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It is well known that at long wavelengthsl an s-wave scatterer can have a scattering cross sec
s on the order ofl2, much larger than its physical size, as measured by the range of its pote
Very interesting phenomena can arise whentwo or moreidentical scatterers are placed close togeth
well within one wavelength. We show that, for a pair of identical scatterers, an extremely na
p-wave “proximity” resonance develops from a broaders-wave resonance of the individual scatterer
A new s-wave resonance of the pair also appears. The relation of these proximity resonanc
called because they appear when the scatterers are close together) to the Thomas and Efimov e
discussed. [S0031-9007(96)01609-2]

PACS numbers: 03.65.Nk, 03.40.Kf, 03.80.+r
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In quantum scattering theory (or more generally wa
scattering) an object “illuminated” by the wave field h
two characteristic cross sections. One is the physical
or cross sections0 derived from the ranger0 of the
perturbation of the medium and the other is an effec
cross sections which is its scattering cross section. Oft
(and especially in the short wavelength limit) the two siz
are comparable, buts can be much larger thans0. For
example, if the scatterer has a long wavelengthl s-wave
resonance, where “long” is defined asl ¿ r0, then the
maximum cross sections ­ 4pyk2 ­ l2yp is of the
order of the square of the wavelength, which in so
cases is thousands of times larger thans0.

We might expect something strange to happen when
locate two identical scatterersinsideeach other’s effective
radius rs ;

p
syp but outsidetheir physical radiusr0.

Qualitatively, one scatterer “cannot miss” the other wh
it scatters the incoming wave. They might pass the w
back and forth for a long time, trapping it in their vicinit
Some examples of this behavior are known, although
perhaps described in just this way. The scattering of li
and sound from appropriate objects (see below) are
examples. The present contribution has two purpo
first, to emphasize the generality of the phenomenon,
second, to show how it arises in quantum scattering, wh
it apparently has not been described or (as yet) seen.

The phenomenon is easily understood in the case
weak, fixed frequency sound incident on two proxima
small identical air bubbles in water [1,2]. It appea
that the phenomenon was first recognized in the bub
scattering context by Tolstoy, where it was called “sup
resonance” [1]. For diameters of1024 M a single bubble
is resonant in the audio range [3]. Near the resona
frequency the cross section grows to itss-wave maximum
smax ­ 4pyk2, which corresponds to a disk with
diameter 2lyp, where l is the wavelength, hundred
of times larger than the diameter of the bubble. F
out of phase oscillation one bubble contracts while
other expands, canceling the monopole field, leaving o
0031-9007y96y77(20)y4122(4)$10.00
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dipolar radiation from the pair of bubbles, which radia
sound energy much less efficiently. The dipole amplitu
goes askd, whered is the distance between the bubble
and the radiated power (and resonance width) ask2d2.

Another example of this phenomenon can occur
light scattering. Consider two (or more) aligned, reson
molecular dipole light scatterers. These oscillators will
coupled by the radiation field at the incident frequency
well as dipole-dipole interactions and possibly phonon
they are on a surface, etc. This makes the light scatte
example more complex than bubbles in water or
quantum scattering considered below, but the essenc
the effect is present. A careful self-consistent treatm
of the two scatterer problem coupled by the radiat
field is beyond the scope of this Letter, but would be
interesting avenue to explore. Some time ago Spruch
Kelsey [4] made very suggestive progress in this regar

Near resonance the individual cross sections are
large compared to the physical size of the molecu
which can be placed very close together compared
both the cross section and the wavelength. There
be an in-phase symmetric mode, for which the field a
plitude is twice that of a single scatterer and the pow
radiated four times larger; this is twice the power of t
two considered incoherently. The radiative lifetime
this mode is half that of a single oscillator, its linewid
twice as large. At a higher frequency there is the
tisymmetric mode, which has no dipole moment and
“infrared inactive” in the language of molecular spe
troscopy. A small quadrupole (and higher order) fie
remains with a dramatically reduced radiation rate co
sponding to a much narrower resonance than for a si
scatterer.

We should expect to see the same phenomenon
other wave equations and scattering theories. Natur
three or more proximate scatterers will lead to rela
effects. Here we concentrate on the case of two scatte
Since the effect goes away as the scatterers are sepa
we call the effectproximity resonance.
© 1996 The American Physical Society
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When the scatterer rigidly excludes the wave fie
such as hard sphere scattering in quantum mecha
or acoustics, thens , O ss0d and there will be no
proximity resonance. Loosely speaking, in the h
sphere case the scattering is more nearly classical
intuitive because the objects are not placedinside their
effective diameters. Thus no hint of proximity resonan
is contained in the recent literature on the quantum
semiclassical two and three disk scattering problem [5

Proximity resonances are intrinsically a wave phenom
non, far from the semiclassical or ray limit: they requ
that a single wavelength encompass both scatterers, w
are distinct objects. (This however makes application
the s-wave multiple scattering theory [7] possible, whi
we do below). The scatterers necessarily have struc
on a scale small compared to a wavelength, violating
usual semiclassical rules.

Consider two small, sphericals-wave scatterers place
at fixed distanced apart, with d . 2r0, where r0 ­p

s0yp. (We treat three dimensional scattering here,
exactly analogous derivations and results exist in
dimensions). The scattering wave function for incom
wavec0s$rd can be written

cs$rd ­ c0s$rd

1
Z Z

dr 0 dr 00 G0s$r, $r 0dT s$r 0, $r 00dc0s$r 00d , (1)

whereT s$r 0, $r 00d is the scatteringT matrix for the pair of
particles at wave numberk, and

G0s$r , $r 0d ­
expsikj$r 2 $r 0jd

2pj$r 2 $r 0j
(2)

is the free Green function. Anywhere outside the scat
ing centers we may write

T s$r 0, $r 00d ­
X

i,j­1,2

Fijds$r 0 2 $ridds$r 00 2 $rjd . (3)

A single scattereri has its own T matrix and the
corresponding wave function is given as

cs$rd ­ c0s$rd

1
Z Z

dr 0 dr 00 G0s $r , $r 0dts$r 0, $r 00dc0s$r 00d , (4)

with

ts$r 0, $r 00d ­ fds$r 0 2 $ridds$r 00 2 $rid (5)

leading to the usual asymptotic form

cs$rd ! c0s$rd 1 f
expsikj$r 2 $rijd

j$r 2 $rij
(6)

as j$r 2 $rij ! `. The single scattering amplitudef can
be written
ld,
nics

rd
and

ce
nd
6].
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se2id0skd 2 1d . (7)

The two scatterer amplitude matrixF is obtained from
the one scatterer amplitudef as

F ­

µ
1 fG0s$ri , $rjd

fG0s$ri , $rjd 1

∂
21µ f 0

0 f

∂
(8)

; A21f . (9)

In the present problem symmetry dictatesF11 ­ F22 ­
a; F12 ­ F21 ­ b. Given that the scattering centers a
much closer than a wavelength, we can profitably extr
thes, p, . . . components ofcs$rd in terms ofa andb. We
expand the scattered wave about the mean position (ta
to be $r ­ 0) of the pair of scatterers, which lie along th
z axis at 6dy2. Using c0s$rd ­ expsi $k ? $rd, we obtain
for the diagonalS-matrix elementsSl­0,1, to orderd2,

i
2k

s1 2 S0d ­
a 1 b

4p

µ
1 2

k2
z d2

2

∂
. (10)

3i
2k

s1 2 S1d ­
a 2 b

4p
kzkd2. (11)

We can parametrize the individual scattering amp
tudesf conveniently using theR-matrix formalism [8];
assuming anR-matrix radiusa we have

f ­
p

ik
e2ika

"
s1 1 ikRd
s1 2 ikRd

2 1

#
, (12)

where

R ­ R0sEd 1 RressEd ­ R0sEd 1
g2

n

sEn 2 Ed
, (13)

where En is the single scatterer resonance energy
R0sEd is the backgroundR matrix. The single scattere
resonance width isG ­ 2kg2

n.
The “pure resonance” (no background scattering) c

leads to simple formulas for the two new resonan
which appear in the scattering with both scatterers pres
We set a ­ 0 and R0sEd ­ 0, and look for resonance
poles (zeros of detA) in the complexk plane. We obtain,
setting detA ­ 0,

En 2 k2
6y2 1 ik6g2

n

En 2 k2
6y2 2 ik6g2

n

­ 6e2ik6ds2ik6dd . (14)

Writing k6 ; kr6 1 iki6, wherekr6 and ki6 are real,
we find the new resonance energiesE6 2 iGn6

y2 ­
skr6 1 iki6d2y2 with

ki6 ø 2g2
n

µ
1 6

sinknd
knd

∂
. (15)

This gives

E6 ­
k2

r6

2
ø En 2

"
6

g2
n

d
cosskndd

#
. (16)
4123
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Approximately,

ki1 ø 22g2
n . (17)

ki2 ø 2g2
nEnd2y3 . (18)

The imaginary parts of the resonance energies are the

G1 ø 4kng2
n (19)

and

G2 ø k3
ng2

nd2y3 ­
k2

nd2

6
G . (20)

We have used the fact thatki6 is small compared t
kr6, and substituted sinkndyknd for sinkr6dykr6d and
cosknd for coskr6d; normally this is quite accurat
Note that the “1” resonance is shifted down in energy a
has twice the width of the single scatterer. At the comp
energyE1 it is found that the amplitudea 1 b blows up,
showing this is ans-wave resonance. The “2” resonance
is shifted up in energy and has a much smaller width t
the single scatterer. At the complex energyE2 it is found
that the amplitudea 2 b blows up, showing this to b
a p-wave resonance. The ratio of widths is estimate
beEnd2y3, or about 1y50 in the case shown below. Th
is the proximity resonance. Note an interesting fact
the proximity resonance energy is Coulomb repulsive:E1

increases asd21, the inverse of the distance between
scatterers.

Figure 1 shows the results of a typical proximity re
nance. The cross section as a function of energy is sh
for the single scatterer (dashed line), which has a r
nance peak atEn ­ 0.01. Shifted to lower energy w
find the s-wave two scatterer resonance, which is ab
twice as broad, as predicted. The very narrowp-wave
proximity resonance is shifted an almost equal amoun
higher energy. We have assumed the incident wav
along the axis of the two centers; otherwise thep-wave
proximity resonance cross section needs to be multip
by k2

z yk2. The proximity resonance is nearly 50 tim
narrower than the single center resonance. This width
creases asd2, so if the two centers are physically sm
and can be placed very close the resonance width ca
come extremely small.

FIG. 1. Cross sections for quantum proximity resonance
no background scattering. See Table I for parameters use
4124
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TABLE I. Predicted and actual real and imaginary p
of resonance energies.g2

n ­ 0.005, gn ­ 7.07 3 1024, En ­
0.01, d ­ 1.

E2 gn2
E1 gn1

Predicted 0.01216 1.52 3 1025 0.007786 0.00125
Exact 0.01214 1.50 3 1025 0.007713 0.00125

Table I shows the results of using the approxim
formulas for the resonance position and widths, Eqs. (
(19), and (20).

If there is a background phase shift the resona
can look very similar or quite different depending on
magnitude and slope of the background phase shift.
proximity resonance can be extremely narrow, broa
than the background free case, or even absent. The e
shifts can be reversed. We illustrate with a case
two square wells of depthV0 ­ 21, rangea ­ 0.25, and
distance apartd ­ 2.2, providing the background pha
shifts to a resonance termEn ­ 0.01, g2

n ­ 0.005. The
differences with the background free case are dram
(Fig. 2). Clearly the phenomenology is rich even for t
scatterers.

The proximity resonance has some of the flavor
the startling Efimov states, which were discovered m
than 25 years ago [9]. Efimov showed that for th
particles, with at least two of the three possible p
interacting “resonantly” at “low” energy, a large or ev
infinite number of bound states may result. “Reson
means large scattering lengtha0 ¿ r0, and low mean
kr0 ø 2p. These two conditions are similar to those
proximity resonance:rs ­

p
syp ¿ r0, kd ø 2p . rs

plays the role ofa0 above the energy where the scatter
length applies. For proximity resonance, one needs a
energy resonance in the individual scatterers, as wa
case in the acoustic and light scattering examples
above. Unlike the Efimov effect, use of the scatte
length limit for the s-wave phase shiftd, namely d ­
2ka0, is not sufficient, even ifa0 is large.

FIG. 2. Cross sections for quantum proximity resonance
background scattering. See text for parameters used.
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Efimov generalized his effect to nonidentical partic
[10]. Also, Amado and Noble [11] considered differe
mass ratios, including the “Born-Oppenheimer” case
two heavy and one light particle. This is the ca
closest to ours. We can think of the fixed scatter
considered here as simply adiabatically slow; howe
unlike the Efimov effect we are strictly considerin
scattering resonances, not bound states.

A related effect was discovered by Thomas [12] ev
earlier, more than 60 years ago. He showed that
binding energy of three particles interacting by potent
of range r0 increases without bound asr0 ! 0. As
Adhikari et al. made clear [13], the Efimov and Thom
effects are related; Efimov corresponds toa0 ! ` for
fixed r0; Thomas corresponds tor0 ! 0 for fixed a0.
Proximity resonances fall into a larger class of proble
together with the Efimov and Thomas effects for wh
the “quantum size” is much larger than potential range
distance between the particles, with resulting nonintui
effects. This Letter is a contribution to understanding
wider class of problems, which we suspect will grow w
the addition of other examples.

The conditions for a proximity resonance are rat
restrictive for atomic systems, as are the Efimov
Thomas effects. Nonetheless given a low energy r
nance it may be possible to see them. Proximity re
nances persists in two dimensions, where it is possib
fix two or more atoms on a surface and scatter an elec
from them [14]. It is possible that electron or phon
scattering from two or more nearby defects or impurit
near the bottom of a band, may give a three dimensi
example in crystal lattices.
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