way on the ultrametric as their coun-
Oy(P) = D ;cp ¢ij- An example of a binary tree with terparts in the continuum model do on the Euclidean
two levels is shown in Fig. 1. metric, since both theories are Gaussian with logarith-
The polymer model is related to the random wavemic two-point functions. Hence the-point functions
function e~ ®™ in the following way. We first partition in the random polymer model and in the continuum
the macroscopic volumé? into K boxes of equal size. field theory have thesamescaling exponents. We can
The same partitioning is then iterat@d times, thereby also calculateZy(g)) and ve.(g) in the random poly-
generatingk™ different boxes with the microscopic area mer model, whereZy(g) = > p exd —2¢®x(P)], and

a* = K~NL?. Each box can be associated with a directedy, .. () = limy_... ﬁ '”ZNM Derrida and Spohn [11]

path? on theK-nary tree and can thus be labeled By  have studiedZy(g) and InZy(g) under the condition
In this way, the polymer energ®y(?) can be viewed as Eq. (11) and calculated..(g) exactly. The moments
a function ofx and is related tab(x). In the following (Zx(g)) yield the same sequence of critical tempera-
we will show that by properly choosing the distribution tures as obtained from the ratid,(¢) in Eq. (9) and
of ¢;;, the random functiorby(?) shares many known Egs. (6) and (7) are obtained, provided we chogse=
properties with the random functich(x). [InK/(4m)]g. Moreover, it is known that I&Zy(q)/N is

To study the relation between the two random distribug self-averaging function in the limiv — « [12]. We
tions ®y(P) and ®(x), we consider the two-point func- would like to stress that the above results are independent
tion (Dy(P)Dy(P')). It depends on the choice for the of K. This indicates that tree models with differekit
probability distribution of the random variables;;. It  produce distributionsby(?) with the same scaling prop-
will also depend on the distance between the two pathgrties. In other words, the scaling properties are not af-
P and P’ on the tree. Such a distance is called an ulfected by different choices of ultrametrics. In turn, this
trametric. It essentially counts the number of commonstrongly suggests that the scaling expone) is not af-
branches»»: shared by the two paths and is defined byfected by the differences between the ultrametrics and the
d(P,P) = K 5 Anticipating a little,d(P, P') is re-  Euclidean metric. To support this hypothesis, we present

lated to the Euclidean distan¢e — x’| through below Monte Carlo (MC) calculations of the scaling ex-
Ix — x/| ponentv(q) forthe L = %(Vc{))2 field theory.
INnd(P, P = In 7 + 0Q1). (10) We work on a square fattice made HF2 X 512 sites

) ) .. and choose periodic boundary conditions. In Fig. 2,
To make a connection with our problem of localization, e nave plotted the four realizations afyc(g) =

we require that the theory on the tree be Gaussian; i.e., wg Zmc(g)/In(512) in a log-log plot. Also shown is the
are considering only Gaussian probability distributions ofayact result for the tre@uee () = INZy(q)/ IN KN/2.

the ¢;; although possibly with varying widths. Such mod- Tyg facts are immediately obvious. First, within sta-
els have been systematically studied in [10-12]. We thefjsfical fluctuations from finite size effects, the four MC
require thatdy (P)®Py(P")) dependdogarithmically on  regjizations fall right on top of the exact result for the
the ultrametric, very much in the same way that the tWoyree model. Second, there appears to be the precursor
point function in Eq. (8) depends logarithmically on the of 5 discontinuity in the second derivative ofyc(q)
Euclidean metric. The latter condition is very restrictive. 55 indicated in Fig. 2 (inset). In this regard, there are
It can only be satisfied if al;; are identically distributed  poticeable statistical fluctuations in a narrow crossover
Gaussian random variables of widfh in which case one  region from quadratic to linear behavior, as one would

easily verifies that expect from a phase transition. In summary, based on the

2 arallel between the tree model and tie= = (V)2
(Pn(P)ON(PY) = — |ng1t< Ind(P, 7). (11) Fi)eld theory, as well as on the MC evidence abgi/(epfv)&
Equation (10) then follows with the help of Eq. (8), andjecturgthatv(q) i_s self-averaging an(_j that its dependence
by requiring thate, = [In K /(47)]g. Note that a Gauss- O ¢ iS quadratic forlgl = g. and linear forlg| > ¢.
ian field theory on a tree with two-point functions depend-With & discontinuity atg. in its second derivative, as in

ing algebraically on the ultrametric is easily implementedEds: (6) and (7).

when the width depends on the levedf the tree. Next we assume the validity of our conjecturey) =
vuee (g), @and apply it to the calculation of(¢). There are

two distinct regimes depending on the strengthof the
disorder. In the weak disorder regime definedghy> 1,
we find

2(1 — M)y q. < lql,
m(q) = { o

1
FIG. 1. K-nary tree withK = 2 and two levels. 2(1 = ,7361) (@ =1, qc=lql,
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108 ge = 2m. The value of the disorder strength = 27

I — Tree signals that the quenched and annealed averages over the
wave function normalization factoZ(1) are not equal
anymore.

The corresponding multifractal scaling expongitr)
obtained through a Legendre transformationr¢f) and

10 )
i % Monte Carlo
v

10!

o 2
2 (@/q) defined ond- = « = d. is given by
1w - T
e (dy —a)(a —d-)
= () =38 ,
- f @, —d
| whered. = 2(1 = ,/5%)? for g < 27 andd; = 8y/5,
107# d- = 0for g > 27. Notice thatf(«a) is positive.
To conclude, we believe that the tree model is the
0t | proper regularization of the Euclidean Gaussian field the-

ory L = ﬁ(v¢)2 with regard to the scaling exponents
‘ . ‘ ‘ ‘ . ‘ ‘ for the inverse participation ratios. Itis an important open
0.01 0.1 1 10 wo  problem to investigate further (i) the validity of oaon-
a/q, jecturethat the exponents(g) are the same for the Eu-

. clidean field theory and for the field theory constructed on
FIG. 2. v(g) =InZ(q)/In(L/a), as afunction of/q. [g. =  the tree and (ii) whether other scaling exponents agree in
(27/¢)"?]. The exact results for the tree model are shown
together with four MC results for a discrete version of the O} models.
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