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The Z° resonant amplitude is discussed in geneRal gauges. When the original on-shell
definition of theZ® massM is employed, a gauge dependenceMfemerges in the next-to-leading
approximation which, although small, is of the same magnitude as the current experimental error. In
the following order of expansion, these unphysical effects are unbounded. The gauge dependence
of M disappears when modified, previously proposed definitions of mass or self-energies are used.
The relevance of these considerations to the concept of the mass of unstable particles is pointed out.
[S0031-9007(96)01543-8]

PACS numbers: 14.70.Hp, 11.10.Gh, 11.15.Bt

Ever since LEP (Large Electron Positron Collider) rated in the analysis ab~!(s). In fact, in the resonance
commenced operations, major efforts have been devotaegion |s — M?| = MT, and therefore the leading con-
by experimentalists and theorists to study th line tributions inD~!(s) are of O(g?). Thus, in the next-to-
shape. Indeed, this important observable leads to the déeading order (NLO) approximation employed by theorists
termination of some of the most fundamental parameter® study the resonant amplitude, one must retain all con-
in electroweak physics, namely tt#’ mass, its width, tributions of O(g*) in D~ '(s). Contributions ofO( g°)
and the cross sections at the peak. Of primary interest iim D ~!(s) should be taken into account when one expands
the theoretical side of these studies is the structure of thB(s) around the resonance in order to obtain the corre-
transverse part of the dressgéti propagator sponding contribution to the nonresonant amplitude. So

—Te _ M2 _ . -1 far the gauge dependence induced by Eq. (2) has not been
D(s) =[s = Mg = Re(s) = ilmA()], (1) explicitly demonstrated in the analysis of the line shape.
wheres = ¢* is the squared four-momentum transfél,  Fortunately, it was also anticipated in Refs. [4,5] that the
is the bare mass, andi(s) is the conventionalZ® self-  0(g*) gauge dependence is numerically bounded, so that
energy, which we have split into its real and imaginarythe effect in this order is expected to be small.
components. In this Letter we reexamine the electroweak corrections

In the original formulation of the on-shell method of to Eq. (1) in the resonant region. Unlike previous stud-
renormalization [1], the physical mag# was related to jes, we work in the framework of gener®} gauges. Our
the bare mass by means of the expression aim is threefold: (i) to explicitly show that, as anticipated

M? = M2 + ReA(M?), ) @n Refs. [4,5], a gauge depeqdence emerges V\ihen Eqg. (2)
. 5 _ |§”employe.d,_ (ii) to evaluate its magnitude @ g*), anq
so that the mass counterted/ = = M= — Mj was iden-  jj) to explicitly show that the gauge dependence disap-
tified with Rm(MZ) Reca“ing that counterterms in field pears when previously proposed’ modified definitions of
theory are real, Eq. (2) is the simplest generalization tQy or A(s) are employed.
unstable particles of the well known expression = We first discuss Eqg. (1) in the NLO approximation.

mg + %(j = m,) for the mass renormalization of the |nserting Eq. (2) into Eq. (1) and recalling that in the
electron in QED. In particular, Ref. [1] contains a ratheryesonance region — M2 is O(g2), we have

detailed discussion of the gauge invariance of the result- _ _ )

ing one-loop corrections investigated in that work. Since 2 () = (s = M) [1 = ReA'(M?)] — iIMA(M?)
1980 Eg. (2) has been adopted by many theoretical physi- — ilmA'(M?) (s — M?) + 0(g%). (3)
cists and, in fact, several standar_d _a_malyses ot7théine For ImA(M?) we can employ the unitarity relation
shape are based on such a definition (see, for example,
Refs. [2,3]). However, it was later pointed out that, in —ilmA(M?) = iMT[1 — ReA'(M?)], (4)
spite of its simplicity and usefulness in the evaluationyherer is the radiatively corrected width. As— M2 =
of the one-loop corrections, Eq. (2) contains theoretical( ¢2) it is sufficient to evaluate Id(M?2) in the last term
limitations in higher orders of perturbation theory. Us-tg one-loop order. Calling; andA, the fermionic and
ing special arguments, it was concluded in Refs. [4,5] thahgsonic contributions, we have

the use of Eg. (2) would generate gauge-dependent elec-

troweak corrections i0( g®) and, in a restricted class of ImA}(MZ) = —I/M = 3/47V2)G,mj;.  (5)

R; gauges, even i0(g*). Since the pioneering work The last term, which is very small, arises from the leading
of Wetzel [6], effects ofO(g*) are routinely incorpo- violation to the scaling behavior iy (s) ~ s, due to the
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finiteness of theb quark massn,. Its magnitude can be ImAj,(M?) = 0 for £, = (4c2)~'. Thus the maximum
gleaned, for example, from Eq. (25) of Ref. [7] or from shift in M due to the gauge dependencédd/| = 1.6 X

Ref. [3]. To evaluate Im;(M?) in the R; gauges, we 1073T'/2 =2 MeV. Although this is a small effect, it is
need the expression of the one-loop self-energies in suabf the same magnitude as the current experimental error
a general framework. They are given in compact form inAM = *2.2 MeV [9].

Ref. [8]. In the analysis we restrict ourselvesép = 0, In order to circumvent the gauge dependence generated
where¢,, is the W-gauge parameter. Negative values ofby Eq. (2) in higher orders, an alternative definition for
£, are not tenable for at least two reasons: (i) as is welthe Z° mass was proposed in Refs. [4,5] whichdx g*)
known, the Euclidean path integral representation of theliffers from Eq. (2) in very small but gauge-dependent
generating functional does not exist in this case (i.e., iterms. Callings = m3 — im,I, the complex-valued
does not converge) and (ii) fof,, < 0 the unphysical position of the pole imD(s), so thats — M§ — A(s) = 0,
scalar mass:,- becomes imaginary and thé= and¢ =~  the physical mass and width were identified with
propagators develop pathological singularities at spacelike s s 5

values of k2. Taking this restriction into account and my =m; + T35, I'i/fm =Ty/mp,  (11)

evaluating the corresponding imaginary parts througtNoting thatm2 = M2 + ReA(s), Eq. (11) corresponds to

0(g?), we find
a mass counterterm
ImA, (M?) = —6[(4c2) " — &,](a/24c%52)

X (1= dcy &) + 6l — 17 = &,]
. 2 2

« 12¢2) (a® — 4¢2)2(a2 + 8¢2). (6 Through O(g*) this becomes ém; = ReA(m}) +

(a/12¢,)(@” = de, )7 a” + 86,). (8) g 0(59). The additionalo(g") term ®m T,

wherec,, = M,,/M; anda = 1 + cp(l = &,). Toun- _ has important consequences. Repeating the previous
derstand the origin of these gauge-dependent Cont”b‘{inalysis one readily finds

tions, we recall that the relevant unphysical fields have

massesM,, £1/>. When &, is sufficiently small,A,(s) D '(s) = [I — ReA'(m}) — i®](s — m} + isT1/m1)
develops imaginary parts in the neighborhood sof + 0(g%. (13)
M?, which contribute gauge-dependent contributions to

ImAj,(M?). We expect such contributions whef, =  Again, the gauge dependence inARe:}) + id cancels
2MW§&/2, ie., &, = (4030_1 and whenM, = M,,(1 + against corresponding contributions in the vertex parts,

fvlv/2 ie., & = (c;' — 1)2. They correspond to the and the scale violation ind® is promoted to higher orders

> S : :
two terms on the right-hand side of Eq. (6). Inserting! |D(s)|*. It is important to note that, in contrast with

Egs. (4)—(6) in Eq. (3), we rewrite this expression in theEd- (7). 71 in the resonant factor is not modified. As a
form consequenceyn; can be directly identified with the mass

4 Lo ] Lo measured at LEP. In fact, there is an alternative and
D™ '(s) =[1 — ReA'(M?) — i®](s — M~ + isI'/M) more elegant way for deriving Eq. (13), already outlined

sm}=m? — M} = ReA(s) + I'}. (12)

+0(g%, 7) in Ref. [4]: Recalling thats is the position of the pole
we can writeD(s) = [s — 5 — A(s) + A(5)]"!, the reso-
O = ImA}(M?) — (3/472)G,m} (8)  nant part of which isD™(s) = (s — 5)"'[1 — A/(5)] .
_ ) Multiplying and dividing by1 + iI'»/m, and neglecting
M* =M1+ ®I'/M), (9)  terms of higher order in the cofactér + il',/m)/[1 —

o A'(5)] one obtains once more Eqg. (13). This shows that
/M =T/M. (10) the s-dependent Breit-Wigner form automatically emerges

The gauge dependence of ReW?) + i® in Eq. (7) when the large imaginary partilmA’(m3) in the pole’s

cancels against corresponding contributions in the verteresidue is absorbed into the resonant factor.

functions. The very small scaling violation ifn® is In order to obtain the leading nonresonant contribution,

shifted to higher orders when evaluatin®(s)|> [3].  one expandsD '(s) to the next order ins — M2. If

The amplitude(s — M? + isI'/M) has the characteristic Eq. (2) is employed we have

s-dependent Breit-Wigner form employed in the LEP . , 5 o

analysis. It is clear, however, that what LEP measures D~ (s) = s — M~ — ilmA(M?) — (s — M)A'(M")

is M rather thanM. As @ in Eq. (8) contains the gauge- — (s — MD2A"MY)/)2 + 0(gb). (14)

dependent contribution I}, (M?), it follows from Eq. (9)

that M is gauge dependent. To evaluate the magnituddo simplify the analysis we now consider the class

of the gauge dependence we note that the maximuraf gaugesé¢, = (4c2)~!, within which the previous

value of [ImA;,(M?)| in Eqg. (6) occurs at,, = (c,,! — calculation was gauge independent, and further neglect the

1)? (the threshold of the second contribution), in whichsmall scaling violation in the one-loop amplitudeAnts).

case Imi,(M?) = —1.6 X 1073. On the other hand, In this case we can set Wi(M?) = 0 in Eq. (14). For
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ImA(M?) we again employ the unitarity relation [Eq. (4)]. breaking correction to the mass in Egs. (8) and (9). In the

After some elementary algebra, Eq. (14) becomes 70 case this effect is extremely small, a shif0.05 MeV

. | — A(M? — iMT) A I in m;. However, it may be more significant in other cases.
D™ (s) = [ T+ T/M }(s - M* + is7> Furthermore, in the PT approach the gauge independence
i/ R of D~!(s) in the resonance region has so far been demon-

X [1 — ReA”"(M?) (s — M? + isT'/M)/2] strated only througlO(g*) [14]. On the other hand, the

+ 0(g% (15) PT analysis can be easily recast in a form very similar

’ to Eqg. (13), which conforms with the mass definition in

M = M?* — s, /b =r1/Mm, (16) Eq. (11) rather than Eq. (2). It suffices to note that the

PT result in any gauge can be expressed as [14]

o = —|mA/(M2)MF[l + Re4’(M2)] D_I(S) _ (S _ E)[l _ Al(E)] + 0(g6), (18)

2 "2\ A2 T2
- I + ReA"(M)MT?/2. a7 which is explicitly £ independent and shows that the pole
In the first term of Eq. (17), I/(M?) is evaluated position is not displaced. Following the steps outlined
through 0(g*). In 0(g?), —ImA'(M?) equals '/M after Eq. (13), one obtains an expression analogous to that
[cf. Eq. (5)]; thus theD( g*) terms cancel in Eq. (17) and equation with Ra’(m?}) — Red/(m?) and® — &. The
8 is 0(g%. This quantity § already occurred in the difference with Eq. (13) is that the first factor (as well
arguments of Refs. [4,5], where it was pointed out thatas the vertex parts) are now separatélyindependent.
it is afflicted by an unbounded gauge dependence (i.e., in other words, as far as it is presently known, in the
diverges in the unitary gauge). As the LEP measuremerRT approach one can define the mass either from the
can be identified withiZ?, it follows from Eq. (16) that expression analogous to Eq. (2) (with— A) or from
M, defined in Eq. (2), is also afflicted by an unboundedEq. (11).
gauge dependence i®(gf). Once more the gauge Previous detailed studies of ti# resonant amplitude
dependence disappears if the physical mass is identifidgshve not uncovered the gauge dependence found in
with Eq. (11). In fact, ex;aanding Eq. (12) in the rangethe present analysis when Eq. (2) is employed. The
&, = (4¢2)7!, one hasdmi = ReA(m?) — & + 0(g®). reason is that the gauge-dependent contribution involving
The additional term cancels the gauge dependence in thmAj,(M?) is routinely disregarded, a procedure that is
resonant factor of Eq. (15) and, can be identified with correct in the subclass of gaugeés = (4¢2)~! (this
the observed masH. includes the frequently employed 't Hooft-Feynman and
Aside from Refs. [4,5], a number of authors have advo-unitary gauges). However, in the rangg = (4¢2)"!
cated the idea of defining tt#’ mass and width in terms (this includes the Landau gauge) one must consider such
of my, andI', [10]. All such proposals should also lead terms. Similarly, it appears that the contributiah
to correct, gauge invariant answers. One significant phewhich afflicts all gauges and is moreover unbounded,
nomenological difference is that the definitions in Eq. (11)has also not been considered. Reference [5] did detect
lead to thes-dependent Breit-Wigner resonance employedhese effects by sitting exactly at the resonance and
in the LEP analysis, so that; and I'y can be identi- using indirect arguments. However, to make contact
fied with the LEP measurements. The other proposalsyith experiment one must consider the full resonance
instead, differ numerically from such determinations byregion and demonstrate, as shown in the present Letter,
amounts much larger than the experimental error. how the gauge dependence arises in the analysis of the
An alternative procedure to define a gauge invaridine shape. It is likely that the( g*) gauge-dependent
ant mass is to employ a gauge invariant self-energy irffects discussed above are larger in the case of other
Egs. (1) and (2), instead of the conventional amplitudeunstable particles, such a8 and H. In particular, in
The possibility of using the pinch technique (PT) self-the W case Im\)"(M2) # 0 for &, <1, so that the
energy was suggested in Ref. [11]. Recently, there hagauge dependence induced by the definition analogous
been significant progress in the construction of the PTo Eq. (2) arises just below the 't Hooft-Feynman gauge.
self-energies in higher orders [12—14]. In the expansioThese observations are relevant to elucidate the concept
analogous to Eq. (3) the conventional self-enefgg re-  of mass for unstable particles, at least in the context of
placed by its PT counterpaft which is ¢ independent gauge theories. Extrapolating the lessons learned in the
and, moreover, I, (M?) = 0. Thus, the gauge depen- Z° case to other particles, one is lead to the conclusion
dence does not arise and one obtains [14] an expressithat such a concept should be based on the parameters
analogous to Eq. (7), with R&M?) — Red'(M?) and that define the complex-valued position of the pole, as,
d— b = —(3/4w\/§)GMm,2,, a very small and gauge for example, in Eg. (11), or on gauge-independent self-
independent scale-breaking term. We have explicithenergies, as in the discussions in the PT framework. In
shown that the two methods described above eliminate thihe first case, Eq. (12) gives the relevant mass counterterm
gauge dependence in the NLO approximation. Howevelin compact form. Meanwhile, in cases in whidh is
the approach based on Eq. (11) also cancels the scalperturbatively small(I’ < M), Eq. (2) remains a very
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