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Multiple-Scale Analysis of the Quantum Anharmonic Oscillator
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Conventional weak-coupling perturbation theory suffers from problems that arise from the resonant
coupling of successive orders in the perturbation series. Multiple-scale perturbation theory avoids
such problems by implicitly performing an infinite reordering and resummation of the conventional
perturbation series. Multiple-scale analysis provides a good description aflaksical anharmonic
oscillator. Here, it is extended to study the Heisenberg operator equations of motion for the quantum
anharmonic oscillator. The analysis yields a system of nonlinear operator differential equations,
which is solved exactly. The solution provides an operator mass renormalization of the theory.
[S0031-9007(96)01684-5]
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Multiple-scale perturbation theory (MSPT) is a pow- We begin our presentation by reviewing the difficul-
erful and sophisticated perturbative method for solvingties one encounters when one tries to solve Duffing’s
physical problems having a small parameter[1,2]. equation using a conventional perturbation seng¢s, =
MSPT is applicable to both linear and nonlinear problems ~_, €"y,(t). We choose as initial conditions
Indeed, it is so general that other perturbative methods . ey
such as WKB theory and boundary-layer theory, which y©) =1 and y(0) =0, @)
are useful in more limited contexts, may be viewed aswvhich translate intoy,(0) = 6,0 and y/(0) = 0, and
special cases of MSPT [1]. substitutey(z) into Eq. (1). To zeroth and first order in

MSPT recognizes that dynamical systems exhibit charpowers ofe, we have
acteristic physical behaviors at various length or time

: : : Yo +y0=0, 3)
scales. The problem with conventional perturbation the- 0
ory is that there is often a resonant coupling between suc- " 3
cessive orders. This coupling gives risestcular terms ity = 4y 4)

(terms that grow rapidly with the length or time variable) The solution to Eq. (3) satisfying the initial conditions is
in the perturbation series. Secular terms conflict withy,() = cost. Introducing this solution into Eg. (4), we
physical requirements that the solution be finite. MSPTobtain y; + y; = — cog3r) — 3 cost, which represents
reorganizeghe conventional perturbation series to elimi-a forced harmonic oscillator whose driving term has
nate secular terms, and, in doing so, it describes quantitdrequencies 3 and 1. A harmonic oscillator when driven
tively the behaviors that occur at many scales. at its natural frequency, which in this case is 1, exhibits

Ordinarily, MSPT is applied tcclassical differential — resonance. As a result, the solutiof(r) = écos(s‘t) —
equations such as Duffing’s equation (the nonlinear equat

. . . _ : g Cost — %tsint contains a secular term that grows
tion of motion for the classical anharmonic oscillator): linearly with time 7. The functiony, () cannot be valid

y'+y+4ey =0 (e =0). (1) for long times because the exact solution to Duffing’s
equation remains bounded for all [1]. Hence, the
conventional perturbation expansion is sensible only for
short timest < €.

If one is clever, one can use the conventional pertur-
ation series to determing(r) for long times, say, of
ordere~!. To do so, we note [1] that the structure of
the most secular (highest powersnterm iny, () has the
form %(3it/2)”e”/n! + c.c.; we then approximate(r)

The positivity ofe ensures thag(z) is bounded [1]. The
classical harmonic oscillatore (= 0) has only one time
scale, the period of oscillation. However, when# 0,
the nonlinear term in EqQ. (1) introduces many time scales,
Using MSPT, one can show that on a long-time scal
[t = O(e™1)] there is a frequency shift of orde

In this Letter we generalize MSPT and apply it to the
Heisenberg operator equations of motion of thentum ; .
anharmonic oscillator (the quantum version of Duffing’sPY SUmming the most secular term in every order, and the
equation). This generalization of MSPT techniques isrgsult is a cosine function that remains bounded for all
nontrivial because it gives rise to a nonlinear system ofimest:

operator differential equations [3]. We find the exact 1 «[/3ier\"e" 3
closed-form solution to this system and thereby obtain > Z[(T) P C'C'} = CO{<1 + _€>t] (5)
the quantum operator analog of the classical frequency

shift—an operator mass renormalizatiothat expresses Hence, on the long-time scate= e¢, we see drequency

the first-order shift of all energy levels. shiftin the oscillator of ordeé €. This result is not exact

n=0
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because there are less secular terms to all orders in theq — 4e¢>, combine to give the quantum Duffing’s
perturbation expansion; such terms give rise to frequencgquation (1):
shifts of ordere?, €3, .. .. P

The advantage of MSPT is that it reproduces Eq. (5) —q+q+ 4eq® =0. (12)
directly and bypasses the elaborate procedure of summing dt
the conventional perturbation series to all orders bySince p(t) and ¢(z) are operators, we cannot impose
excluding ab initio secular terms from the perturbation numerical initial conditions such as those in Eq. (2);
expansion. MSPT assumes the existence of many timether, we enforce a general operator initial condition at
scales {, 7 = et, ¢ = €*t, ...), which can be tempo- ¢ = 0:
rarily treated asndependenvariables. Here, we illustrate _ _
by performing just a first-order calculation. We use only 9(0) =go and p(0) = po, (13)
the two variables and r = €t¢, and seek a perturbative wherep, andg, are time-independent operators obeying
solution to Eq. (1) of the form, the Heisenberg algebfay, po] = ih.

y(t) = Yo(t,7) + €Yi(t,7) + O(€?). (6) We now apply MSPT to Eq. (22). Assumin_g tha)
The chain rule and the identit% — ¢ convert Eq. (1) exhibits characteristic behavior on the short-time scale

to a sequence opartial differential equations for the and, on the long-time scale = ez, we write

dependent variableg,, Yy, .... The first two are q(t) = 0(t,7) = Qu(t,7) + €Q1(t,7) + 0(€?). (14)
2
a—zYo + Y =0, (7)  This equation is analogous to Eq. (6), but héxgandQ;
5”2 5 areoperator-valuedunctions.
Oy oty — —ayd — 0y 8 We substitutey(¢) in Eq. (14) into Eq. (12), collect the
Y+ Y 0 0- ) - 0 1 . ) .
ot otoT coefficients ofe” ande’, and obtain operator differential

The general solution to Eq. (7) (7, 7) = A(7)cost +  equations analogous to Egs. (7) and (8):
B(7)sint. We substituteYy(z, 7) into the right side of 92

Eqg. (8) and use triple-angle formulas such as®cos —00 + Qo =0, (15)
}cos(3t) + %cost to simplify the result. To determine 8’2 ,
the functionsA(r) and B(r) we demand that there be 97 _ 4n3 A9
no resonant coupling between zeroth and first order in at? Q1+ O 405 zatarQO' (16)
perturbation theory so that no secular terms appeaiiin  gecayse Eq. (15) is linear, it is easy to find its general
That is, we require that the coefficients of siand cos solution
vanish: ' _

dB dA Qo(t,7) = A(r)cost + B(r)sint, a7
2— = —3A% — 3AB> and 2— = 3B® + 34°B. dq ,

dr dr and from p = 5 we obtain the momentum operator

(9) p(t) = B(r)cost — A(r)sint + O(e).

It is now necessary to find the coefficient functions
A(7) and B(r), which are operators. The canonical
commutation relatiofig(z), p(r)] = ik implies that these
operators satisff A(7), B(r)] = ih. Also, the initial

To solve this system we multiply the first equation by
B(7), the second by (1), and add the resulting equations.
Letting C(7) = %[A(T)]2 + %[B(T)]Z, we obtain

iC(r) —-0. (10) conditions in Eq. (13) give
dr
Thus, C(7) is the constantC(0), and the differential A©) = go and B(0) = po. (18)

equation system (9) becomes linear: We determineA (r) and B(r) by evaluating the right

iB — —3C(0)A and iA — 3C(0)B. (11) side of Eqg. (16) and expanding the cubiq term, taking care
dr dr to preserve the order of operator multiplication. As in
The solution to this system that satisfies the initialthe classical case, we simplify the result using triple-angle
conditions isC(0) = % and Yy(z,7) = cog(1 + %e)t], formulas. To prevent secularity i,(z,7) we set the
which reproduces the approximate solution in Eq. (5)coefficients of cos and sirr to zero and obtain

While conventional perturbation theory is valid for« d'B
e~ !, the MSPT approximation is valid for< e 2. 2— = -3A4°- BAB - BBA - ABB,

We now consider thguantumanharmonic oscillator, T 19

. . . _1 9 1 5 4 d.A (19)

whose Hamiltonian ISH(p,q) 3P + 54 + €q”. 2 — 333 + ABA + AA4B + BAA.
Here,e = 0 so that the spectrum df(p, ¢) is bounded dr
below, andp andq are operators [4] satisfying the canoni- This system of operator-valued differential equations is
cal equal-time commutation relati¢a(z), p(¢)] = ih. the quantum analog of Eq. (9).

The Heisenberg operator (unations of motigng = To solve the system (19) we premultiply and postmulti-
%[Q,H(p,q)] =p and 4 p= %[p,H(p,q)] = ply the first equation byB(7) and the second equation by
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T+ 1 — n!
Lgr —o, @0 ¢ n=0 *
dr This generating function allows us to express the follow-
whereH = 5 A% + 5 B2. Equation (20), the quantum ing Weyl-ordered product compactly:
analog of Eq. (10), shows tha#{ is independent of " qoeﬂf 4+ eHr
-ti [ : : w T =
the long-time variabler. Thus, Eq. (18) allows us to (goe™™ ™) 2 cosrhi/2)

expressH in terms of the fundamental operatqrg and
go: H = %pé + %qé We then use the commutator Using Eq. (23) we rewrite compactly the cosines and
[A(r),B(r)] = ik to rewrite Eq.(19) in manifestly sines in Eq. (22), substitute this result into Eq. (17),

A(7). Adding the resulting four equations, we get 2 /H+1/2r 2 gn H 1

q0

(23)

Hermitian form: replacer by er, and obtain
d 3 codt + 3H er) + codt + 3H et)qy
—B=—-(HA+ AH), — 1
dr > ) o1 Qolt.7) 2cod3eri/2)
iﬂlzi(}[fB L BI). N pOSIn(t+3f]‘[et)+Sln(t+33"[6t)p0.
dr 2 2coq3€th/2)
Suppose for a moment that we could replace the (24)

operator H{ by the numerical constantC(0) in

Eq. (21). Then we would obtain the-number cou- Equation (24) is the quantum operator analog of Eq. (5)
pled differential equations in Eg. (11). That systemand is the objective of our multiscale analysis. [We
is linear, so we could ignore operator ordering andcan recover the classical MSPT approximation in Eq. (5)
easily find the solution satisfying the initial conditions by taking the limitz — 0 and imposing the classical
(18):  A(r) = gocog3C(0)r] + posinN3C(0)r] and |1n|t|al conditions pp = 0 and gy = 1, which give H =
B(r) = ppcog3C(0)7] — gosiN3C(0)7]. This solution 5.] Recall that in the classical case we identify the
suggests the structure of the exact solution togjperator ~ coefficient of the time as a first-order approximation to
differential equation system (21). The formal solution isthe frequency shift. Since the coefficientin Eq. (24)

a natural generalization using Weyl-ordered products ofs an operator, we have derived aperator form of mass

operators: renormalization
_ . To elucidate this operator mass renormalization we
A1) = Wlgocod3 ) + posin3H 7)]. (22 study matrix elements of Eq. (24). The time dependence
B(r) = W[pocod3H 7) — qosSin3H 7)]. of a matrix element reveals the energy-level differences of

The operator orderingW([qof(H )] is defined as the quantum system. It is easy to construct a set of states
follows: (1) Expandf (2 7) as a Taylor series in powers Pecause the operatogs and p, satisfy the Heisenberg al-
of the operatotH 7 (2) Wey! order the Taylor series term 9€Pralgo, po] = ifi. Hence, appropriate linear combina-
by term: W (goH") = % ", (i goH "I, Using tions of go and po may be used as raising {cmd lowering
this definition it is easy to verify that Eq. (22) is indeed operators to generate a Fock space consisting of the states
the exact operator solutiorto Eq. (21), satisfying the |n). By construction, these states are eigenstates of the

i _ 1 )
initial conditions (18). We simplify the formal solution in operatorH: H|n) = (n + 3)iln). Evaluating Eq. (24)

Eq. (22) and reexpress it in closed form by observing that?etween the statés — 1| and|n), and allowing the opera-
a- (22) P y g tor 7 to act to the left and the right, we obtain

if we reorder W (goJH ") by commutingg, symmetrically
to the left and to the right to maintain the Hermitian form, (, — 1|Qg|n) = (n — 1lgoln) cods(1 + 3nie)]
we generate a set of polynomials [5] of degree
" H 1
n - ~ + -
W(CIO}[ ) ) |:q0En< K ) )

+ (n — 1] poln)ysint(1 + 3nke)], (25)

which predicts that the energy-level differences of the
P ) quantum oscillator ard + 3nfiie. We may verify this
+ En<_ + —>qo] result by recalling that the first-order correction to the en-
S h 2 _ , ergy eigenvalues [7]i8, = n + 3 + 3 €fi(2n® + 2n +
We identify E,, as thenth 1Euler polynomial [6] in which 1)} o(¢2). Thus,E, — E,—; = 1 + 3nfie + O(€?).
the argument is shifted by: We conclude by noting that, in addition to the operators
H 2 1 H3 3 H q(r) and p(r), the wave functiony(x) for the quantum
I A I anharmonic oscillator also exhibits multiscale behavior.
Specifically, to all orders in conventional weak-coupling
Rayleigh-Schrddinger perturbation theowy(x) behaves

15

R 2 K 16’ the same as the Gaussian®/* for large x; however,
and so on. The generating function for these nonorthogaa geometrical-optics approximation t(x) from WKB
nal polynomials is theory predicts that, for large, ¥ (x) decays the same as
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the exponential of a cubie”Ve#!'/¢. We can resolve this ~ The approach used above for the anharmonic oscillator
discrepancy by using a MSPT approach; we reorder thevave function has been used in perturbative quantum
perturbation series by resumming secular terms [8]. field theory to sum leading-logarithm divergences [10]
The wave function)(x) obeys the Schrodinger equation, and leading infrared divergences [11]. It is our hope
e 1 1 that in the future the direct nonperturbative multivariate
<— —— + —xP+ —ext - E(e)>¢(x) =0, (26) approach of MSPT will provide a framework to simplify
dx 4 4 such schemes.
and satisfiegs(+) = 0. The conventional perturbative ~ C. M. B. thanks the Department of Theoretical Physics
approach to Eq. (26) [7] represents both the eigenfuncat Imperial College, London, for its hospitality and
tion and eigenvalue as asymptotic serieseiny (x) ~ the Fulbright Foundation, the PPARC, and the U.S.
Z::o €"y,(x) andE(e) ~ fo:o €"E,. In Ref. [7]itis Department of Energy for financial support. L.M.A.B.
shown that, for the ground state,(x) is a Gaussian mul- thanks JNICTPrograma Praxis XXfor financial support
tiplied by a polynomial of degre@n in the variablex?,  under Contract BD 2243/92.
yp = e */*P,(x), where

2n
Pox) =1 and P,(x) = D Cos(—3x)(n > 0).

] *Permanent address: Department of Physics, Washington

University, St. Louis, MO 63130.
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