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Hydrodynamic Irreversibility in Creeping Flow
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(Received 3 November 1995)

Using experiments as well as lattice Boltzmann and finite difference simulations we study cre
flow in a Hele-Shaw cell at Reynolds numbers below unity. We describe an “echo” technique
is very sensitive to effects of hydrodynamic irreversibility. By combining experimental and nume
studies we show that the irreversibility observed in the experiments is due to inertial forces.
by-product we validate the numerical techniques used—in particular the recently introduced
Boltzmann model. [S0031-9007(96)01611-0]

PACS numbers: 47.15.Gf, 02.70.Bf, 02.70.Lq, 47.60.+ i
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The flow of an incompressible, Newtonian fluid is go
erned by the nonlinear Navier-Stokes equations, Eqs
and (2), which can be solved exactly only in simple
ometries. In flow, which is slow in the sense that the
tio of inertial to viscous forces (the Reynolds number R
is sufficiently small, the nonlinear inertial term can be
glected to obtain the linear Stokes equation [1]. In cont
to the nonlinear equations, the steady state Stokes equ
is invariant under flow reversal and yields exact result
simple geometries, so it has been a matter of fundame
discussion below which value of Re the Stokes appr
mation to Eq. (2) is justified.

Numerous authors [2–4] have calculated correction
tors to the Stokes drag at small, nonzero Reynolds n
bers. The corrections are linear in Re and have prefac
of order unity. Correspondingly, streamlines aroun
cylinder look symmetric in the fore-and-aft direction u
til Re is of order unity [5]. Generally, for single pha
flow the Stokes approximation is considered to be vali
Re , 1 5 [6]. However, when there are finite size par
cles suspended in the fluid, inertial effects can be obser
in principle, at arbitrary small Reynolds numbers. This
the case in the so-calledtubular pincheffect, which cause
particles suspended in a tube flow to migrate to a statio
off-center position in the tube. The effect, which was fi
recorded by Poiseuille [7] in blood streams and later s
ied systematically by Segré and Silberberg [8] canno
explained without the nonlinear term in the Navier-Sto
equation. But only the transient state, i.e., the speed
which the particles migrate to their steady state posit
depends on Re—the final radial position of the particle
Re independent, even in echo experiments [9].

In the present study we observe nonlinear effects at
Re in single phase flow. In contrast to the tubular pin
of suspended particles, the “echo” signal in our sin
phase experiment with passive tracer molecules dep
continuously on Re and thus serves to quantify the rol
the nonlinear term, also when its relative magnitude is v
small. An immediate conclusion from our measureme
is that the proper condition on Re may be highly probl
dependent, even in simple flow geometries.
0031-9007y96y77(20)y4170(4)$10.00
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We present echo experiments on creeping flow in
Hele-Shaw channel with an obstacle (see Fig. 1), wh
a passive tracer is convected forwards and backwards
a carrier fluid such that (ignoring molecular diffusio
each tracer molecule would exactly return to its init
position if the flow were perfectly reversible. Since t
flow as described by the Stokes equation is time revers
[10], the echo technique effectively integrates out the
versible part of the velocity field, making the experime
sensitive to any deviation from reversibility.

In the experiments we detect visible departure from
versibility at Re, 0.02 through an “M”-shaped defor
mation of an otherwise perfectly returned tracer line (s
Fig. 2), where the size of the deformation increases
early with increasing Re; see Fig. 3. Comparing the
periments to two independent numerical models—wh
the deformation is visible already at Re, 0.0006—we
demonstrate that the observed irreversibility is due to
effect of the nonlinear inertial force, i.e., of hydrodynam
nature.

Experiments.—The experimental setup was previous
used to study enhanced dispersion in creeping fl
[11,12]. In each experiment, a thin, straight line (rad

FIG. 1. Sketch of the experiment: During forward conve
tion, a line of passive tracer was convected towards (full li
the cylinder of radiusr  0.5 cm in a channel of width5 cm
such that it folded around the cylinder. Upon flow revers
the tracer line was “echoed” back towards its initial positi
(dashed line).
© 1996 The American Physical Society
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FIG. 2. Enlargements of the characteristic deformation of
returned tracer lines from experiments at Reynolds num
(a) Re 0.016, (b) Re 0.069, and (c) Re 0.17. White
pixels show the calculated coordinates that are used to m
sure distances. (d) FD simulation at Re. 0.062. Data are
compared by measuringD1, D2, and their sumD.

a . 0.3 mm) of tracer fluid was first placed across t
filled cell at a distance of 3 cylinder radii,r  dy2 
0.5 cm, in front of the cylinder center (see Fig. 1). Ne
a fixed amount of carrier fluid (glycerol-water mixtur
was pumped into the cell at constant volume fluxQ.
The pump was then abruptly reversed, withdrawing
same amount of fluid. At flow reversal, the maximu
extension of the tracer line was approximatelyxmax 
10r , and the smallest distance to the cylinder wasxmin 
s0.08 6 0.01dr.

Buoyancy forces on the tracer were minimized by ca
fully matching the density (r  1.2318 6 0.0001 gycm3)
of the two fluids. The viscosity of the carrier fluid wa
m . 220 cP, while the viscosity of the tracer was (2–3)
lower. The effect of this viscosity contrast appeared
be negligible. Average flow velocitiesU betweenU 
0.031 cmys andU  0.28 cmys produced Re in the rang

FIG. 3. Peak-to-peak distanceD of the returned tracer lines a
a function of the Reynolds number Re for (d) experiments; (n)
lattice Boltzmann simulations; (s) finite difference simulations
(- - -) finite difference simulations of the Oseen equations
experimental geometry; (—) analytic Oseen solution [2]
infinite channel width.
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0.016–0.17. The molecular diffusivity of the tracer w
Dm  s2.8 6 0.2d 3 1028 cm2ys, giving Péclet numbers
Pe UdyDm of the order106 107.

Using a photometric CCD camera with a spatial reso
tion of s20 mmd2ypixel, we identified the positionsxs yd
of maximum concentration for ally across the channe
(see Fig. 2).

Simulations.—Mathematically the flow is described b
the Navier-Stokes equations,

= ? u  0 , (1)

r
≠u
≠t

1 ru ? =u  2=p 1 m=2u 1 f . (2)

Here usr, td denotes the local fluid velocity at positio
r and timet, p the pressure, andf the external forces
[1]. For flow with average velocityU in a geometry with
a characteristic length,d, the Reynolds number is Re
Udyn, with n  myr.

In the steady state (≠uy≠t  0) the reversibility of
the flow can be expressed by the invariance of Sto
equation under the transformationu ! 2u, f ! 2f , and
=p ! 2=p. This simple symmetry [10] is broken by th
presence of the nonlinear term, and, in general, the fl
that results from reversal of the external forces must
recomputed. However, in the present case where the
a mirror symmetry of the flow geometry, the reversed fl
field is given byursrd  2us2rd.

The simulations can be performed in a 2D plane cor
sponding to the central fluid layer if the modification
the forcingf ! f 2 8muyh2 (whereh is the plate sepa
ration) is made in Eq. (2) to account for the viscous d
of the top and bottom plates of the cell [12]. This corre
tion factor assumes that thez dependence ofu is parabolic.
For the Reynolds number of these quasi 3-D simulati
the velocityU must be replaced by2Ūy3, whereŪ is the
average value ofu in the central layer.

Steady state solutions to this quasi 3D Navier-Sto
equation were obtained using a lattice Boltzmann (L
method as well as a finite difference (FD) scheme.
verify the validity of the quasi 3D method, a full 3D
FD simulation at Re 0.01 was computed. The relativ
difference between the central layer of this 3D field an
quasi 3D calculation of the same average velocityŪ was
about1%.

In the FD scheme a space-discretized version of
steady state Navier-Stokes equation was solved appr
mately through a relaxation process discussed in Ref.
(“artificial compressibility method on a MAC mesh”).

The LB method [14] models the fluid as a larg
number of particles [15] that move from site to site on
triangular lattice, where they interact in mass a
momentum conserving collisions. We use the BG
(Bhatnagar, Gross, and Krook) model [16], which diffe
from other Boltzmann models by a simplified coll
sion operator. The basic variables of the LB mod
4171
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are the probabilitiesNisr, td of finding a particle on a site
at positionr at timet moving with unit velocity in one of
the six lattice directionsci, with i  1, . . . , 6. The precise
scheme according to which these probabilities are upd
is discussed in Refs. [11,17]. The conserved site dens
of mass and momentum are defined asr 

P
i Ni and

ru 
P

i ciNi, respectively, wherer is the total averaged
density. This definition ofu differs from the usual one b
the replacementr ! r. This minimizes the slight effect
of compressibility [15]. The present application is ve
sensitive to effects of compressibility andr has spatial
variations of the order1%. Provided the Mach numbe
is small the velocity u satisfies the two-dimensiona
version of Eqs. (1) and (2) with the modification th
ru ? =u ! Gru ? =u. This extra G factor is a free
parameter of the model [11,18]. For steady flows Eqs.
and (2) can be recovered by absorbing the factor1yG in
n, P, andf . This causes the pertinent Reynolds num
to take the (generalized) form Re GUdyn [12]. For
computational efficiency Re was tuned by varyingG
alone.

Although the FD and LB methods are based on co
pletely different perceptions of the fluid, calculated flo
fields were almost identical. The two methods will
compared in detail elsewhere [19]. In both methods, tra
particles were convected by integrating the equation of
tion Ùr  u with a fourth order Runge Kutta scheme [20
and off-lattice velocities were obtained using linear int
polation schemes.

Results and Discussion.—Qualitatively Fig. 2 shows
agreement between LB and FD simulations and exp
ments. Quantitatively, the main result of this Letter
shown in Fig. 3 where the “peak-to-peak distance,”D 
D1 1 D2 of the “M”-shaped deformation is plotted a
a function of Re for experiments and simulations [s
Fig. 2(d)] as well as for the analytic solution of the line
Oseen equation [2] for the flow around a cylinder in the
sence of boundary walls. The data give thatDyr  a Re.
For experiments, we findaexp  1.37 6 0.03, while LB
and FD simulations lead to the valuesalb . 1.47 6 0.1
andaFD . 1.33 6 0.03, respectively. In experiments th
M is blurred for Re, 0.02 [see Fig. 2(a)] since enhance
diffusive spreading [11,12] becomes important, and
Re # 0.004 this effect dominated. The slope of the O
een result is larger than the slope of the LByFD results by
almost a factor of 9, thus demonstrating the Oseen s
tion captures the rough qualitative—but not the quant
tive—aspects of the present inertial effects. Solving
Oseen equations for the experimental geometry we
aOs  1.2 6 0.03.

The shape of the M may be understood by inspec
the “difference field”u 1 ur ; see Fig. 4. The net velocit
towards the cylinder along the central flow line produc
the central kink of the M. It expresses the fact that
flow is slightly slower behind the cylinder. The arch
of the M develop through the net transport transverse
4172
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FIG. 4. The difference between the forward and reverse
velocity field at Re 1.58. In case of complete reversibility
the field should be zero everywhere. The grey lines show
tracer line in the initial straight position, fully stretched at t
point of reversal and deformed at the return. The black l
represents the path of diffusionless tracer molecules that
on the initial, are convected along with the forward flow a
convected back, not retracing its path, to overreach its star
point.

the flow since the return streamline is not identical to
forward streamline as illustrated in Fig. 4. This causes
tracer to travel faster during return, making it overrea
the starting position. Note, the passive tracers follow
streamlines, and do not move across them.

In spite of the good quantitative agreement betwe
experiments and simulations shown in Fig. 3, the ex
shape of the returned tracer lines is different in the t
cases (see Fig. 2). We find the ratiosD1yD2 . 1 and.
4.7 for experiments and simulations, respectively. In ord
to understand this discrepancy a number of simulati
were carried out. By varying the channel geometry
found that end effects are insignificant. On the oth
hand, by including transient effects, modeling the start a
reversal of the flow, described by the≠uy≠t term in the
quasi 3-D version of Eq. (2), we foundD1yD2 . 3.9
instead of 4.7. Preliminary investigations indicate th
while the ratioD1yD2 depends on the time depende
characteristics of the full three dimensional flow field, t
sumD depends mainly on the nonlinear term [19].

The present problem strongly challenges the numer
methods, since the main signal, the reversible compon
of the flow field, is integrated out. The agreement betwe
LB and FD simulations and the agreement with expe
ments therefore provide solid validation of the two nume
cal models. This is particularly nontrivial for the LB mod
where the connection with the Navier-Stokes equation
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FIG. 5. A tracer line after one, two, three, and four convec
cycles at Re 0.05.

less than obvious [14,15]. However, we have been una
with our computer resources and algorithms, to obtain
full 3D time dependent solutions to Eqs. (1) and (2),
quired to get the exact experimental echo profile.

Figure 5 shows an experiment where one tracer
was reversed and returned 4 times. The linear incr
of the amplitudeD with the number of flow reversals ca
be used as a means to magnify the signal at very smal
Earlier studies of oscillatory flows [21] have focused
small amplitude oscillations compared to our experime

The inherent irreversibility of low Reynolds numb
flows that we demonstrate is also of interest when
cussing experiments on hydrodynamic dispersion wh
the echo technique is used [11,12,22,23]. Rigordet al.
[23] performed experiments with a porous medium m
of packed glass beads and observed that the spread
returned tracer profile increased with the Reynolds n
ber, which was in the range 0.2–1.1 in their case.
results suggest that some of their observations ma
rationalized by considering the effects of the present
drodynamic, in addition to diffusive, mechanism of irr
versibility.

We have discussed a particular case of creeping flo
a Hele-Shaw cell, where inertial effects are experiment
observable for Re$ 0.02. Numerical simulations o
the steady state Navier-Stokes equation reproduced
effect.

The sensitive echo technique could also be used to
tect mechanisms other than inertia that destroy revers
ity. In particular, it might be used to investigate no
Newtonian behavior of complex fluids like paints, past
and polymer solutions. Finally, our results relate to
drodynamic problems that involve particles in oscillato
n
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flows (see Fig. 5) and to the study of dispersion in poro
media.
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