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Conventional weak-coupling perturbation theory suffers from problems that arise from the res
coupling of successive orders in the perturbation series. Multiple-scale perturbation theory a
such problems by implicitly performing an infinite reordering and resummation of the convent
perturbation series. Multiple-scale analysis provides a good description of theclassical anharmonic
oscillator. Here, it is extended to study the Heisenberg operator equations of motion for the qu
anharmonic oscillator. The analysis yields a system of nonlinear operator differential equa
which is solved exactly. The solution provides an operator mass renormalization of the th
[S0031-9007(96)01684-5]
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Multiple-scale perturbation theory (MSPT) is a pow
erful and sophisticated perturbative method for solvi
physical problems having a small parametere [1,2].
MSPT is applicable to both linear and nonlinear problem
Indeed, it is so general that other perturbative meth
such as WKB theory and boundary-layer theory, whi
are useful in more limited contexts, may be viewed
special cases of MSPT [1].

MSPT recognizes that dynamical systems exhibit ch
acteristic physical behaviors at various length or tim
scales. The problem with conventional perturbation th
ory is that there is often a resonant coupling between s
cessive orders. This coupling gives rise tosecular terms
(terms that grow rapidly with the length or time variabl
in the perturbation series. Secular terms conflict w
physical requirements that the solution be finite. MS
reorganizesthe conventional perturbation series to elim
nate secular terms, and, in doing so, it describes quan
tively the behaviors that occur at many scales.

Ordinarily, MSPT is applied toclassical differential
equations such as Duffing’s equation (the nonlinear eq
tion of motion for the classical anharmonic oscillator):

y00 1 y 1 4ey3 ­ 0 se $ 0d . (1)

The positivity ofe ensures thatystd is bounded [1]. The
classical harmonic oscillator (e ­ 0) has only one time
scale, the period of oscillation. However, whene fi 0,
the nonlinear term in Eq. (1) introduces many time scal
Using MSPT, one can show that on a long-time sc
[t ­ Ose21d] there is a frequency shift of ordere.

In this Letter we generalize MSPT and apply it to th
Heisenberg operator equations of motion of thequantum
anharmonic oscillator (the quantum version of Duffing
equation). This generalization of MSPT techniques
nontrivial because it gives rise to a nonlinear system
operator differential equations [3]. We find the exac
closed-form solution to this system and thereby obt
the quantum operator analog of the classical freque
shift—an operator mass renormalizationthat expresses
the first-order shift of all energy levels.
0031-9007y96y77(20)y4114(4)$10.00
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We begin our presentation by reviewing the difficul-
ties one encounters when one tries to solve Duffing’
equation using a conventional perturbation series,ystd ­P

`
n­0 enynstd. We choose as initial conditions

ys0d ­ 1 and y0s0d ­ 0 , (2)

which translate intoyns0d ­ dn,0 and y0
ns0d ­ 0, and

substituteystd into Eq. (1). To zeroth and first order in
powers ofe, we have

y00
0 1 y0 ­ 0 , (3)

y00
1 1 y1 ­ 24y3

0 . (4)

The solution to Eq. (3) satisfying the initial conditions is
y0std ­ cost. Introducing this solution into Eq. (4), we
obtain y00

1 1 y1 ­ 2 coss3td 2 3 cost, which represents
a forced harmonic oscillator whose driving term has
frequencies 3 and 1. A harmonic oscillator when drive
at its natural frequency, which in this case is 1, exhibit
resonance. As a result, the solutiony1std ­

1
8 coss3td 2

1
8 cost 2

3
2 t sint contains a secular term that grows

linearly with time t. The functiony1std cannot be valid
for long times because the exact solution to Duffing’s
equation remains bounded for allt [1]. Hence, the
conventional perturbation expansion is sensible only fo
short timest ø e21.

If one is clever, one can use the conventional pertu
bation series to determineystd for long times, say, of
order e21. To do so, we note [1] that the structure of
the most secular (highest power int) term inynstd has the
form 1

2 s3ity2dneityn! 1 c.c.; we then approximateystd
by summing the most secular term in every order, and th
result is a cosine function that remains bounded for a
timest:

1
2

X̀
n­0

∑µ
3iet

2

∂n eit

n!
1 c.c.

∏
­ cos

∑µ
1 1

3
2

e

∂
t

∏
. (5)

Hence, on the long-time scalet ­ et, we see afrequency
shift in the oscillator of order32 e. This result is not exact
© 1996 The American Physical Society
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because there are less secular terms to all orders in
perturbation expansion; such terms give rise to freque
shifts of ordere2, e3, . . . .

The advantage of MSPT is that it reproduces Eq.
directly and bypasses the elaborate procedure of summ
the conventional perturbation series to all orders
excluding ab initio secular terms from the perturbatio
expansion. MSPT assumes the existence of many t
scales (t, t ­ et, s ­ e2t, . . .), which can be tempo-
rarily treated asindependentvariables. Here, we illustrate
by performing just a first-order calculation. We use on
the two variablest and t ­ et, and seek a perturbativ
solution to Eq. (1) of the form,

ystd ­ Y0st, td 1 eY1st, td 1 Ose2d . (6)

The chain rule and the identitydt

dt ­ e convert Eq. (1)
to a sequence ofpartial differential equations for the
dependent variablesY0, Y1, . . . . The first two are

≠2

≠t2 Y0 1 Y0 ­ 0 , (7)

≠2

≠t2
Y1 1 Y1 ­ 24Y3

0 2 2
≠2

≠t≠t
Y0 . (8)

The general solution to Eq. (7) isY0st, td ­ Astd cost 1

Bstd sint. We substituteY0st, td into the right side of
Eq. (8) and use triple-angle formulas such as cos3 t ­
1
4 coss3td 1

3
4 cost to simplify the result. To determine

the functionsAstd and Bstd we demand that there b
no resonant coupling between zeroth and first order
perturbation theory so that no secular terms appear inY1.
That is, we require that the coefficients of sint and cost
vanish:

2
dB
dt

­ 23A3 2 3AB2 and 2
dA
dt

­ 3B3 1 3A2B .

(9)
To solve this system we multiply the first equation b

Bstd, the second byAstd, and add the resulting equation
Letting Cstd ­

1
2 fAstdg2 1

1
2 fBstdg2, we obtain

d
dt

Cstd ­ 0 . (10)

Thus, Cstd is the constantCs0d, and the differential
equation system (9) becomes linear:

d
dt

B ­ 23Cs0dA and
d

dt
A ­ 3Cs0dB . (11)

The solution to this system that satisfies the init
conditions isCs0d ­

1
2 and Y0st, td ­ cosfs1 1

3
2 edtg,

which reproduces the approximate solution in Eq. (
While conventional perturbation theory is valid fort ø
e21, the MSPT approximation is valid fort ø e22.

We now consider thequantumanharmonic oscillator,
whose Hamiltonian isHsp, qd ­

1
2 p2 1

1
2 q2 1 eq4.

Here,e $ 0 so that the spectrum ofHsp, qd is bounded
below, andp andq are operators [4] satisfying the canon
cal equal-time commutation relationfqstd, pstdg ­ ih̄.

The Heisenberg operator equations of motion,d
dt q ­

1
i h̄ fq, Hsp, qdg ­ p and d

dt p ­
1

i h̄ fp, Hsp, qdg ­
the
cy

5)
ing
y

me

y

in

y
.

l

).

-

2q 2 4eq3, combine to give the quantum Duffing
equation (1):

d2

dt2
q 1 q 1 4eq3 ­ 0 . (12)

Since pstd and qstd are operators, we cannot impo
numerical initial conditions such as those in Eq. (
rather, we enforce a general operator initial condition
t ­ 0:

qs0d ­ q0 and ps0d ­ p0 , (13)

wherep0 andq0 are time-independent operators obey
the Heisenberg algebrafq0, p0g ­ ih̄.

We now apply MSPT to Eq. (12). Assuming thatqstd
exhibits characteristic behavior on the short-time scalt,
and, on the long-time scalet ­ et, we write

qstd ­ Qst, td ­ Q0st, td 1 eQ1st, td 1 Ose2d . (14)

This equation is analogous to Eq. (6), but hereQ0 andQ1

areoperator-valuedfunctions.
We substituteqstd in Eq. (14) into Eq. (12), collect the

coefficients ofe0 ande1, and obtain operator differentia
equations analogous to Eqs. (7) and (8):

≠2

≠t2 Q0 1 Q0 ­ 0 , (15)

≠2

≠t2
Q1 1 Q1 ­ 24Q3

0 2 2
≠2

≠t≠t
Q0 . (16)

Because Eq. (15) is linear, it is easy to find its gene
solution,

Q0st, td ­ Astd cost 1 B std sint , (17)

and from p ­
dq
dt we obtain the momentum operat

pstd ­ Bstd cost 2 Astd sint 1 Osed.
It is now necessary to find the coefficient functio

Astd and Bstd, which are operators. The canonic
commutation relationfqstd, pstdg ­ ih̄ implies that these
operators satisfyfAstd, Bstdg ­ ih̄. Also, the initial
conditions in Eq. (13) give

As0d ­ q0 and Bs0d ­ p0 . (18)

We determineAstd andB std by evaluating the righ
side of Eq. (16) and expanding the cubic term, taking c
to preserve the order of operator multiplication. As
the classical case, we simplify the result using triple-an
formulas. To prevent secularity inQ1st, td we set the
coefficients of cost and sint to zero and obtain

2
dB

dt
­ 23A3 2 BAB 2 BBA 2 ABB ,

2
dA

dt
­ 3B3 1 ABA 1 AAB 1 BAA .

(19)

This system of operator-valued differential equations
the quantum analog of Eq. (9).

To solve the system (19) we premultiply and postmu
ply the first equation byBstd and the second equation b
4115
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Astd. Adding the resulting four equations, we get

d
dt

H ­ 0 , (20)

whereH ; 1
2 A2 1

1
2 B 2. Equation (20), the quantum

analog of Eq. (10), shows thatH is independent of
the long-time variablet. Thus, Eq. (18) allows us to
expressH in terms of the fundamental operatorsp0 and
q0: H ­

1
2 p2

0 1
1
2 q2

0. We then use the commutator
fAstd, Bstdg ­ ih̄ to rewrite Eq. (19) in manifestly
Hermitian form:

d
dt

B ­ 2
3
2

sH A 1 AH d ,

d
dt

A ­
3
2

sH B 1 BH d .
(21)

Suppose for a moment that we could replace th
operator H by the numerical constantCs0d in
Eq. (21). Then we would obtain thec-number cou-
pled differential equations in Eq. (11). That system
is linear, so we could ignore operator ordering an
easily find the solution satisfying the initial conditions
(18): Astd ­ q0 cosf3Cs0dtg 1 p0 sinf3Cs0dtg and
B std ­ p0 cosf3Cs0dtg 2 q0 sinf3Cs0dtg. This solution
suggests the structure of the exact solution to theoperator
differential equation system (21). The formal solution i
a natural generalization using Weyl-ordered products
operators:

Astd ­ W fq0 coss3H td 1 p0 sins3H tdg ,

B std ­ W fp0 coss3H td 2 q0 sins3H tdg .
(22)

The operator orderingW fq0fsH tdg is defined as
follows: (1) ExpandfsH td as a Taylor series in powers
of the operatorH t; (2) Weyl order the Taylor series term
by term:W sq0H

nd ; 1
2n

Pn
j­0 sn

j dH jq0H
n2j. Using

this definition it is easy to verify that Eq. (22) is indeed
the exact operator solutionto Eq. (21), satisfying the
initial conditions (18). We simplify the formal solution in
Eq. (22) and reexpress it in closed form by observing tha
if we reorderW sq0H

nd by commutingq0 symmetrically
to the left and to the right to maintain the Hermitian form
we generate a set of polynomials [5] of degreen:

W sq0H
nd ­

h̄n

2

∑
q0En

µ
H

h̄
1

1
2

∂
1 En

µ
H

h̄
1

1
2

∂
q0

∏
.

We identify En as thenth Euler polynomial [6] in which
the argument is shifted by12 :

1,
H

h̄
,

H 2

h̄2 2
1
4

,
H 3

h̄3 2
3
4

H

h̄
,

H 4

h̄4 2
3
2

H 2

h̄2 1
5
16

,

and so on. The generating function for these nonorthog
nal polynomials is
4116
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X̀
n­0

tn

n!
En

µ
H

h̄
1

1
2

∂
sjtj , pd .

This generating function allows us to express the follo
ing Weyl-ordered product compactly:

W sq0eH td ­
q0eH t 1 eH tq0

2 coshsth̄y2d
. (23)

Using Eq. (23) we rewrite compactly the cosines a
sines in Eq. (22), substitute this result into Eq. (17
replacet by et, and obtain

Q0st, td ­
q0 cosst 1 3H etd 1 cosst 1 3H etdq0

2 coss3eth̄y2d

1
p0 sinst 1 3H etd 1 sinst 1 3H etdp0

2 coss3eth̄y2d
.

(24)

Equation (24) is the quantum operator analog of Eq.
and is the objective of our multiscale analysis. [W
can recover the classical MSPT approximation in Eq.
by taking the limit h̄ °! 0 and imposing the classica
initial conditionsp0 ­ 0 and q0 ­ 1, which giveH ­
1
2 .] Recall that in the classical case we identify th
coefficient of the timet as a first-order approximation to
the frequency shift. Since the coefficient oft in Eq. (24)
is an operator, we have derived anoperator form of mass
renormalization.

To elucidate this operator mass renormalization
study matrix elements of Eq. (24). The time dependen
of a matrix element reveals the energy-level differences
the quantum system. It is easy to construct a set of st
because the operatorsq0 andp0 satisfy the Heisenberg al
gebrafq0, p0g ­ ih̄. Hence, appropriate linear combina
tions of q0 and p0 may be used as raising and lowerin
operators to generate a Fock space consisting of the s
jnl. By construction, these states are eigenstates of
operatorH : H jnl ­ sn 1

1
2 dh̄jnl. Evaluating Eq. (24)

between the stateskn 2 1j andjnl, and allowing the opera-
tor H to act to the left and the right, we obtain

kn 2 1jQ0jnl ­ kn 2 1jq0jnl cosfts1 1 3nh̄edg

1 kn 2 1jp0jnl sinfts1 1 3nh̄edg , (25)

which predicts that the energy-level differences of t
quantum oscillator are1 1 3nh̄e. We may verify this
result by recalling that the first-order correction to the e
ergy eigenvalues [7] isEn ­ n 1

1
2 1

3
4 eh̄s2n2 1 2n 1

1d 1 Ose2d. Thus,En 2 En21 ­ 1 1 3nh̄e 1 Ose2d.
We conclude by noting that, in addition to the operato

qstd and pstd, the wave functioncsxd for the quantum
anharmonic oscillator also exhibits multiscale behavi
Specifically, to all orders in conventional weak-couplin
Rayleigh-Schrödinger perturbation theory,csxd behaves
the same as the Gaussiane2x2y4 for large x; however,
a geometrical-optics approximation tocsxd from WKB
theory predicts that, for largex, csxd decays the same a
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the exponential of a cubice2
p

ejxj3y6. We can resolve thi
discrepancy by using a MSPT approach; we reorder
perturbation series by resumming secular terms [8].

The wave functioncsxd obeys the Schrödinger equatioµ
2

d2

dx2
1

1
4

x2 1
1
4

ex4 2 Esed
∂

csxd ­ 0 , (26)

and satisfiescs6`d ­ 0. The conventional perturbativ
approach to Eq. (26) [7] represents both the eigenfu
tion and eigenvalue as asymptotic series ine: csxd ,P`

n­0 enynsxd and Esed ,
P`

n­0 enEn. In Ref. [7] it is
shown that, for the ground state,ynsxd is a Gaussian mul
tiplied by a polynomial of degree2n in the variablex2,
yn ­ e2x2y4Pnsxd, where

P0sxd ­ 1 and Pnsxd ­
2nX

j­1

Cn,ks2 1
2 x2dksn . 0d .

The recursion relation for the polynomialsPnsxd is typical
of all perturbative calculations; the homogeneous p
of this recursion relation is independent ofn while the
inhomogeneous part contains all previous polynomi
This recursive structure is responsible for successive or
of perturbation theory being resonantly coupled and ca
the degree of the polynomials to grow withn.

To study the behavior of the wave functioncsxd
for large x, we approximatecsxd by resumming the
perturbation series and keeping just thehighest powerof
x in every order. [This is an exact analog of findi
the coefficient of the highest power oft (most secular
term) in nth order in perturbation theory for the classic
anharmonic oscillator.] This resummation gives a n
representation ofcsxd: e2x2y4e2ex4y16 multiplied by a
new set of polynomials. For the classical anharmon
oscillator, summing leading secular terms also gives
exponential approximation [see Eq. (5)]. However,
classical and quantum anharmonic oscillators are q
different; although we have summed the most sec
terms to all orders in perturbation theory, the result isnot
the actual behavior of the wave functioncsxd for largex;
the correct behavior is an exponential of a cubic and n
quartic.

If we iterate this resummation process we find t
each reorganization of the perturbation series gives
additional term in the exponential

exp

µ
2

1
4

x2 2
1
16

ex4 1
1
96

e2x6 2
1

256
e3x8 1 . . .

∂
(27)

and a new set of polynomials. It seems impossible for
approach to give cubic exponential behavior becaus
each stage in the reorganization of the perturbation se
the variablex appears only inevenpowers. However, we
recognize that the exponent in Eq. (27) is the beginnin
a binomial series whose sum is16e f1 2 s1 1 ex2d3y2g. If
we now letx be largesex2 ¿ 1d, we recover the correc
asymptotic behavior ofcsxd [9].
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The approach used above for the anharmonic oscilla
wave function has been used in perturbative quantu
field theory to sum leading-logarithm divergences [10
and leading infrared divergences [11]. It is our hop
that in the future the direct nonperturbative multivariat
approach of MSPT will provide a framework to simplify
such schemes.
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