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Nonequilibrium Critical Dynamics of a Three Species Monomer-Monomer Model
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We study a three species monomer-monomer catalytic surface reaction model with a reactive steady
state bordered by three equivalent unreactive phases where the surface is saturated with one species.
The transition from the reactive to a saturated phase shows directed percolation critical behavior.
Each pair of these reactive-saturated phase boundaries joins at a bicritical point where the universal
behavior is in the even branching annihilating random walk class. We find the crossover exponent
from bicritical to critical behavior and a new exponent associated with the bicritical interface dynamics.
[S0031-9007(96)01517-7]

PACS numbers: 82.20.Mj, 05.70.Ln, 64.60.Ht, 82.65.Jv

Nonequilibrium models with many degrees of freedomin the BAWe model and the walls between different satu-
whose dynamics violate detailed balance arise in studiested domains in the other models, the models have the
of biological populations, heterogeneous catalysis, fluiddefect parity” conservation law where the number of de-
turbulence, and elsewhere. The macroscopic behavior décts is conserved modulo 2. Recent field theoretic work
these models can be much richer than that of systensonfirms this viewpoint [15].
in thermal equilibrium, showing organized macroscopic We study here a simple catalytic surface reaction model
spatial and temporal structures like pulses or waves, andith three different equivalent monomer species. This
even spatiotemporal chaos. Even the steady state behavimodel could represent either a system with three differ-
can be far more complicated, involving, for example,ent chemical species or an autocatalytic reaction system in
generic scale invariance. Like their equilibrium cousins,which one chemical species can adsorb on three different
nonequilibrium systems at continuous transitions betweetypes of surface sites. This model has adsorbing transi-
steady states show universal behavior that is insensitive tions to both one and two equivalent noiseless states, and
microscopic details and depends only on properties suctinerefore is a good model to study the role of symmetry in
as symmetries and conservation laws. adsorbing phase transitions. The model has two funda-

One of the most common continuous phase transitionsiental processes: (a) monomer adsorption onto sites of
in nonequilibrium models is a transition to an absorbing,a substrate, and (b) the annihilation reaction of two dis-
noiseless steady state [1], the term absorbing indicating th@milar monomers adsorbed on nearest-neighbor sites of
state cannot be left once it is reached. Examples of thithe substrate. Here we consider the model only in the
include directed percolation (DP) [2,3], the contact processdsorption controlled limit where process (b) occurs in-
[4], the dimer poisoning transition in the ZGB model [5] stantaneously. We present here results only for the one-
for the catalytic oxidation of CO, auto-catalytic reaction dimensional version of the model.
models [6], and branching annihilating random walks with  Calling the monomer species B, andC, the parame-
odd numbers of offspring [7,8]. Both renormalization ters in the model are then the relative adsorption rates of
group calculations [2,9] and Monte Carlo simulations [3—the different monomer specigs, pg, and p¢, such that
8] show that these models form a single universalityps + pp + pc = 1. Using static Monte Carlo simula-
class for a purely nonequilibrium model with no internal tions to find the steady state, and dynamical Monte Carlo
symmetry in the order parameter. studies described below, we find the ternary phase dia-

Recently, a number of models with continuous adsorbgram for the model is shown in Fig. 1, where the hori-
ing transitions in a universality class distinct from directedzontal axis corresponds to the relative adsorption rate of
percolation have been studied. These models include ttendB monomerp .z = pa/(pa + pp). There are noise-
probabilistic cellular automata models studied by Grassless phases where one monomer species saturates the chain
bergeret al.[10], certain kinetic Ising models [11], the occupying the corners of the phase diagram and a reac-
interacting monomer-dimer model [12,13], and branchingive steady state in the center. There are continuous phase
annihilating random walks with an even number of off- transitions from the reactive phase to the saturated phases.
spring (BAWe) [7,14]. All of these models except for The monomer densities undergo discontinuous, first-order,
the BAWe have two equivalent absorbing states indicattransitions from one saturated state to another. The points
ing the importance of symmetry of the adsorbing state tavhere the reactive phase and two saturated phases meet are
the universality class. However, the universal behaviobicritical points [16] where two lines of continuous tran-
of this new class is apparently controlled by a dynamicakitions meet a line of first-order transitions. We have also
conservation law. If [10] the important dynamical vari- constructed a mean field theory of the model, to be pre-
ables in this class are defects represented by the walkesgnted elsewhere [17], following the methods of Dickman
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1.0 a scaling correction linear in"! [20]. Data taken away

r from the critical point will have local slopes that curve
0.8 1 away from the critical point value as! — 0.

I Figure 2 shows the effective exponents of the three dy-
0.6 - C namic quantities near the phase transition to ¢heatu-

Pe I rated phase g4z = 0.5. Using 10° independent runs of
04 up to 10* time steps at each parameter value, we found a
0.2 . B A critical C monomer adsorption rate ¢t = 0.395 75(10),

: and the critical exponents ae= 0.16(1), n = 0.31(1),
0.0 A andz = 1.255(15). These values are consistent with our
00 02 04 06 08 10 expectation that this transition should be in the DP univer-

Pas sality class, for which the exponents ate= 0.1596(4),
n = 0.3137(10), and z = 1.2660(14) [21]. We found

FIG. 1. Phase diagram showing three saturated phases (indiimilar exponents for the adsorbing transition at a num-
cated by the letters), and a reactive phase (the unlabeled Ce”(}‘?ér of other points along the lines separating the reactive
region). Solid lines indicate continuous transitions. Dashe

lines indicate first-order transitions. phase and the saturated states, indicating the transition be-
tween the reactive phase and any single saturated phase is

) . always in the DP universality class.
[18]. One unusual feature of the mean field phase diagram The same kind of analysis at the bicritical point at

is that the bicritical points lie on the edge of the phase dia- .5 = 0.5, using an initial condition of a vacancy in

gram if the correlations are correct up to single sites OL 1 Asaturated phase, yields a bicritical point at —

even nearest-neighbor pairs. Only when the correlations « . -
. . ; : .pc = 0.122(1), and very different exponents, given the
up to triplets of adjacent sites are included does the bil € 0.122(1), y P ' 9

critical point appear inside the phase diagram, indicatin
the importance of reproducing the correlations induced bYocaI slope data shown in Fig. 3, yielding values&f=

'ar\?ve dr‘]’ma'”s O‘;a ds'”gle.saltul\slatetd pChaSIe' i iations 10290 1 = 0.00(1), andz = 1.150(15). These values
_We have used dynamical Vionte .ario SIMUialions 9, qieate that the bicritical behavior falls in the BAWe
investigate the universality classes of the continuous trar[]niversality class, for which = 0.285(2), 7 = 0.000(1)
sitions and bicritical points, the critical dynamics of inter- andz = 1.141(2) i14] ' ' ' ’

faces between the two symmetric saturated states at the For pe < pi along thed-B coexistence line, a similar

b'ﬁmlc.alt pow:jtsth thf(_a c:‘[ros(jov?r beh%\\/llor neatlr thfe blcrlt"analysis yields the subcritical dynamic exponehts: 0.5,
cal point, and tne Trst-order lines. Yve use two torms o n = —0.5,andz = 1. These exponents also describe the

“epidemic” analysis [8,14,19] following the evolution of
an initial condition chosen close to the saturated state. In

resence of two-symmetry equivalent saturated phases.
rom5 X 10° runs of up tol10’ time steps we found the

the first form (defect dynamics) we use an initial condition 012 —————
consisting of a single vacancy in a saturated phase. The !

second (interface dynamics) starts from two different satu- -3 016 |

rated phases separated by a single vacancy. i

From the simulations we find the probabiliB(z) that -0.20

the system does not fall into the saturated state time

steps, the average number of vacancies pe¢ry(r)), and 0.36 .

the typical size of the defect or interface per surviving run B

(R%(r)). At a continuous phase transition as~ o it is N 031 L

expected that they obey power law behavior

0.26:
Pty ~17°  ny(e)) ~ 1", (RP0) ~ 5. (1) 130 [

Precise estimates of the location of the critical point and of 7
the exponents can be made by examining the local slopes

of the curves on a log-log plot and extrapolating to infinite b
times. Then, the effective exponedtr) is 0.0 25 5.0

1000/t
—6(t) = {In[P(t)/P(t/b)]/ Inb}, 2
() = An[P(D)/P(t/8)}/ I @ FIG. 2. Effective exponents using Eq. (2) with= 5 for the
n (1) andz(¢) being defined analogously. Plotting the local défect dynamics near the critical point aky = 0.5 on the

| 1 all to det ine both th tIine where theC poisoned phase meets the reactive phase.
slopes versus - allows us to determin€é bo € exponente,q top to bottom, the three curves in each panel correspond

and the critical point accurately. At the critical point the tg pc = 0.3955, 0.39575, and 0.3960, with the middle curve
local slope will extrapolate to a constantas — 0 with  corresponding to the critical point.

1.26 |
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FIG. 3. Effective exponents for the defect dynamics near thd-IG. 4. Effective exponents, as in Fig. 3, for the second type
bicritical point where theA and B poisoned phases meet the of interface dynamics near the bicritical point where fhand
reactive phase as defined in (2) with= 5. From bottom to B poisoned phases meet the reactive phase.

top, the three curves in each panel correspongto= 0.121,
0.122, and 0.123, with the middle line corresponding to the

bicritical point. runs, is the same in both types of interface dynamics

simulations as that measured for the defect dynamics.

Furthermore, although the exponeitand» are different
two species version of the model which can be mappeth the three cases, their subn+ n (or 8’ + n'), which
onto the well known problem of thel’ =0 one- governs the time evolution of the number of vacancies
dimensional kinetic Ising model for which these valuesin just the surviving runs, seems to be the same. This
are known exactly [22]. indicates a universal nature of the critical spreading of the

To further analyze the importance of competition in theactive region for models with two symmetric adsorbing
growth of two equivalent saturated phases at the bicriticastates which is independent of whether defect or interface
point we also studied the dynamics of an interface betweedynamics is being considered. A similar result holds
those two phases. Starting with a single vacancy betweeior some one-dimensional systems with infinitely many
the two domains, we used two different methods to analyzadsorbing states [23].
the behavior of the interface. Since there must always be at Assuming this conjecture is true, it should be noted
least one vacancy between two different saturated phasabat simulations using the first type of interface dynamics,
in the first method we ignore the survival probability wheres = 0, yield no information beyond that obtainable
P(t) and takes = 0. We then measure the number of from simulations employing defect dynamics. However,
vacancies in the interfacé:(r)) « 7 and average size simulations using the second type of interface dynamics
of the interfaceR?(r)) = t*. From5 X 10* independent measure an independent dynamic expor&nivhich we
runs at the bicritical point, each lastind)® time steps, expect to be a universal number. It would be interesting
we found the other exponents to ke= 0.285(10) and to measure this exponent for other models in the BAWe
z = 1.14(2). This type of interface dynamics has beenclass.
used to study the properties of critical interfaces in other Finally, we measured the crossover from bicritical to
models in the BAWe class, where similar resultsfioand  critical behavior. Near the bicritical point where tide
z were obtained [13,14]. andB poisoned phases meet, the boundary of the reactive
In the second type of interface dynamics simulationsyegion is expected to behave g5 — 0.5) = (pc —

which has not been studied before, the simulation ip¢)?, where¢ is the crossover exponent [16]. We used
stopped if the interface between the domains has “colthe dynamical simulation method to accurately determine
lapsed” back to one vacant site. We introduce a probabilthe location of the DP phase boundary between the reactive
ity of avoiding a collapseP(r) = r~% and corresponding phase and the saturated phase near the bicritical point.

vacancy concentrationgn(r)y = 7 and (R2(r)) = r¥.  From the log-log plot ofpss — 0.5 versus pc — pe
Figure 4 shows results fro0’ independent runs each shown in Fig. 5 we findp = 2.1 = 0.1.

lasting up to10° time steps. We find values of’ = We have introduced a convenient model to study the
0.73(2), ' = —0.43(2), andz’ = 1.15(2). role of symmetry in the critical dynamics of adsorbing

Note the value of the dynamic exponenbr 7/, which  phase transitions. We have shown that the universality
measures the size of the active region during survivinglass of the transition changes from DP to BAWe when
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