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The Z0 resonant amplitude is discussed in generalRj gauges. When the original on-she
definition of theZ0 massM is employed, a gauge dependence ofM emerges in the next-to-leading
approximation which, although small, is of the same magnitude as the current experimental erro
the following order of expansion, these unphysical effects are unbounded. The gauge depe
of M disappears when modified, previously proposed definitions of mass or self-energies are
The relevance of these considerations to the concept of the mass of unstable particles is point
[S0031-9007(96)01543-8]
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Ever since LEP (Large Electron Positron Collide
commenced operations, major efforts have been dev
by experimentalists and theorists to study theZ0 line
shape. Indeed, this important observable leads to the
termination of some of the most fundamental parame
in electroweak physics, namely theZ0 mass, its width,
and the cross sections at the peak. Of primary intere
the theoretical side of these studies is the structure of
transverse part of the dressedZ0 propagator

Dssd  fs 2 M2
0 2 ReAssd 2 iImAssdg21, (1)

wheres  q2 is the squared four-momentum transfer,M0

is the bare mass, andAssd is the conventionalZ0 self-
energy, which we have split into its real and imagina
components.

In the original formulation of the on-shell method
renormalization [1], the physical massM was related to
the bare mass by means of the expression

M2  M2
0 1 ReAsM2d , (2)

so that the mass countertermdM2  M2 2 M2
0 was iden-

tified with ReAsM2d. Recalling that counterterms in fiel
theory are real, Eq. (2) is the simplest generalization
unstable particles of the well known expressionme 
m0

e 1 Sspy  med for the mass renormalization of th
electron in QED. In particular, Ref. [1] contains a rath
detailed discussion of the gauge invariance of the res
ing one-loop corrections investigated in that work. Sin
1980 Eq. (2) has been adopted by many theoretical ph
cists and, in fact, several standard analyses of theZ0 line
shape are based on such a definition (see, for exam
Refs. [2,3]). However, it was later pointed out that,
spite of its simplicity and usefulness in the evaluat
of the one-loop corrections, Eq. (2) contains theoret
limitations in higher orders of perturbation theory. U
ing special arguments, it was concluded in Refs. [4,5] t
the use of Eq. (2) would generate gauge-dependent e
troweak corrections inOs g6d and, in a restricted class o
Rj gauges, even inOs g4d. Since the pioneering wor
of Wetzel [6], effects ofOs g4d are routinely incorpo-
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rated in the analysis ofD21ssd. In fact, in the resonance
region js 2 M2j & MG, and therefore the leading con
tributions inD21ssd are ofOs g2d. Thus, in the next-to-
leading order (NLO) approximation employed by theoris
to study the resonant amplitude, one must retain all c
tributions of Os g4d in D21ssd. Contributions ofOs g6d
in D21ssd should be taken into account when one expan
Dssd around the resonance in order to obtain the cor
sponding contribution to the nonresonant amplitude.
far the gauge dependence induced by Eq. (2) has not b
explicitly demonstrated in the analysis of the line sha
Fortunately, it was also anticipated in Refs. [4,5] that t
Os g4d gauge dependence is numerically bounded, so
the effect in this order is expected to be small.

In this Letter we reexamine the electroweak correctio
to Eq. (1) in the resonant region. Unlike previous stu
ies, we work in the framework of generalRj gauges. Our
aim is threefold: (i) to explicitly show that, as anticipate
in Refs. [4,5], a gauge dependence emerges when Eq
is employed, (ii) to evaluate its magnitude inOs g4d, and
(iii) to explicitly show that the gauge dependence disa
pears when previously proposed, modified definitions
M or Assd are employed.

We first discuss Eq. (1) in the NLO approximatio
Inserting Eq. (2) into Eq. (1) and recalling that in th
resonance regions 2 M2 is Os g2d, we have

D21ssd  ss 2 M2d f1 2 ReA0sM2dg 2 iImAsM2d

2 iImA0sM2d ss 2 M2d 1 Os g6d . (3)

For ImAsM2d we can employ the unitarity relation

2iImAsM2d  iMGf1 2 ReA0sM2dg , (4)

whereG is the radiatively corrected width. Ass 2 M2 
Os g2d it is sufficient to evaluate ImA0sM2d in the last term
to one-loop order. CallingAf and Ab the fermionic and
bosonic contributions, we have

ImA0
fsM2d  2GyM 2 s3y4p

p
2 dGmm2

b . (5)

The last term, which is very small, arises from the leadi
violation to the scaling behavior ImAf ssd , s, due to the
© 1996 The American Physical Society
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finiteness of theb quark massmb . Its magnitude can be
gleaned, for example, from Eq. (25) of Ref. [7] or from
Ref. [3]. To evaluate ImA0

bsM2d in the Rj gauges, we
need the expression of the one-loop self-energies in s
a general framework. They are given in compact form
Ref. [8]. In the analysis we restrict ourselves tojw $ 0,
wherejw is theW -gauge parameter. Negative values
jw are not tenable for at least two reasons: (i) as is w
known, the Euclidean path integral representation of
generating functional does not exist in this case (i.e.
does not converge) and (ii) forjw , 0 the unphysical
scalar massmf6 becomes imaginary and theW6 andf6

propagators develop pathological singularities at space
values of k2. Taking this restriction into account an
evaluating the corresponding imaginary parts throu
Os g2d, we find

ImA0
bsM2d  2ufs4c2

wd21 2 jwg say24c2
ws2

wd

3 s1 2 4c2
wjwd3y2 1 ufsc21

w 2 1d2 2 jwg

3 say12c2
wd sa2 2 4c2

wd1y2sa2 1 8c2
wd , (6)

wherecw ; MwyMz anda ; 1 1 c2
ws1 2 jwd. To un-

derstand the origin of these gauge-dependent contr
tions, we recall that the relevant unphysical fields ha
massesMwj

1y2
w . When jw is sufficiently small,Abssd

develops imaginary parts in the neighborhood ofs 
M2, which contribute gauge-dependent contributions
ImA0

bsM2d. We expect such contributions whenMz $

2Mwj
1y2
w , i.e., jw # s4c2

wd21 and whenMz $ Mws1 1

j
1y2
w d, i.e., jw # sc21

w 2 1d2. They correspond to the
two terms on the right-hand side of Eq. (6). Insertin
Eqs. (4)–(6) in Eq. (3), we rewrite this expression in t
form

D21ssd  f1 2 ReA0sM2d 2 iFg ss 2 M̃2 1 isG̃yM̃d

1 Os g6d , (7)

F ; ImA0
bsM2d 2 s3y4p

p
2 dGmm2

b , (8)

M̃2 ; M2s1 1 FGyMd , (9)

G̃yM̃ ; GyM . (10)

The gauge dependence of ReA0sM2d 1 iF in Eq. (7)
cancels against corresponding contributions in the ver
functions. The very small scaling violation iniF is
shifted to higher orders when evaluatingjDssdj2 [3].
The amplitudess 2 M̃2 1 isG̃yM̃d has the characteristic
s-dependent Breit-Wigner form employed in the LE
analysis. It is clear, however, that what LEP measu
is M̃ rather thanM. As F in Eq. (8) contains the gauge
dependent contribution ImA0

bsM2d, it follows from Eq. (9)
that M is gauge dependent. To evaluate the magnitu
of the gauge dependence we note that the maxim
value of jImA0

bsM2dj in Eq. (6) occurs atjw  sc21
w 2

1d2 (the threshold of the second contribution), in whic
case ImA0

bsM2d  21.6 3 1023. On the other hand,
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ImA0
bsM2d  0 for jw $ s4c2

wd21. Thus the maximum
shift in M due to the gauge dependence isjdMj  1.6 3

1023Gy2  2 MeV. Although this is a small effect, it is
of the same magnitude as the current experimental e
DM  62.2 MeV [9].

In order to circumvent the gauge dependence gener
by Eq. (2) in higher orders, an alternative definition f
the Z0 mass was proposed in Refs. [4,5] which inOs g4d
differs from Eq. (2) in very small but gauge-depende
terms. Calling s  m2

2 2 im2G2 the complex-valued
position of the pole inDssd, so thats 2 M2

0 2 Assd  0,
the physical mass and width were identified with

m2
1  m2

2 1 G2
2 , G1ym1  G2ym2 , (11)

Noting thatm2
2  M2

0 1 ReAssd, Eq. (11) corresponds to
a mass counterterm

dm2
1  m2

1 2 M2
0  ReAssd 1 G2

2 . (12)

Through Os g4d this becomes dm2
1  ReAsm2

1d 1

Fm1G1 1 Os g6d. The additionalOs g4d term Fm1G1

has important consequences. Repeating the prev
analysis one readily finds

D21ssd  f1 2 ReA0sm2
1d 2 iFg ss 2 m2

1 1 isG1ym1d

1 Os g6d . (13)

Again, the gauge dependence in ReA0sm2
1d 1 iF cancels

against corresponding contributions in the vertex pa
and the scale violation iniF is promoted to higher order
in jDssdj2. It is important to note that, in contrast wit
Eq. (7), m1 in the resonant factor is not modified. As
consequence,m1 can be directly identified with the mas
measured at LEP. In fact, there is an alternative a
more elegant way for deriving Eq. (13), already outlin
in Ref. [4]. Recalling thats is the position of the pole
we can writeDssd  fs 2 s 2 Assd 1 Assdg21, the reso-
nant part of which isDresssd  ss 2 sd21f1 2 A0ssdg21.
Multiplying and dividing by1 1 iG2ym2 and neglecting
terms of higher order in the cofactors1 1 iG2ym2dyf1 2

A0ssdg one obtains once more Eq. (13). This shows t
thes-dependent Breit-Wigner form automatically emerg
when the large imaginary part2iImA0sm2

2d in the pole’s
residue is absorbed into the resonant factor.

In order to obtain the leading nonresonant contributi
one expandsD21ssd to the next order ins 2 M2. If
Eq. (2) is employed we have

D21ssd  s 2 M2 2 iImAsM2d 2 ss 2 M2dA0sM2d

2 ss 2 M2d2A00sM2dy2 1 Os g8d . (14)

To simplify the analysis we now consider the cla
of gauges jw $ s4c2

wd21, within which the previous
calculation was gauge independent, and further neglec
small scaling violation in the one-loop amplitude ImAf ssd.
In this case we can set ImA00sM2d  0 in Eq. (14). For
4147
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ImAsM2d we again employ the unitarity relation [Eq. (4)
After some elementary algebra, Eq. (14) becomes

D21ssd 

∑
1 2 A0sM2 2 iMGd

1 1 iGyM

∏ µ
s 2 M̂2 1 is

Ĝ

M̂

∂
3 f1 2 ReA00sM2d ss 2 M̂2 1 isĜyM̂dy2g

1 Os g8d , (15)

M̂2  M2 2 d, ĜyM̂  GyM , (16)

d  2ImA0sM2dMGf1 1 ReA0sM2dg

2 G2 1 ReA00sM2dM2G2y2 . (17)

In the first term of Eq. (17), ImA0sM2d is evaluated
through Os g4d. In Os g2d, 2ImA0sM2d equals GyM
[cf. Eq. (5)]; thus theOs g4d terms cancel in Eq. (17) an
d is Os g6d. This quantity d already occurred in the
arguments of Refs. [4,5], where it was pointed out t
it is afflicted by an unbounded gauge dependence (i.e
diverges in the unitary gauge). As the LEP measurem
can be identified withM̂2, it follows from Eq. (16) that
M, defined in Eq. (2), is also afflicted by an unbound
gauge dependence inOs g6d. Once more the gaug
dependence disappears if the physical mass is ident
with Eq. (11). In fact, expanding Eq. (12) in the ran
jw $ s4c2

wd21, one hasdm2
1  ReAsm2

1d 2 d 1 Os g8d.
The additional term cancels the gauge dependence in
resonant factor of Eq. (15) andm1 can be identified with
the observed masŝM.

Aside from Refs. [4,5], a number of authors have ad
cated the idea of defining theZ0 mass and width in term
of m2 and G2 [10]. All such proposals should also lea
to correct, gauge invariant answers. One significant p
nomenological difference is that the definitions in Eq. (1
lead to thes-dependent Breit-Wigner resonance employ
in the LEP analysis, so thatm1 and G1 can be identi-
fied with the LEP measurements. The other propos
instead, differ numerically from such determinations
amounts much larger than the experimental error.

An alternative procedure to define a gauge inva
ant mass is to employ a gauge invariant self-energy
Eqs. (1) and (2), instead of the conventional amplitu
The possibility of using the pinch technique (PT) se
energy was suggested in Ref. [11]. Recently, there
been significant progress in the construction of the
self-energies in higher orders [12–14]. In the expans
analogous to Eq. (3) the conventional self-energyA is re-
placed by its PT counterpart̂A which is j independent
and, moreover, Im̂A0

bsM2d  0. Thus, the gauge depen
dence does not arise and one obtains [14] an expres
analogous to Eq. (7), with ReA0sM2d ! ReÂ0sM2d and
F ! F̂  2s3y4p

p
2 dGmm2

b, a very small and gaug
independent scale-breaking term. We have explic
shown that the two methods described above eliminate
gauge dependence in the NLO approximation. Howe
the approach based on Eq. (11) also cancels the s
4148
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breaking correction to the mass in Eqs. (8) and (9). In
Z0 case this effect is extremely small, a shiftø0.05 MeV
in m1. However, it may be more significant in other case
Furthermore, in the PT approach the gauge independe
of D21ssd in the resonance region has so far been dem
strated only throughOs g4d [14]. On the other hand, the
PT analysis can be easily recast in a form very simi
to Eq. (13), which conforms with the mass definition
Eq. (11) rather than Eq. (2). It suffices to note that t
PT result in any gauge can be expressed as [14]

D21ssd  ss 2 sd f1 2 Â0ssdg 1 Os g6d , (18)

which is explicitly j independent and shows that the po
position is not displaced. Following the steps outlin
after Eq. (13), one obtains an expression analogous to
equation with ReA0sm2

1d ! ReÂ0sm2
1d and F ! F̂. The

difference with Eq. (13) is that the first factor (as we
as the vertex parts) are now separatelyj independent.
In other words, as far as it is presently known, in t
PT approach one can define the mass either from
expression analogous to Eq. (2) (withA ! Â) or from
Eq. (11).

Previous detailed studies of theZ0 resonant amplitude
have not uncovered the gauge dependence found
the present analysis when Eq. (2) is employed. T
reason is that the gauge-dependent contribution involv
ImA0

bsM2d is routinely disregarded, a procedure that
correct in the subclass of gaugesjw $ s4c2

wd21 (this
includes the frequently employed ’t Hooft-Feynman a
unitary gauges). However, in the rangejw # s4c2

wd21

(this includes the Landau gauge) one must consider s
terms. Similarly, it appears that the contributiond,
which afflicts all gauges and is moreover unbound
has also not been considered. Reference [5] did de
these effects by sitting exactly at the resonance a
using indirect arguments. However, to make cont
with experiment one must consider the full resonan
region and demonstrate, as shown in the present Le
how the gauge dependence arises in the analysis of
line shape. It is likely that theOs g4d gauge-dependen
effects discussed above are larger in the case of o
unstable particles, such asW and H. In particular, in
the W case ImA0w

b sM2
wd fi 0 for jw , 1, so that the

gauge dependence induced by the definition analog
to Eq. (2) arises just below the ’t Hooft-Feynman gaug
These observations are relevant to elucidate the con
of mass for unstable particles, at least in the context
gauge theories. Extrapolating the lessons learned in
Z0 case to other particles, one is lead to the conclus
that such a concept should be based on the parame
that define the complex-valued position of the pole,
for example, in Eq. (11), or on gauge-independent s
energies, as in the discussions in the PT framework.
the first case, Eq. (12) gives the relevant mass countert
in compact form. Meanwhile, in cases in whichG is
perturbatively smallsG ø Md, Eq. (2) remains a very
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useful approximation that can be applied at the on
loop level and, in an important but restricted class ofRj

gauges, inOs g4d.
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