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Hydrodynamic Irreversibility in Creeping Flow
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Using experiments as well as lattice Boltzmann and finite difference simulations we study creeping
flow in a Hele-Shaw cell at Reynolds numbers below unity. We describe an “echo” technique that
is very sensitive to effects of hydrodynamic irreversibility. By combining experimental and numerical
studies we show that the irreversibility observed in the experiments is due to inertial forces. As a
by-product we validate the numerical techniques used—in particular the recently introduced lattice
Boltzmann model.  [S0031-9007(96)01611-0]

PACS numbers: 47.15.Gf, 02.70.Bf, 02.70.Lq, 47.60.+i

The flow of an incompressible, Newtonian fluid is gov- We present echo experiments on creeping flow in a
erned by the nonlinear Navier-Stokes equations, Egs. (Hlele-Shaw channel with an obstacle (see Fig. 1), where
and (2), which can be solved exactly only in simple ge-a passive tracer is convected forwards and backwards with
ometries. In flow, which is slow in the sense that the ra-a carrier fluid such that (ignoring molecular diffusion)
tio of inertial to viscous forces (the Reynolds number Re)ach tracer molecule would exactly return to its initial
is sufficiently small, the nonlinear inertial term can be ne-position if the flow were perfectly reversible. Since the
glected to obtain the linear Stokes equation [1]. In contrasflow as described by the Stokes equation is time reversible
to the nonlinear equations, the steady state Stokes equatifit0], the echo technique effectively integrates out the re-
is invariant under flow reversal and yields exact results inversible part of the velocity field, making the experiment
simple geometries, so it has been a matter of fundamentaknsitive to any deviation from reversibility.
discussion below which value of Re the Stokes approxi- In the experiments we detect visible departure from re-
mation to Eq. (2) is justified. versibility at Re~ 0.02 through an “M”-shaped defor-

Numerous authors [2—4] have calculated correction facmation of an otherwise perfectly returned tracer line (see
tors to the Stokes drag at small, nonzero Reynolds nuntig. 2), where the size of the deformation increases lin-
bers. The corrections are linear in Re and have prefactoesarly with increasing Re; see Fig. 3. Comparing the ex-
of order unity. Correspondingly, streamlines around gperiments to two independent numerical models—where
cylinder look symmetric in the fore-and-aft direction un- the deformation is visible already at Re 0.0006—we
til Re is of order unity [5]. Generally, for single phase demonstrate that the observed irreversibility is due to the
flow the Stokes approximation is considered to be valid ifeffect of the nonlinear inertial force, i.e., of hydrodynamic
Re < 1-5[6]. However, when there are finite size parti- nature.
cles suspended in the fluid, inertial effects can be observed, Experiments—The experimental setup was previously
in principle, at arbitrary small Reynolds numbers. This isused to study enhanced dispersion in creeping flow
the case in the so-calledbular pincheffect, which causes [11,12]. In each experiment, a thin, straight line (radius
particles suspended in a tube flow to migrate to a stationary
off-center position in the tube. The effect, which was first
recorded by Poiseuille [7] in blood streams and later stud-
ied systematically by Segré and Silberberg [8] cannot be
explained without the nonlinear term in the Navier-Stokes
equation. But only the transient state, i.e., the speed witt
which the particles migrate to their steady state position, s
depends on Re—the final radial position of the particles isE===~
Re independent, even in echo experiments [9]. '

In the present study we observe nonlinear effects at lown
Re in single phase flow. In contrast to the tubular pinch
of suspended particles, the “echo” signal in our single
phase experiment with passive tracer molecules depenas
continuously on Re and thus serves to quantify the role ofIG. 1. Sketch of the experiment: During forward convec-
the nonlinear term, also when its relative magnitude is Ver)?on' a line of passive tracer was convected towards (full line)

L Ani diat lusion f t he cylinder of radius- = 0.5 cm in a channel of widtl5 cm
smail.  An immediate conclusion irom our measurementy,, ., “that it folded around the cylinder. Upon flow reversal,

is that the proper condition on Re may be highly problemhe tracer line was “echoed” back towards its initial position
dependent, even in simple flow geometries. (dashed line).

4170 0031-9007796/77(20)/4170(4)$10.00  © 1996 The American Physical Society



VOLUME 77, NUMBER 20

PHYSICAL

REVIEW LETTERS

11 NVEMBER 1996

1 0.016-0.17. The molecular diffusivity of the tracer was
E: - D,, = (2.8 = 0.2) X 1078 cn?/s, giving Péclet numbers
f17 Pe= Ud/D,, of the order10°~10’.
{ A* Using a photometric CCD camera with a spatial resolu-
& tion of (20 wm)?/pixel, we identified the positions(y)
s ¥ 8 of maximum concentration for alf across the channel
— (see Fig. 2).
{’T Simulations—Mathematically the flow is described by
% the Navier-Stokes equations,
5
+3, _‘E’E‘Z mm— Vou=0, 1)
c)| | d
()_'l (@) pa—u-i-pu'Vu:—Vp-i-,u,Vzu-l-f. (2
FIG. 2. Enlargements of the characteristic deformation of the at

returned tracer lines from experiments at Reynolds number . . "
(a) Re= 0.016, (b) Re= 0.069, and (c) Re= 0.17. White Blere u(r,t) denotes the local fluid velocity at position

pixels show the calculated coordinates that are used to mea- and timez, p the pressure, angf the external forces
sure distances. (d) FD simulation at Re0.062. Data are [1]. For flow with average velocity/ in a geometry with

compared by measuring™, A~, and their sum\. a characteristic length{, the Reynolds number is Re
Ud/v,withv = u/p.

In the steady statedf/or = 0) the reversibility of
the flow can be expressed by the invariance of Stokes
equation under the transformation— —u, f — — f, and
Vp — —Vp. This simple symmetry [10] is broken by the
presence of the nonlinear term, and, in general, the flow
éhat results from reversal of the external forces must be
recomputed. However, in the present case where there is
a mirror symmetry of the flow geometry, the reversed flow
field is given byu,(r) = —u(—r).

The simulations can be performed in a 2D plane corre-
sponding to the central fluid layer if the modification of
oy matching e densiy ~ L2315 = 00001 glom) 2 00eR0/ S0 /1 Sutfi (uheren s e pae seper
of the two fluids. The viscosity of the carrier fluid was of the top and bottom plates of the cell [12]. This correc-

u = 220 cP, while the viscosity of the tracer was (2—3)% . ; .
lower. The effect of this viscosity contrast appeared tghon factor assumes that thelependence of is parabolic.

be negligible. Average flow velocitie betweent/ = For the Reynolds number of these quasi 3-D simulations

0.031 cm/s andU = 0.28 cm/s produced Re in the range the velocityU must be replaced b3U /3, whereU is the
average value af in the central layer.

Steady state solutions to this quasi 3D Navier-Stokes
10 e equation were obtained using a lattice Boltzmann (LB)
2 ' ' ' ] method as well as a finite difference (FD) scheme. To

a = 0.3 mm) of tracer fluid was first placed across the
filled cell at a distance of 3 cylinder radii, = d/2 =
0.5 cm, in front of the cylinder center (see Fig. 1). Next,
a fixed amount of carrier fluid (glycerol-water mixture)
was pumped into the cell at constant volume fl@x
The pump was then abruptly reversed, withdrawing th
same amount of fluid. At flow reversal, the maximum
extension of the tracer line was approximately,, =
10r, and the smallest distance to the cylinder wag =
(0.08 = 0.01)r.

Buoyancy forces on the tracer were minimized by care
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verify the validity of the quasi 3D method, a full 3D
FD simulation at Re= 0.01 was computed. The relative
difference between the central layer of this 3D field and a
quasi 3D calculation of the same average velo€ityas
about1%.

In the FD scheme a space-discretized version of the
steady state Navier-Stokes equation was solved approxi-
mately through a relaxation process discussed in Ref. [13]
(“artificial compressibility method on a MAC mesh”).

The LB method [14] models the fluid as a large
number of particles [15] that move from site to site on a
triangular lattice, where they interact in mass and
lattice Boltzmann simulations{}) finite difference simulations; rg%mfntum gonservmg ‘fomilons'd leeG useh_tmed_?fGK
(- - -) finite difference simulations of the Oseen equations for( atnagar, Gross, and Krook) model [16], which differs

experimental geometry; (—) analytic Oseen solution [2] forfrom other Boltzmann models by a simplified colli-
infinite channel width. sion operator. The basic variables of the LB models

Re

FIG. 3. Peak-to-peak distandeof the returned tracer lines as
a function of the Reynolds number Re f@) experiments; 4)
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are the probabilitie®/;(r, r) of finding a particle on a site
at positionr at timer moving with unit velocity in one of
the six lattice directions;, withi = 1,...,6. The precise
scheme according to which these probabilities are update
is discussed in Refs. [11,17]. The conserved site densitie
of mass and momentum are defined @s= > ; N; and
pu = Y, c¢;N;, respectively, wherg is the total averaged
density. This definition o# differs from the usual one by
the replacement — p. This minimizes the slight effects - :
of compressibility [15]. The present application is very - ==
sensitive to effects of compressibility and has spatial
variations of the ordei%. Provided the Mach number
is small the velocityu satisfies the two-dimensional
version of Egs. (1) and (2) with the modification that . .
pu - Vu — Gpu - Vu. This extraG factor is a free ..
parameter of the model [11,18]. For steady flows Egs. (1 : -
and (2) can be recovered by absorbing the fatyas in

v, P, andf. This causes the pertinent Reynolds numbel
to take the (generalized) form Re GUd/v [12]. For
computational efficiency Re was tuned by varyiGh FIG. 4. The difference between the forward and reversed
alone. velocity field at Re= 1.58. In case of complete reversibility

Although the FD and LB methods are based on comy i 8 B o, Tl retched &t the

- - . racer ,
pletely different perpeptlt_)ns of the fluid, calculated.flow point of reversal and deforr%edpat the returyn. The black line
fields were almO_St identical. The two methods will be represents the path of diffusionless tracer molecules that start
compared in detail elsewhere [19]. In both methods, tracesn the initial, are convected along with the forward flow and
particles were convected by integrating the equation of moeonvected back, not retracing its path, to overreach its starting
tion r = u with a fourth order Runge Kutta scheme [20], Point.
and off-lattice velocities were obtained using linear inter-
polation schemes.

Results and Discussion-Qualitatively Fig. 2 shows the flow since the return streamline is not identical to the
agreement between LB and FD simulations and experiforward streamline as illustrated in Fig. 4. This causes the
ments. Quantitatively, the main result of this Letter istracer to travel faster during return, making it overreach
shown in Fig. 3 where the “peak-to-peak distanc®,=  the starting position. Note, the passive tracers follow the
A" + A~ of the “M"-shaped deformation is plotted as streamlines, and do not move across them.

a function of Re for experiments and simulations [see In spite of the good quantitative agreement between
Fig. 2(d)] as well as for the analytic solution of the linear experiments and simulations shown in Fig. 3, the exact
Oseen equation [2] for the flow around a cylinder in the abshape of the returned tracer lines is different in the two
sence of boundary walls. The data give thatr = a Re.  cases (see Fig. 2). We find the ratids /A~ = 1 and=

For experiments, we find.,, = 1.37 = 0.03, while LB 4.7 for experiments and simulations, respectively. Inorder
and FD simulations lead to the valueg = 1.47 = 0.1  to understand this discrepancy a number of simulations
andagp = 1.33 = 0.03, respectively. In experiments the were carried out. By varying the channel geometry we
M is blurred for Re<< 0.02 [see Fig. 2(a)] since enhanced found that end effects are insignificant. On the other
diffusive spreading [11,12] becomes important, and ahand, by including transient effects, modeling the start and
Re = 0.004 this effect dominated. The slope of the Os-reversal of the flow, described by tl& /ot term in the
een result is larger than the slope of the/lH® results by quasi 3-D version of Eq. (2), we found* /A~ = 3.9
almost a factor of 9, thus demonstrating the Oseen solunstead of 4.7. Preliminary investigations indicate that
tion captures the rough qualitative—but not the quantitawhile the ratioA* /A~ depends on the time dependent
tive—aspects of the present inertial effects. Solving theeharacteristics of the full three dimensional flow field, the
Oseen equations for the experimental geometry we findumA depends mainly on the nonlinear term [19].

aps = 1.2 = 0.03. The present problem strongly challenges the numerical

The shape of the M may be understood by inspectingnethods, since the main signal, the reversible component
the “difference field'u + u,; see Fig. 4. The netvelocity of the flow field, is integrated out. The agreement between
towards the cylinder along the central flow line produced B and FD simulations and the agreement with experi-
the central kink of the M. It expresses the fact that thements therefore provide solid validation of the two numeri-
flow is slightly slower behind the cylinder. The archescal models. This s particularly nontrivial for the LB model
of the M develop through the net transport transverse tavhere the connection with the Navier-Stokes equations is
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flows (see Fig. 5) and to the study of dispersion in porous
media.
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