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It is well known that at long wavelengthks an sswave scatterer can have a scattering cross section
o on the order ofA?, much larger than its physical size, as measured by the range of its potential.
Very interesting phenomena can arise wit@n or moreidentical scatterers are placed close together,
well within one wavelength. We show that, for a pair of identical scatterers, an extremely narrow
p-wave “proximity” resonance develops from a broadevave resonance of the individual scatterers.
A new swave resonance of the pair also appears. The relation of these proximity resonances (so
called because they appear when the scatterers are close together) to the Thomas and Efimov effects is
discussed. [S0031-9007(96)01609-2]

PACS numbers: 03.65.Nk, 03.40.Kf, 03.80.+r

In quantum scattering theory (or more generally wavalipolar radiation from the pair of bubbles, which radiates
scattering) an object “illuminated” by the wave field hassound energy much less efficiently. The dipole amplitude
two characteristic cross sections. One is the physical sizgoes asd, whered is the distance between the bubbles,
or cross sectionr derived from the rangey of the and the radiated power (and resonance width)’as.
perturbation of the medium and the other is an effective Another example of this phenomenon can occur in
cross sectiowr which is its scattering cross section. Often light scattering. Consider two (or more) aligned, resonant
(and especially in the short wavelength limit) the two sizesmolecular dipole light scatterers. These oscillators will be
are comparable, but can be much larger thamy. For coupled by the radiation field at the incident frequency as
example, if the scatterer has a long wavelengjthwave  well as dipole-dipole interactions and possibly phonons if
resonance, where “long” is defined as> ry, then the they are on a surface, etc. This makes the light scattering
maximum cross sectionr = 47 /k> = A*>/7 is of the example more complex than bubbles in water or the
order of the square of the wavelength, which in someguantum scattering considered below, but the essence of
cases is thousands of times larger tlagn the effect is present. A careful self-consistent treatment

We might expect something strange to happen when wef the two scatterer problem coupled by the radiation
locate two identical scattereirssideeach other’s effective field is beyond the scope of this Letter, but would be an
radiusr, = /o /7 but outsidetheir physical radius,. interesting avenue to explore. Some time ago Spruch and
Qualitatively, one scatterer “cannot miss” the other wherKelsey [4] made very suggestive progress in this regard.
it scatters the incoming wave. They might pass the wave Near resonance the individual cross sections are very
back and forth for a long time, trapping it in their vicinity. large compared to the physical size of the molecules,
Some examples of this behavior are known, although nowvhich can be placed very close together compared to
perhaps described in just this way. The scattering of lighboth the cross section and the wavelength. There will
and sound from appropriate objects (see below) are twbe an in-phase symmetric mode, for which the field am-
examples. The present contribution has two purposeglitude is twice that of a single scatterer and the power
first, to emphasize the generality of the phenomenon, andadiated four times larger; this is twice the power of the
second, to show how it arises in quantum scattering, wherevo considered incoherently. The radiative lifetime of
it apparently has not been described or (as yet) seen. this mode is half that of a single oscillator, its linewidth

The phenomenon is easily understood in the case divice as large. At a higher frequency there is the an-
weak, fixed frequency sound incident on two proximatetisymmetric mode, which has no dipole moment and is
small identical air bubbles in water [1,2]. It appears“infrared inactive” in the language of molecular spec-
that the phenomenon was first recognized in the bubbl&éoscopy. A small quadrupole (and higher order) field
scattering context by Tolstoy, where it was called “super+emains with a dramatically reduced radiation rate corre-
resonance” [1]. For diameters o6 * M a single bubble sponding to a much narrower resonance than for a single
is resonant in the audio range [3]. Near the resonancscatterer.
frequency the cross section grows tostwave maximum We should expect to see the same phenomenon with
omax = 47 /k?, which corresponds to a disk with a other wave equations and scattering theories. Naturally,
diameter2A/7, where A is the wavelength, hundreds three or more proximate scatterers will lead to related
of times larger than the diameter of the bubble. Foreffects. Here we concentrate on the case of two scatterers.
out of phase oscillation one bubble contracts while theSince the effect goes away as the scatterers are separated,
other expands, canceling the monopole field, leaving onlyve call the effecproximity resonance
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f=flk) = Z(Xa® — 1),

When the scatterer rigidly excludes the wave field, ”
l

such as hard sphere scattering in quantum mechanics
or acoustics, theno ~ O(oy) and there will be no
proximity resonance. Loose|y Speaking, in the hard The two scatterer amplitude matrx is obtained from
sphere case the scattering is more nearly classical artfie one scatterer amplitugeas

(7)

intuitive because the objects are not pladgeside their
effective diameters. Thus no hint of proximity resonance
is contained in the recent literature on the quantum and
semiclassical two and three disk scattering problem [5,6].
Proximity resonances are intrinsically a wave phenome-
non, far from the semiclassical or ray limit: they require
that a single wavelength encompass both scatterers, whi
are distinct objects. (This however makes application o h
the swave multiple scattering theory [7] possible, which
we do below). The scatterers necessarily have structu
on a scale small compared to a wavelength, violating the
usual semiclassical rules. 150
Consider two small, sphericalwave scatterers placed
at fixed distanced apart, with d > 2ry, where ry =
Joo/m. (We treat three dimensional scattering here, but
exactly analogous derivations and results exist in two
dimensions). The scattering wave function for incoming
wave i (7) can be written

f

¥(F) = ()

tu

+ [ f dr' dr" Go(r, PT (', 7o (7"), (1)

whereT (¥',7") is the scattering” matrix for the pair of
particles at wave numbét, and

exp(ik|r — F'])
— 2
2m|r — ¥ (2)
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In the present problem symmetry dictates = F,, =

;Fi, = F,1 = B. Given that the scattering centers are
uch closer than a wavelength, we can profitably extract
es, p,...components ofs(7) in terms ofa andB. We

expand the scattered wave about the mean position (taken
6 ber = 0) of the pair of scatterers, which lie along the

axis at*+d/2. Using ¢o(7) = exp(il; - 7), we obtain

r the diagonalS-matrix elementsS;—g ;, to orderd?,
i a + ,8< k2d2>
—(1 = 8 = 1 - = 10
A 0) 4 2 (10)
_Zk(l S1) yym k. kd”. (11)

We can parametrize the individual scattering ampli-
desf conveniently using the&k-matrix formalism [8];

assuming arkR-matrix radiuse we have

_ T ika (1 + ikR) B
=% {(1 — ikR) 1] (12)
here
_ po _ po 75
R = R°(E) + R.s(E) = RY(E) + —(EV — 5 (13)

@s the free Green function. Anywhere outside the scatterynere E, is the single scatterer resonance energy and
Ing centers we may write R(E) is the backgroundk matrix. The single scatterer
resonance width i§' = 2ky?2.

The “pure resonance” (no background scattering) case
leads to simple formulas for the two new resonances
A single scattereri has its ownT matrix and the Whichappear in the scattering with both scatterers present.
Corresponc“ng wave function is g|ven as We seta = 0 and RO(E) = 0, and look for resonance

poles (zeros of deX) in the complexk plane. We obtain,

(7)) = o(7) setting defA = 0,

E, — k%/2 + ik+vy?
E, — ki/2 — ik+7y?

Writing k+ = k,+ + ik;~, wherek,+~ and k;- are real,
we find the new resonance energigs — il',./2 =

TF,#) = > Fiyd(F — i)di — 7).
i,j=12

3)

= +e¢ *dQik.d).

*f f dr' dr'" Go(F, )i, F o), (4) (14)

with

(77 = f8(F — F)8(F" — ) ) (k,» + ik;=)2/2 with
leading to the usual asymptotic form i
g ymp ke ~ _y%<1 . Slzk;d) (15)
. . exp(ik|F — #l) Y
WE) = o) + [T ©) " This gives
as|r — r;| — . The single scattering amplitudé can E. — k= ~F — +7_5005(k d) (16)
be written - 2 g ~d S
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Approximately, TABLE I. Predicted and actual real and imaginary parts
pp y _ ginary p
5 of resonance energiesy? = 0.005,y, = 7.07 X 1074 E, =
kiy =~ =2y, (17)  001,d = 1.
ki =~ —y2E,d*/3. (18) E- Yo E, Yo,

The imaginary parts of the resonance energies are then Predicted  0.01216 1.52 x 107>  0.007786  0.00125
Exact 0.01214 1.50 x 107>  0.007713 0.00125
Ty ~4k,y, (19)

and

kid*
—TI. (20)

6 Table | shows the results of using the approximate
We have used the fact that- is small compared to formulas for the resonance position and widths, Egs. (16),
k,+, and substituted sik,d/k,d for sink,~d/k,~d and  (19), and (20).
cosk,d for cosk,+d; normally this is quite accurate. If there is a background phase shift the resonances
Note that the %" resonance is shifted down in energy and can look very similar or quite different depending on the
has twice the width of the single scatterer. At the complexnagnitude and slope of the background phase shift. The
energyE . itis found that the amplitude + B blows up, proximity resonance can be extremely narrow, broader
showing this is ars-wave resonance. The-" resonance than the background free case, or even absent. The energy
is shifted up in energy and has a much smaller width thashifts can be reversed. We illustrate with a case of
the single scatterer. At the complex enefgy itis found two square wells of depthl, = 21, rangea = 0.25, and
that the amplitudex — B blows up, showing this to be distance apart/ = 2.2, providing the background phase
a p-wave resonance. The ratio of widths is estimated tehifts to a resonance terd#, = 0.01,y; = 0.005. The
beE,d?/3, or about ¥50 in the case shown below. This differences with the background free case are dramatic
is the proximity resonance. Note an interesting fact thafFig. 2). Clearly the phenomenology is rich even for two
the proximity resonance energy is Coulomb repulsie:  scatterers.
increases ag !, the inverse of the distance between the The proximity resonance has some of the flavor of
scatterers. the startling Efimov states, which were discovered more

Figure 1 shows the results of a typical proximity reso-than 25 years ago [9]. Efimov showed that for three
nance. The cross section as a function of energy is showparticles, with at least two of the three possible pairs
for the single scatterer (dashed line), which has a resadnteracting “resonantly” at “low” energy, a large or even
nance peak ak, = 0.01. Shifted to lower energy we infinite number of bound states may result. “Resonant”
find the swave two scatterer resonance, which is aboutneans large scattering length > ry, and low means
twice as broad, as predicted. The very narrpwave krop << 27. These two conditions are similar to those for
proximity resonance is shifted an almost equal amount t@roximity resonancer, = /o /7 > ro, kd < 2. r,
higher energy. We have assumed the incident wave iglays the role ok, above the energy where the scattering
along the axis of the two centers; otherwise thwave length applies. For proximity resonance, one needs a low
proximity resonance cross section needs to be multipliegnergy resonance in the individual scatterers, as was the
by k2/k*. The proximity resonance is nearly 50 timescase in the acoustic and light scattering examples cited
narrower than the single center resonance. This width deaebove. Unlike the Efimov effect, use of the scattering
creases ag?, so if the two centers are physically small length limit for the swave phase shifs, namely § =
and can be placed very close the resonance width can be-kay, is not sufficient, even ify, is large.
come extremely small.

I = klyid®/3 =

single scatterer p-wave
gg SWave  (x 0.133) < 40y (X0.0133)
& A S A
g 69 :"" § 30 ingle scatterer
§ 40 A p-wave § 20
2 Pt (X 0.066) s
S od [ © 10
N <y === s-wave
0.005 0.01 0.015 0.02 0.005 0.01 0.015 0.02
E E

FIG. 1. Cross sections for quantum proximity resonance withFIG. 2. Cross sections for quantum proximity resonance with
no background scattering. See Table | for parameters used. background scattering. See text for parameters used.
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Efimov generalized his effect to nonidentical particles We acknowledge helpful discussions with S. Chan, T.
[10]. Also, Amado and Noble [11] considered different Starace, and J. Babb. This research was supported by
mass ratios, including the “Born-Oppenheimer” case othe National Science Foundation under Grant No. CHE-
two heavy and one light particle. This is the case9014555.
closest to ours. We can think of the fixed scatterers
considered here as simply adiabatically slow; however,
unlike the Efimov effect we are strictly considering
scattering resonances, not bound states.

A related effect was discovered by Thomas [12] even
earlier, more than 60 years ago. He showed that the[l] I. Tolstoy, J. Acoust. Soc. AmB80, 282 (1986);83, 2086
binding energy of three particles interacting by potentials ~ (1988).
of range ro increases without bound ag — 0. As [2] C. Feuillade, J. Acoust. Soc. ArB8, 1178 (1995).

Adhikari et al. made clear [13], the Efimov and Thomas [3] C.E. BrennenCavitation and Bubble Dynamid®xford
effects are related; Efimov correspondsdp— « for University Press, New York, 1995).
fixed ro: Thomas corresponds ta, — 0 for fixed ao. [4] L. Spruch and E. J. Kelsey, Phys. Rev.18, 845 (1978).

Proximity resonances fall into a larger class of problems [5] P. Gaspard and S.A. Rice, J. Chem. Phge, 2225
. : . (1989);90, 2242 (1989)90, 2255 (1989).

togt?‘ther with the "E'flmov and Thomas effec';s for which [6] B. Eckhardt, J. Phys. &R0, 5971 (1987).
the “quantum size” is much larger than potential range and|7] |'s. Rodberg and R.M. Thaler|ntroduction to the
distance between the particles, with resulting nonintuitive  ~ Quantum Theory of ScatteringAcademic, New York,
effects. This Letter is a contribution to understanding this ~ 1967).
wider class of problems, which we suspect will grow with [8] See, e.g., J.E. LynriThe Theory of Neutron Resonance
the addition of other examples. ReactiongClarendon Press, Oxford, 1968).

The conditions for a proximity resonance are rather [9] V. Efimov, Phys. Lett33B, 563 (1970); Nucl. PhysA362,
restrictive for atomic systems, as are the Efimov and 45 (1981).
Thomas effects. Nonetheless given a low energy resdd0] V. Efimov, Nucl. PhysA210, 157 (1973).
nance it may be possible to see them. Proximity resoltd] R1'9D7'2 Amado and J.V. Noble, Phys. Rev. & 1992
nances persists in two dimensions, where it is possible t 2] (L H. T)Homas, Phys. Rewi7, 903 (1935),
fix two or more atoms on agurface and scatter an electro 3] S.K. Adhikari, A. Delfino, T. Frederico, I.1. Goldman,
from them [14]. It is possible that electron or phonon and L. Tomino, Phys. Rev. &7, 3666 (1988).
scattering from two or more nearby defects or impurities{14] E.J. Heller, M. F. Crommie, C.P. Lutz, and D. M. Eigler,
near the bottom of a band, may give a three dimensional  Nature (London69, 464 (1994); S. Chan and E. J. Heller
example in crystal lattices. (to be published).
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