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Spontaneous Wave Pattern Formation in Vibrated Granular Materials
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This paper presents two-dimensional particle dynamics simulations of a vertically vibrated layer of
granules, wherein a spontaneous formation of parametric surface waves appears. The investigation of
the dynamic process and mechanism that leads to the formation of the granular surface waves has
revealed that the dissipation coefficient in shear direction plays a crucial role in the formation of wave
patterns. Scaling relations between the units in simulations and experiments are evaluated. Simulation
results are shown to compare well with experimental ones. [S0031-9007(96)01646-8]

PACS numbers: 46.10.+z, 02.70.Ns, 47.54.+r, 62.30.+d

Spatial patterns that can be observed in nature and ition in granular layers and explain the underlying mecha-
laboratories of diverse fields of science often exhibit strik-nism that leads to the pattern formation.
ingly similar features irrespective of their microscopic On pursuing particle dynamics, we postulate that the
mechanisms. For instance, stripes appear in electrohydroellective motion of granular materials can be described
dynamic convection of liquid crystals, in monomolecularby the excluded volume effect and the dissipation of ki-
organic films, and in chemical reaction-diffusion systemanetic energy between granules. A simulation model based
[1]. Hexagonal patterns can be found in crystals, in flabn the above postulates is described below [10]. We de-
mounds of rocks on the bed of shallow lakes, in vibratedine a short-range repulsive force interacting between two
granulars, and even in fish territories [2,3]. particles,

Granular materials, when subjected to vertical vibra- Iebi;
tions, exhibit interesting patterns such as convection rolls fi; = -4
[4] and waves [5,6]. Recently, it has been reported
that multipairs of convection rolls [7], analogous to thewhere¢,-j is
Rayleigh-Bérnard convection in fluids, appear in the vi- . p
brated bed. Spatial patterns can be found not only in such {({(i) — <i> + % ; if |r;j| < ro,

1)

ar,-j ’

stationary systems (in the sense that the pattern itself does®ii = fi Tii

not make time dependent cyclic changes) but also in os-

cillating systems. Melo, Umbanhowar, and Swinney [6]

have reported parametric wave patterns in a vertically osthis pairwise interaction depends on the distamge
cillated granular layer. The granular wave patterns havéetween the center of particlesand; within the range of
been reported to be similar to parametric surface wave, = 2!/°d, d being the characteristic length representing

0, otherwise

patterns in fluid layers [8]. the particle size. In addition, we introduce the normal
The basic macroscopic phenomenology of pattern fordissipation force
mation has been successfully described by continuum
y y f?ormal = _’ynm(vij : I’ij)l’ij/|l'ij|2, (3

models based on partial differential equations [1]. How-
ever, deeper understanding of the collective behavioand the shear dissipation force
calls for the investigation of microscopic mechanisms, shear _ _ N e 12
for which the discrete multibody approach is most suited. £ = —yamlviy - tipltiy /I 4)
Simulation studies (based on discrete models) on spatialiwherey, andy, are, respectively, the normal and shear
stationary systems, such as convection rolls of granulegissipation coefficients. The dissipation forces act at each
under vibrations, have been done by many authors [9)contact point. Herey;; is the relative velocity,t;; =

In the present study we focus attention on a oscilIating{—r,-’}-,rfj), and m is the mass of a particle. The same
system, and report a simulation study on two-dimensionalepulsive force is used to describe the interaction between
(2D) particle dynamics of a vertically vibrated layer of the particles and the container (both the bottom and the
granules. The present study shows that the spontaneouslls), with |r;;| being replaced by the distance between
formation of surface waves, corresponding to those obthe container and particles. The container is subjected to
served experimentally in a three-dimensional (3D) setugontinual sinusoidal vertical vibrations. Energy, length,
[6], can also be observed in 2D simulations. The simulaand mass are scaled in units&fd, andm, respectively,
tions use reduced units, and the scaling relations betwedahen the intrinsic unit of time and acceleration become
the units in simulations and in experiments are evaluatetind?/¢)!/2 and /(md), respectively [11]. With the use
by comparing simulation results with experimental onesof the intrinsic reduced units, the dissipation coefficients,
We investigate the dynamic process of the pattern formay, and y,, remain as the only intrinsic free parameters.
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Note that it is tacitly assumed, by scaling the length with
d, that the effect of particle size can be accounted for
by the difference in the values of dissipation coefficients.
The validity of this assumption will be examined later.
Here, we introduce a new unit of timg = fot*, where

fo is the frequency number (hence dimensionless) of the
externally applied vibration and is the intrinsic reduced
unit of time. The merit of using this time unit is that
the time stepdr can be made as a fixed fraction/2600

for simulations reported in this study) of a vibrational
cycle. More importantly, it leads to a new reduced unit
of gravitational acceleratior,, expressed below.

r\21 g"

ts> d 3’ ®)
where g is the gravitational acceleration, and is the
intrinsic reduced gravitational acceleration. The value of
gs expresses the intrinsic effective gravitational accelera-
tion in accord with the movement of the container. The
introduction ofg, is significant in that it makes the simu-
lation Stu_dy on _the freq“e_”cy dependence of the_gre_mull G. 1 Snapshots of a bed after 50 vibration cycles at phases
bed pogsmle without spemfymg the v_aIueg of the intrinsi T, w3 27, 2 37, 2, and4w. The number of particles
gravitational acceleration and the vibrational frequencyy = 1470 and container widthw = 150 for y, = y, = 2,

The value of intrinsic gravitational acceleration for aA = 1.2, andg, = 27)>. The particles are shown in effective
given system can be determined by comparing the simueore diameter, which islyy = 0.71 in the present dynamic
lation results with experimental ones. Simulations havetate:

been performed for systems of particle numher 735,

1470, and 1960 in containers of widii = 50, 100, 150, bridges) when the container width is sufficiently small.
and 200, with varying dissipation coefficients. Such cases have been reported in experimental studies by
The dynamic process of pattern formation is revealedouady, Fauve, and Laroche [5]. When the container

in Fig. 1 by the snapshots at different phases for the caseelocity is at a maximum 2n7 in Fig. 1), the bed
of N = 1470, W = 150, g, = (27)>,A = 1.2, andy, = gets highly compressed, which results in consolidating
vs = 2. Figure 1 shows that two vibration cycles of the the wave structure. After the velocity passes through
container is necessary for one cycle of the pattern of théhe maxima, the bed begins to dilate and the particles
bed, furthermore, the wave number is not quantized byaturally fall from the heaps to the valleys. This particle
the boundary conditions (container width), five and a halfflow continues, due to its lateral momentum, even after
heaps are formed in the container. The initial configuratiorthe bed surface is leveled, alternating the positions of
of the granular bed affects the position where the heapBeaps and valleys. This is why the surface wave pattern
form but not the value of whenW = 100, indicating that takes two vibrational cycles of the container to return to
A is determined intrinsically given the frequency wigh  it's original state. The lateral movement of the particles
fixed [12]. The above observations closely coincide withis forced to halt when the bed collides with the bottom
experimental ones by Melet al. [6]. of the bed in the upward phase. The time span, when
The dynamic process of the formation of parametricthe container is in the upward phase, decreases with
surface waves observed in simulations is explained belowncreasing frequency (decreasipg, thereby the distance
When vertical vibration is applied to granular beds,particles can move in the lateral direction decreases. This
density fluctuation occurs not only in the vertical directionexplains whyA becomes small with frequency. Singe
but also in the lateral direction. The fluctuation firstis the effective force that pulls down the particles in the
occurs near the walls and in the middle of the bed, thewalley, it is conceivable that becomes proportional to
spreads throughout the bed. The density fluctuation i, which, in fact, as will be shown later, turns out to be
lateral direction leads to heap formation. Heaps form aftetrue in a certain range gf;.
the bed collides with the container of downward motion The shear dissipation force plays a crucial role in the
(7 /2-37/2, 57 /2-7w /2 in Fig. 1). The particles are pattern formation [13]. Simulation studies under two sets
more densely packed at the positions where heaps fornof conditions,y, = y, = 1 andy, = 4, y; = 0 did not
and an air gap is seen at the bottom of the layer prior téead to surface wave pattern formation, for reasons that the
the formation of heaps. Note also that some voids (1-magnitudes ofy, andy, were too small in the first case,
2 particle size) exist near the bottom of the bed dnd  and, in the second, there was no shear dissipation force
37). These small voids grow, resulting in a bridge (oreven wheny, was sufficiently large. The importancepf
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on the formation of surface wave patterns may be readilyy the particle diameteb results in
understood when one thinks of the fact that the angle of )
repose is strongly dependent on the magnitudg,afhen A/D =11 + get/Df". (8)

the system is under perturbation. We may add that, evegincegs « 1/f2, it can be readily seen that the above two

when the normal d|SS|pat|on coeff|C|e_nt is much Sfma"erequations (6) and (8) are basically the same in formula.
(v. = 0.4, v, = 0), the density fluctuation occurred in the

lateral direction, and heaps appeared momentarily, but th Jhe first terms on the right hand sides of Egs. (6) and
: : t th toff lengths, giving) = A¢/D
did not last long. This indicates that is not an important e(%) represerit s CUIoT wave engins, giving o/

15]. Equating th dt the right hand sides of
factor for the cause of the density fluctuation, but it playsl[zq;' (6?3?\(?(%) ﬁ;ggon erms onthe night hand sides o

a crucial role in maintaining the wave pattern. )
We show in Fig. 2 thex vs g, relationship near the g = g f2 = geff<@> )
threshold vibration acceleration for the caseVof= 1960 SO ap\ f )

and W = 200 with varying dissipation coefficients. (I) i o )
¥y = v = 2.0 (symbol o), (Il) ys = y, = 4.0 (Sym- where fy/f is the unity in the unit of second. The
bol o), and (Ill) ys = y, = 6.0 (symbol ) [14]. The gravitational acceleration is a universal constant, thus

wavelength is measured after 100 vibration cycles. FoFd- (9) leads taxD = const. This implies, as varies
convenience, we expresgs in the unit of(27)2. It can be with dissipation coefficients, that the effect of granular size

seen from Fig. 2 that is linearly dependent og, for cases ~ ¢an be accounted for by the difference in the values of the

Il and 111, but for case |, the linear dependence saturatedissipation coefficients, that is, the raiin; /Dy can be

at a largeg, (or a low frequency): Wave patterns were '€Placed byarii/ar. This is the first time, as far as we
not stable ag, = 2.25(27)2. Theg, dependence of is know, that the relationship between the effect of particle

summarized in the following relationship: size and that of dissipation coefficients on granular bed
behavior is shown in an explicit form.
As = Ao + ags, (6) Comparison of our simulation results to experimental

where),, anda are to be determined from the least meanones is significant in that it gives us quantitative scal-
square fit for each system. Excluding the two data point#g relationships between real values in experiments and
for case |, we hava,y = 9.1 anda = 16.3/(27)? (ifthe ~ simulation parameters. Of the parameters dealt with in
last two data points are included, they becomg= 13.5 this study the most important one is the gravitational ac-
anda = 12.2/(27)?, respectively). For case Il, we have celeration. Here, a caution is needed; because our simu-
Ao = 8.7, @ = 18.1/(27)?, and, for case Illx,g = 7.0, lation is 2D, thus it is not clear whether the parametric
a = 21.4/(27)%>. Note that the wavelengths, and A,y  waves in simulation correspond to the stripe or the square
are measured in the unit of. It has been reported in patterns in 3D experiments. Melet al. report the fre-
experimental studies that the wavelengtfor parametric quency dependence of the pattern wavelengtionly
patterns is linearly dependent ayif2, and the following for the case of square patterns in their experiments [6].

relationship holds [6]: Thus, assuming that the simulated surface wave pat-
B 5 terns correspond to the square patterns, we evaluate the
A= Ao+ gete/f, (7 parameter values. The experiment indicates that para-

where A, = 11D and gess = 310 cm/s2. Scaling Eq. (7) Metric square patterns only appear wher< 28 Hz [6],
while, in the simulation, the wave patterns only appear for
gs > 0.75(27)>. Thus, substitutingf, = 28 and g, =

60 L A 0.75(27)? into Eq. (5), we have* = 590(27)?. Equa-

tion (9) then yieldsD = 0.32 (0.43) mm for case I: The

number in the parentheses indicates the value when the

last two data points are included in the correlation. For
cases Il and lll, we hav® = 0.29 and 0.25 mm, respec-
tively, which fall into the range surprisingly close to that
of the experiments, 0.4, 0.3, and 0.2 mm. By using the
above values oD andg*, we obtain the vs 1/£2 rela-

- . tionship in units of mm and? (inset in Fig. 2).

AR T ead It is shown in Fig. 3 that we can reproduce our results

0 » 5 3 4 with a standard model [16] which uses interaction

9 (2m*) V. = {k(d — e i eyl < d,
/ 0, otherwise

40

20F

(10)
FIG. 2. Wavelength of the pattern vg, after 100 vibration

cycles for N = 1960 and W = 200. (I = vs = 2.0 . .
(gymbol o), (I) yn = v, = 4.0 (symbol (.g gnd (ITI) Y, = with Egs. (3) and (4). It should be mentioned, however,

y, = 6.0 (symbolJ). The inset shows the relationshipimm)  that, unlike the case of Eq. (2), Eqg. (10) does not allow
vs 1/f2 (s2). the scaling ofr;; (by d) independent ok. Consequently,
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60 : .
40F * :
R
< = .
20F .
0 1 2
gs ((2m)*)

FIG. 3. Wavelength of the pattern vg, after 100 vibration
cycles for N = 1960 and W = 200 with the standard model
[EQ. (10)]: k = 1.82 X 10* which corresponds t@>¢;;/dr};
atder = 0.71. (1) y, = v, = 5.0 (symbol o), and (ll) y, =
vs = 10.0 (symbol e).

the physical significance of Egs. (5) and (9) lessens when
used with Eq. (10).

In a recent experimental study, it is reported that the
wave patterns become better defined when the air pressur
in the container is reduced [3]. The square patterns ar
reported to appear only wheh < 40 Hz for D = 0.15-

0.19 mm bronze spheres. Substitutifig= 40 andg,
0.75(27)? into Eq. (5), we have, = 1200(27)?, which,
combined with Eqg. (9), give® = 0.16 (0.21), 0.14, and
0.12 mm for cases |, Il, and lll, respectively, again show-
ing a good agreement with the experimental values.
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