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Spontaneous Wave Pattern Formation in Vibrated Granular Materials
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This paper presents two-dimensional particle dynamics simulations of a vertically vibrated layer of
granules, wherein a spontaneous formation of parametric surface waves appears. The investigation of
the dynamic process and mechanism that leads to the formation of the granular surface waves has
revealed that the dissipation coefficient in shear direction plays a crucial role in the formation of wave
patterns. Scaling relations between the units in simulations and experiments are evaluated. Simulation
results are shown to compare well with experimental ones. [S0031-9007(96)01646-8]

PACS numbers: 46.10.+z, 02.70.Ns, 47.54.+r, 62.30.+d
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Spatial patterns that can be observed in nature an
laboratories of diverse fields of science often exhibit st
ingly similar features irrespective of their microscop
mechanisms. For instance, stripes appear in electrohy
dynamic convection of liquid crystals, in monomolecu
organic films, and in chemical reaction-diffusion syste
[1]. Hexagonal patterns can be found in crystals, in
mounds of rocks on the bed of shallow lakes, in vibra
granulars, and even in fish territories [2,3].

Granular materials, when subjected to vertical vib
tions, exhibit interesting patterns such as convection r
[4] and waves [5,6]. Recently, it has been repor
that multipairs of convection rolls [7], analogous to t
Rayleigh-Bérnard convection in fluids, appear in the
brated bed. Spatial patterns can be found not only in s
stationary systems (in the sense that the pattern itself
not make time dependent cyclic changes) but also in
cillating systems. Melo, Umbanhowar, and Swinney
have reported parametric wave patterns in a vertically
cillated granular layer. The granular wave patterns h
been reported to be similar to parametric surface w
patterns in fluid layers [8].

The basic macroscopic phenomenology of pattern
mation has been successfully described by continu
models based on partial differential equations [1]. Ho
ever, deeper understanding of the collective beha
calls for the investigation of microscopic mechanism
for which the discrete multibody approach is most suit
Simulation studies (based on discrete models) on spat
stationary systems, such as convection rolls of gran
under vibrations, have been done by many authors
In the present study we focus attention on a oscilla
system, and report a simulation study on two-dimensio
(2D) particle dynamics of a vertically vibrated layer
granules. The present study shows that the spontan
formation of surface waves, corresponding to those
served experimentally in a three-dimensional (3D) se
[6], can also be observed in 2D simulations. The simu
tions use reduced units, and the scaling relations betw
the units in simulations and in experiments are evalua
by comparing simulation results with experimental on
We investigate the dynamic process of the pattern for
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tion in granular layers and explain the underlying mec
nism that leads to the pattern formation.

On pursuing particle dynamics, we postulate that
collective motion of granular materials can be describ
by the excluded volume effect and the dissipation of
netic energy between granules. A simulation model ba
on the above postulates is described below [10]. We
fine a short-range repulsive force interacting between
particles,

fij ­ 2
≠fij

≠rij
, (1)

wherefij is

fij ­

8<: ´

∑µ
d
rij

∂12

2

µ
d
rij

∂6

1
1
4

∏
, if jrij j , r0 ,

0, otherwise.
(2)

This pairwise interaction depends on the distancerij

between the center of particlesi andj within the range of
r0 ­ 21y6d, d being the characteristic length represent
the particle size. In addition, we introduce the norm
dissipation force

fnormal
i ­ 2gnmsvij ? rijdrijyjrijj

2, (3)

and the shear dissipation force

fshear
i ­ 2gsmsvij ? tijdtijyjrijj

2, (4)

wheregn and gs are, respectively, the normal and she
dissipation coefficients. The dissipation forces act at e
contact point. Here,vij is the relative velocity,tij ­
s2r

y
ij , rx

ijd, and m is the mass of a particle. The sam
repulsive force is used to describe the interaction betw
the particles and the container (both the bottom and
walls), with jrijj being replaced by the distance betwe
the container and particles. The container is subjecte
continual sinusoidal vertical vibrations. Energy, leng
and mass are scaled in units of´, d, andm, respectively,
then the intrinsic unit of time and acceleration beco
smd2y´d1y2 and ´ysmdd, respectively [11]. With the us
of the intrinsic reduced units, the dissipation coefficien
gn and gs, remain as the only intrinsic free paramete
© 1996 The American Physical Society
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Note that it is tacitly assumed, by scaling the length w
d, that the effect of particle size can be accounted
by the difference in the values of dissipation coefficien
The validity of this assumption will be examined lat
Here, we introduce a new unit of timets ­ f0tp, where
f0 is the frequency number (hence dimensionless) of
externally applied vibration andtp is the intrinsic reduced
unit of time. The merit of using this time unit is th
the time stepdt can be made as a fixed fraction (1y2500
for simulations reported in this study) of a vibration
cycle. More importantly, it leads to a new reduced u
of gravitational acceleration,gs, expressed below.

gs ­ g
≥ t

ts

¥2 1
d

­
gp

f2
0

, (5)

where g is the gravitational acceleration, andgp is the
intrinsic reduced gravitational acceleration. The value
gs expresses the intrinsic effective gravitational accele
tion in accord with the movement of the container. T
introduction ofgs is significant in that it makes the simu
lation study on the frequency dependence of the gran
bed possible without specifying the values of the intrin
gravitational acceleration and the vibrational frequen
The value of intrinsic gravitational acceleration for
given system can be determined by comparing the si
lation results with experimental ones. Simulations h
been performed for systems of particle numberN ­ 735,
1470, and 1960 in containers of widthW ­ 50, 100, 150,
and 200, with varying dissipation coefficients.

The dynamic process of pattern formation is revea
in Fig. 1 by the snapshots at different phases for the
of N ­ 1470, W ­ 150, gs ­ s2pd2, A ­ 1.2, andgn ­
gs ­ 2. Figure 1 shows that two vibration cycles of t
container is necessary for one cycle of the pattern of
bed, furthermore, the wave number is not quantized
the boundary conditions (container width), five and a h
heaps are formed in the container. The initial configura
of the granular bed affects the position where the he
form but not the value ofl whenW $ 100, indicating that
l is determined intrinsically given the frequency withgs

fixed [12]. The above observations closely coincide w
experimental ones by Meloet al. [6].

The dynamic process of the formation of parame
surface waves observed in simulations is explained be
When vertical vibration is applied to granular be
density fluctuation occurs not only in the vertical directi
but also in the lateral direction. The fluctuation fi
occurs near the walls and in the middle of the bed, t
spreads throughout the bed. The density fluctuatio
lateral direction leads to heap formation. Heaps form a
the bed collides with the container of downward mot
(py2 3py2, 5py2 7py2 in Fig. 1). The particles ar
more densely packed at the positions where heaps f
and an air gap is seen at the bottom of the layer prio
the formation of heaps. Note also that some voids
2 particle size) exist near the bottom of the bed (p and
3p). These small voids grow, resulting in a bridge
ith
for
ts.
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FIG. 1 Snapshots of a bed after 50 vibration cycles at pha
0, p

2 , p, 3p

2 , 2p, 5p

2 , 3p, 7p

2 , and4p. The number of particles
N ­ 1470 and container widthW ­ 150 for gn ­ gs ­ 2,
A ­ 1.2, andgs ­ s2pd2. The particles are shown in effectiv
core diameter, which isdeff ­ 0.71 in the present dynamic
state.

bridges) when the container width is sufficiently sma
Such cases have been reported in experimental studie
Douady, Fauve, and Laroche [5]. When the contai
velocity is at a maximum (2np in Fig. 1), the bed
gets highly compressed, which results in consolidat
the wave structure. After the velocity passes throu
the maxima, the bed begins to dilate and the partic
naturally fall from the heaps to the valleys. This partic
flow continues, due to its lateral momentum, even a
the bed surface is leveled, alternating the positions
heaps and valleys. This is why the surface wave pat
takes two vibrational cycles of the container to return
it’s original state. The lateral movement of the particl
is forced to halt when the bed collides with the botto
of the bed in the upward phase. The time span, w
the container is in the upward phase, decreases
increasing frequency (decreasinggs), thereby the distance
particles can move in the lateral direction decreases. T
explains whyl becomes small with frequency. Sincegs

is the effective force that pulls down the particles in t
valley, it is conceivable thatl becomes proportional to
gs, which, in fact, as will be shown later, turns out to b
true in a certain range ofgs.

The shear dissipation force plays a crucial role in
pattern formation [13]. Simulation studies under two s
of conditions,gn ­ gs ­ 1 andgn ­ 4, gs ­ 0 did not
lead to surface wave pattern formation, for reasons that
magnitudes ofgn andgs were too small in the first case
and, in the second, there was no shear dissipation f
even whengn was sufficiently large. The importance ofgs
4167
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on the formation of surface wave patterns may be rea
understood when one thinks of the fact that the angle
repose is strongly dependent on the magnitude ofgs when
the system is under perturbation. We may add that, e
when the normal dissipation coefficient is much sma
(gn ­ 0.4, gs ­ 0), the density fluctuation occurred in th
lateral direction, and heaps appeared momentarily, but
did not last long. This indicates thatgs is not an important
factor for the cause of the density fluctuation, but it pla
a crucial role in maintaining the wave pattern.

We show in Fig. 2 thel vs gs relationship near the
threshold vibration acceleration for the case ofN ­ 1960
and W ­ 200 with varying dissipation coefficients. (I
gs ­ gn ­ 2.0 (symbol ±), (II) gs ­ gn ­ 4.0 (sym-
bol ≤), and (III) gs ­ gn ­ 6.0 (symbol h) [14]. The
wavelength is measured after 100 vibration cycles.
convenience, we expressgs in the unit ofs2pd2. It can be
seen from Fig. 2 thatl is linearly dependent ongs for cases
II and III, but for case I, the linear dependence satura
at a largegs (or a low frequency): Wave patterns we
not stable atgs ­ 2.25s2pd2. Thegs dependence ofl is
summarized in the following relationship:

ls ­ ls0 1 ags , (6)

wherels0 anda are to be determined from the least me
square fit for each system. Excluding the two data po
for case I, we havels0 ­ 9.1 anda ­ 16.3ys2pd2 (if the
last two data points are included, they becomels0 ­ 13.5
anda ­ 12.2ys2pd2, respectively). For case II, we hav
ls0 ­ 8.7, a ­ 18.1ys2pd2, and, for case III,ls0 ­ 7.0,
a ­ 21.4ys2pd2. Note that the wavelengthsls and ls0

are measured in the unit ofd. It has been reported i
experimental studies that the wavelengthl for parametric
patterns is linearly dependent on1yf2, and the following
relationship holds [6]:

l ­ l0 1 geffyf2, (7)

wherel0 ø 11D andgeff ø 310 cmys2. Scaling Eq. (7)

FIG. 2. Wavelengthl of the pattern vsgs after 100 vibration
cycles for N ­ 1960 and W ­ 200. (I) gn ­ gs ­ 2.0
(symbol ±), (II) gn ­ gs ­ 4.0 (symbol ≤), and (III) gn ­
gs ­ 6.0 (symbolh). The inset shows the relationshipl (mm)
vs 1yf2 ss2d.
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lyD ­ 11 1 geffyDf2. (8)

Sincegs ~ 1yf2
0 , it can be readily seen that the above tw

equations (6) and (8) are basically the same in form
The first terms on the right hand sides of Eqs. (6) a
(8) represent the cutoff wavelengths, givingls0 . l0yD
[15]. Equating the second terms on the right hand side
Eqs. (6) and (8) yields

gp ­ gsf2
0 ­

geff

aD

µ
f0

f

∂2

, (9)

where f0yf is the unity in the unit of second. Th
gravitational acceleration is a universal constant, t
Eq. (9) leads toaD ­ const. This implies, asa varies
with dissipation coefficients, that the effect of granular s
can be accounted for by the difference in the values of
dissipation coefficients, that is, the ratioDIIyDIII can be
replaced byaIIIyaII. This is the first time, as far as w
know, that the relationship between the effect of parti
size and that of dissipation coefficients on granular
behavior is shown in an explicit form.

Comparison of our simulation results to experimen
ones is significant in that it gives us quantitative sc
ing relationships between real values in experiments
simulation parameters. Of the parameters dealt with
this study the most important one is the gravitational
celeration. Here, a caution is needed; because our s
lation is 2D, thus it is not clear whether the parame
waves in simulation correspond to the stripe or the squ
patterns in 3D experiments. Meloet al. report the fre-
quency dependence of the pattern wavelengthl only
for the case of square patterns in their experiments
Thus, assuming that the simulated surface wave
terns correspond to the square patterns, we evaluate
parameter values. The experiment indicates that p
metric square patterns only appear whenf , 28 Hz [6],
while, in the simulation, the wave patterns only appear
gs . 0.75s2pd2. Thus, substitutingf0 ­ 28 and gs ­
0.75s2pd2 into Eq. (5), we havegp . 590s2pd2. Equa-
tion (9) then yieldsD ­ 0.32 s0.43d mm for case I: The
number in the parentheses indicates the value when
last two data points are included in the correlation. F
cases II and III, we haveD ­ 0.29 and 0.25 mm, respec
tively, which fall into the range surprisingly close to th
of the experiments, 0.4, 0.3, and 0.2 mm. By using
above values ofD andgp, we obtain thel vs 1yf2 rela-
tionship in units of mm ands2 (inset in Fig. 2).

It is shown in Fig. 3 that we can reproduce our resu
with a standard model [16] which uses interaction

Vij ­

Ω
ksd 2 jrijjd5y2, if jrij j , d ,
0, otherwise,

(10)

with Eqs. (3) and (4). It should be mentioned, howev
that, unlike the case of Eq. (2), Eq. (10) does not all
the scaling ofrij (by d) independent ofk. Consequently,
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FIG. 3. Wavelengthl of the pattern vsgs after 100 vibration
cycles for N ­ 1960 and W ­ 200 with the standard mode
[Eq. (10)]: k ­ 1.82 3 104 which corresponds to≠2fijy≠r2

ij
at deff ­ 0.71. (I) gn ­ gs ­ 5.0 (symbol ±), and (II) gn ­
gs ­ 10.0 (symbol≤).

the physical significance of Eqs. (5) and (9) lessens w
used with Eq. (10).

In a recent experimental study, it is reported that t
wave patterns become better defined when the air pres
in the container is reduced [3]. The square patterns
reported to appear only whenf , 40 Hz for D ­ 0.15
0.19 mm bronze spheres. Substitutingf0 ­ 40 andgs ­
0.75s2pd2 into Eq. (5), we havegs ­ 1200s2pd2, which,
combined with Eq. (9), givesD ­ 0.16 (0.21), 0.14, and
0.12 mm for cases I, II, and III, respectively, again sho
ing a good agreement with the experimental values.

In the two studies mentioned above, experiments
carried out under different conditions using differe
materials: glass beads in surrounding air [6] and bron
spheres under reduced air pressure [3]. They report
the differences in stiffness (restitution coefficients) a
ambient air have no qualitative influence on the wa
patterns [3]. The good quantitative agreement betw
the experimental and simulation results suggests that
excluded volume effect, combined with the dissipation
kinetic energy between granules, can describe the sur
wave patterns well. To assess if this holds for a wid
range of systems, additional experimental data are nee

We have conducted computer simulations of parti
dynamics, specifically on the parametric surface waves
vertically vibrated granular layers. It has been revea
that the dissipation coefficients play a significant role in t
formation of surface wave patterns. The dynamic proc
leading to the pattern formation has been analyzed in de
A comparison of simulation results with experimental on
enables us to determine the intrinsic reduced units
given systems. A good agreement between simulati
and experiments proves that the basic features of gran
materials can be described by the excluded volume ef
and the dissipation of kinetic energy between granules
n
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