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Parametric Variation of Chaotic Eigenstates and Phase Space Localization
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We investigate the phase space localization properties of eigenstates of a quantum system possessing

a chaotic classical limit. Parametric variation of the system suggests introducing a measure of
correlations between state overlap intensities and level velocities to infer information about the extent
of eigenstate localization. Random matrix theory predicts no correlations. Yet when applied to the
chaotic stadium billiard, we find large correlations reflecting the significant eigenstate scarring due to
the parametric action variations of the orbits homoclinic to the central trajectory underlying the wave
packet. The analysis can be applied to data taken with quantum dots in the Coulomb-blockade regime
and microwave cavities. [S0031-9007(96)01650-X]

PACS numbers: 05.45.+b, 03.20.+i, 03.65.Sq

Nearly twenty years ago, Berry [1] and Voros [2] maderange avoided crossings. However, looking to the level
a conjecture on the nature of eigenstates in the semstatistics is not likely to be the most sensitive test of non-
classical limit of a quantum system possessing a simplergodic behavior in the eigenstates. One needs to design a
chaotic classical analog. To within quantum fluctuationsmore adapted measure to probe such “nongeneric” behav-
“chaotic” eigenstates should respect the ergodic hypotha@er. Ahead we introduce a correlation function between
sis in phase spacé(E — H(p,q)), as applied to wave overlap intensities and level velocities, which immediately
functions. Heller later modified this picture with his pre- suggests itself in strength functions’ parametric behavior.
diction of eigenstate scarring along shorter classical pe- Consider a quantum system governed by a parameter
riodic orbits [3]. This initiated continuing investigations dependent Hamiltonia#/ (A). Suppose that the dynamics
and debate as to the phase space “localization” or scaare chaotic for all values of tha parameter range of
ring properties of chaotic eigenstates. In this contextinterest and no symmetry is being weakly broken. Then
localization should be understood as meaning deviationthe statistical properties are expected to be stationary with
from the ergodic expectation and the inherent quantumespect ta and we do not have to be concerned with the
fluctuations. A need arose to make connections betwedmansition to or from chaos. In his original introduction of
gquantum mechanics and phase space. Thus Wigner trarszarring, Heller [3] made use of a strength function
forms, Husimi distributions, and wave packets have been
employed in various contexts. The issues and conse- Y iEt/h
guences are far from being settled and in this Letter (i) we S(E,A) = 2 ]ﬁm dte (Pl 1)
introduce a measure involving parametric variations that
probes such eigenstate localization, (ii) show random ma-
trix models reflecting wave function ergodicity predict
vanishing correlations, (iii) use dynamical arguments to
explain surprisingly large correlations found in the sta-where p4;(A) = K¢ | E;(A\)I?, E:(A) labels the eigen-
dium billiard, and (iv) suggest analyzing the conductancestates and eigenvalue§E, 1) is the Fourier transform of
data from quantum dots in the Coulomb-blockade regimeéhe autocorrelation function of a wave packet initial state
[4] and data from microwave cavities [5]. |#), andS(E, X) denotes the smooth part resulting from the

The relevance to localization of looking at parameter deFourier transform of just the extremely rapid initial decay
pendencies can be viewed in the following manner. If adue to the shortest time scale of the dynamics (zero-length
system’s eigenstates satisfy the ergodic expectation, thertjectories). We will takd¢) to be a wave packet with
smooth perturbation will democratically connect all stategphase space image,(p,q), but other choices are pos-
near a given energy surface. The evolution of any onsible. If momentum space localization is the main inter-
eigenstate or energy level over a large enough paramest, the natural choice would be a momentum eigenstate.
ter range will be statistically equivalent to their respective The presence of very large overlap intensitieS (A, A)
neighboring states or levels. On the other hand, localizaindicates localization neasy(p,q). In Fig. 1, we show
tion creates the opportunity for undemocratic behaviorsS(E, A) for a wave packet initially oriented along the
One example would be an excessive proportion (in a stadorizontal axis of the stadium billiard, a highly chaotic
tistical sense) of some states being essentially disconnectsgstem. We see that the levels associated with the peaks
by the perturbation from other states. This would leaddo not appear to move democratically. This suggests
to an increase, relative to statistical expectations, of shorhtroducing an overlap intensity-level velocity correlation

> psi(VS(E — Ei(1). &
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FIG. 1. Graphical representation S(E, ) for the stadium. \ herey js the effective number of states used in the en-
Each small line segment is centered on an eigenvalue and its

lambda value. The heights are proportionaptg(A). A isthe €9y averaging. Again the level velqcitie§ are independent
ratio of the side length to semicircle diameter. Asncreases, Of the eigenvector components. The* j terms vanish

the stadium stretches horizontally, but is scaled to preserve itdue to the independence of the diagonal elements of the
area. |¢) is a horizontally directed wave packet centered inpertyrbation leaving only the diagonal terms that involve
the stadium and whose momentum is roughly set so that thg, 4 anities that respectively enter the variance of the

largest dimension of the stadium spans 12 wavelengths. Over. d th | vel
the range oft plotted, the stadium lengthens approximately one€!g€Nnvector components and the mean square level veloc-

wavelength at the mean momentum|af). See the text for the ity. The final result reflects the equivalence of ensemble
solid and dashed curves. and spectral averaging in the largyedimit. Therefore,

in ergodically behaving system§,(A) = 0 = N ~'/2 for
every choice of¢).

coefficient,Cy4(A), which is defined as Next, we would like to have a picture of how local-
OB (M) ization can lead to nonzero correlations@fy (A). It is

Cy(A) = <13¢,-(/\) oA > (2)  simply reflecting finite time correlations in the classical
E dynamics. The classical propagationmf(p, q) will re-

It weights most the level velocities whose associatedax to an ergodic long time average. However, during the
eigenstates possibly share common localization characterelaxation, recurrences lead to localization in the eigen-
istics and measures the tendency of these levels to mowtates. See Heller's original arguments [3] for the exis-
in a common direction. In this expression, the tildes in-tence of scarring.p4; weights most heavily the group of
dicate that the variables are already zero-centered, aredgenstates localized neay(p,q). Diagonal matrix ele-
rescaled to unitless quantities with variance one. The sehents (or level velocities) of some perturbation for these
of states included in the local energy averaging can be lefitates may not fluctuate about the classical average of the
flexible except for the constraint that only energies whergoerturbation overs(E — H(p,q)). If not, C4(A) # 0.

S(E, A) is roughly constant can be used or some unfoldNote that this means some choiced # will still lead to

ing must be applied.C4(A) thus has a simple form and zero correlations even though the system has localization.
the additional advantage of involving quantities of directlt takes only one nonzero result to demonstrate conclu-
physical interest. Level velocities arise in thermodynamicsively localization, but to obtain a complete picture, it is
properties and overlap intensities often arise in the mamecessary to consider mafg) covering the full energy
ner used to couple into the system. surface.

That C4(A) measures localization is seen in two steps. We apply the velocity-intensity correlation measure
First it can be calculated within random matrix theoryto the stadium billiard. In Fig. 1, all large overlaps
which is supposed to apply generically to chaotic systemanoved down through the spectrum adncreased. The
It sets the reference point for one’'s expectations of theorrelations given in Fig. 2 show a nearly perfect average
statistical properties and is a way of deriving the resultsorrelation coefficient olCy(A) = —0.665 (—1.0 is the
for systems obeying the ergodic hypothesis. {E&tA)} be  lowest possible value). Furthermore, the valueNoin
given by a Gaussian ensemble (GE) and be constructed #ts calculation is about0. Considering Eq. (4), the
H(A) = H, + AH,, whereH, andH, are independently result is quite inconsistent with ergodicity. We also find
chosen GE matrices. Because the GE is invariant under thibat there appears to be a significant structural persistence
set of transformations that diagonalize the ensemble, thia the strength function. Many level crossings have no
choice of|{¢), although a fixed vector, is entirely arbitrary. influence in redistributing the intensities.

The overlaps and level velocities are independent over the At a heuristic level, the direction of the weighted
ensemble. With the overbar denoting ensemble averaginggvel velocities is simple to understand. If a state has
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0 such that this condition is closely satisfied,
_ _ AxaS;(0)
2 0.2 AE = AE; - oA , (6)
~ 04 then the strength function is just being rescaled in energy.
O . All the overlaps will remain the same but move with the
06l . . ... same constant velocity giving strong correlations and the
R . aforementioned structural persistence &z, A). It is
08 " . oo Ve the dynamical correlations in the distribution of the set
‘ °* of {Tj_laSj()t)/a/\} that is at the very origin of scarring in
eigenstates. Without structural persistence, even if there
'105 0'59 0'54 0I56 0'58 0.6 existed a large intensity overlap somewhere, it would
' o ' ' A ' ' quickly disappear with a change in Probabilistically

then, the chances of finding large overlaps in a spectrum
FIG. 2. C,(aA) versusA. The average value is stationary at would be greatly reduced, or in other words, there would
roughly —0.665 with the scatter consistent with ~!/? fluctua-  be far less localization.
tions. The samé¢) is used as in Fig. 1. For billiards, Eq. (6) simplifies t@E times the loga-

rithmic derivative with of the orbit lengths. In Fig. 3,
enhanced intensity along the horizontal bounce periodigve show the distribution of derivatives for the homoclinic
orbit and the stadium is smoothly lengthened, to maintaimrbits. The average shift can be used to calculate an av-
a constant number of wavelengths across implies reducingrage level velocity for the localized statég;/d A, from
the momentum, i.e., decreasing the energy. An uppeEq. (6). The solid line in Fig. 1 shows the result and fol-
bound for the slope derives from a quantization conditionlows large amplitudes nicely as lambda varies. This gives
along the periodic orbit and is shown as the dashed more complete explanation for the significant amount of
straight line in Fig. 1. The structural stability and large scarring noted in the stadium billiard. Eventually at long
nonzero correlations can be explained more precisely ifimes, the properties of the homoclinic orbits must equi-
semiclassical theory. In a series of papers [6], it wadibrate and for sufficiently smalki (the long Heisenberg
shown that the strength function could be expressed astime limit), the ergodic expectations must be recovered.
sum over orbits homoclinic to the central orbit associatedsignificant localization should exist up to the point in the
with |¢) in the usual semiclassical form spectrum where the classical dynamical time scale during
which the homoclinic manifolds uniformly explore the en-
ergy surface becomes much shorter thgn

It is worthwhile to make some remarks on applying

In this caseA; cuts off the amplitude of homoclinic orbits C4()) to the Coulomb-blockade conductance data [4];
crossing far from the centroid dfp). The key point is
that the homoclinic orbits organizdl the return dynamics

S(E,A) = > AjexpliS;/h — iv/4). (5)
J

in which trajectories initially nearby fall away from the 300 —
central periodic orbit but later return to the neighborhood
. : . 250

again. It was found that when all returning orbits were
included whose periods do not exceed the Heisenberg N 200 | : [ ]
time [ry = hip(E)], the summation converged well to the g _—
discrete quantum strength function. 150 |

In general, a perturbation will alter the value of the
classical actions$;, and amplitudes4;, of each homo- 100
clinic orbit. We assume in the following that the mean i
level velocity due to the perturbation is zero. The sum- 50} T
mation is most sensitive to the changing actions because —17
of the associated rapidly oscillating phases. To be con- (_)0_3 02 01 0 01 02 03
sistent with zero correlations, the action variations must !’
be “randomly” distributed about zero. Otherwise, shift- _l

ing the energy surface partially compensates the pertur- . o o _
bation effects and correlations are necessarily present. FIG. 3. Histogram of the logarithmic derivative of the first

fact, a simple condition can be derived in which the sunglooo homoclinic orbits. The mean is 0.10. The horizontal
o . first order. Using (orbit period) ounce periodic orbit derivative is 0.27 and for the vertical

remains invariant to first oraer. g b ' bounce orbit—0.34. In Fig. 1, the barely visible, upwardly

= 9S;/0E, it turns out that if for every homoclinic orbit, moving energy level has a velocity matching the vertical

7; = 7y, @ constant energy surface shift can be chosehounce orbit slope.
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we have in mind the low temperature limit. There thetrajectories will tend to get trapped there before return-
peak conductances and resonance energies are trackad nearby to their original starting points in phase space.
as a function of an external magnetic field or shapeThere will be experimental, quantum mechanical conse-
changing gate voltages. The resonance energy variatiomgiences of these dynamical correlations which are fully
are related to a single particle level velocity and the peaklescribed by the underlying homoclinic motion.
conductance is proportional to a quantity similaptg (A) Finally, we mention thatC4(A) could be used to
[7]. For example, consider a case where the electronanalyze integrable, near-integrable, or mixed phase space
enter and exit the quantum dot through structures thadynamics as well. For example in the mixed case, it might
are reflection symmetry related. There the expressiowell provide new insight into “cantorus quantization” in
for the conductance reduces to the form of Eq. (2)the neighborhood of the frontier between a KAM region
Even without symmetry, the random matrix theory will of regular motion and chaos [8]. In these cases, standard
predict no correlations for the slightly more complicatedrandom matrix theory would not give the zeroth order
form whereas localization of the eigenstates can generatgatistical expectation, but the localization would still be
nonzero correlations. If the tunneling contacts are placedetermined by the return dynamics in the semiclassical
at opportune sites such as at the opposing horizontapproximation; see [9] for the organizational scheme of
ends of a stadium billiard, some shape distortions willthe return dynamics in integrable systems.

reveal the localization properties. Not every perturbation We gratefully acknowledge important discussions with
will. In the stadium example given here, changing theDr. O. Agam and N. Cerruti, and support by the U.S. NSF
aspect ratio is perfectly adapted to testing for localizatiorGrant No. PHY94-21153 and the Institute for Theoretical
along the horizontal or vertical bouncing periodic orbits.Physics in Santa Barbara, CA under the NSF Grant
However, this perturbation would not be expected toNo. PHY94-07194.
show correlations if¢) were placed on the self-retracing

periodic orbit that has & shape. We mention also that

the microwave cavity data [5] can be studied with even

more flexibility since they have measured the eigenstates

and can therefore meticulously study a wide rangbz_ﬁ)f _ *Permanent address: Department of Physics, Washington
to get a complete picture of the eigenstate localization  gtate University, Pullman, WA 99164-2814.
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