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Nonequilibrium Critical Dynamics of a Three Species Monomer-Monomer Model
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We study a three species monomer-monomer catalytic surface reaction model with a reactive ste
state bordered by three equivalent unreactive phases where the surface is saturated with one spe
The transition from the reactive to a saturated phase shows directed percolation critical behavi
Each pair of these reactive-saturated phase boundaries joins at a bicritical point where the unive
behavior is in the even branching annihilating random walk class. We find the crossover expone
from bicritical to critical behavior and a new exponent associated with the bicritical interface dynamic
[S0031-9007(96)01517-7]

PACS numbers: 82.20.Mj, 05.70.Ln, 64.60.Ht, 82.65.Jv
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Nonequilibrium models with many degrees of freedo
whose dynamics violate detailed balance arise in stu
of biological populations, heterogeneous catalysis, fl
turbulence, and elsewhere. The macroscopic behavio
these models can be much richer than that of syst
in thermal equilibrium, showing organized macrosco
spatial and temporal structures like pulses or waves,
even spatiotemporal chaos. Even the steady state beh
can be far more complicated, involving, for examp
generic scale invariance. Like their equilibrium cousi
nonequilibrium systems at continuous transitions betw
steady states show universal behavior that is insensitiv
microscopic details and depends only on properties s
as symmetries and conservation laws.

One of the most common continuous phase transit
in nonequilibrium models is a transition to an absorbi
noiseless steady state [1], the term absorbing indicating
state cannot be left once it is reached. Examples of
include directed percolation (DP) [2,3], the contact proc
[4], the dimer poisoning transition in the ZGB model [
for the catalytic oxidation of CO, auto-catalytic reacti
models [6], and branching annihilating random walks w
odd numbers of offspring [7,8]. Both renormalizatio
group calculations [2,9] and Monte Carlo simulations [
8] show that these models form a single universa
class for a purely nonequilibrium model with no intern
symmetry in the order parameter.

Recently, a number of models with continuous adso
ing transitions in a universality class distinct from direct
percolation have been studied. These models include
probabilistic cellular automata models studied by Gra
bergeret al. [10], certain kinetic Ising models [11], th
interacting monomer-dimer model [12,13], and branch
annihilating random walks with an even number of o
spring (BAWe) [7,14]. All of these models except f
the BAWe have two equivalent absorbing states indic
ing the importance of symmetry of the adsorbing state
the universality class. However, the universal behav
of this new class is apparently controlled by a dynam
conservation law. If [10] the important dynamical va
ables in this class are defects represented by the wa
0031-9007y96y77(19)y4094(4)$10.00
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in the BAWe model and the walls between different sa
rated domains in the other models, the models have
“defect parity” conservation law where the number of d
fects is conserved modulo 2. Recent field theoretic w
confirms this viewpoint [15].

We study here a simple catalytic surface reaction mo
with three different equivalent monomer species. T
model could represent either a system with three diff
ent chemical species or an autocatalytic reaction syste
which one chemical species can adsorb on three diffe
types of surface sites. This model has adsorbing tra
tions to both one and two equivalent noiseless states,
therefore is a good model to study the role of symmetry
adsorbing phase transitions. The model has two fun
mental processes: (a) monomer adsorption onto site
a substrate, and (b) the annihilation reaction of two d
similar monomers adsorbed on nearest-neighbor site
the substrate. Here we consider the model only in
adsorption controlled limit where process (b) occurs
stantaneously. We present here results only for the o
dimensional version of the model.

Calling the monomer speciesA, B, andC, the parame-
ters in the model are then the relative adsorption rate
the different monomer speciespA, pB, andpC , such that
pA 1 pB 1 pC ­ 1. Using static Monte Carlo simula
tions to find the steady state, and dynamical Monte Ca
studies described below, we find the ternary phase
gram for the model is shown in Fig. 1, where the ho
zontal axis corresponds to the relative adsorption rate oA
andB monomerspAB ­ pAyspA 1 pBd. There are noise-
less phases where one monomer species saturates the
occupying the corners of the phase diagram and a r
tive steady state in the center. There are continuous p
transitions from the reactive phase to the saturated pha
The monomer densities undergo discontinuous, first-or
transitions from one saturated state to another. The po
where the reactive phase and two saturated phases me
bicritical points [16] where two lines of continuous tran
sitions meet a line of first-order transitions. We have a
constructed a mean field theory of the model, to be p
sented elsewhere [17], following the methods of Dickm
© 1996 The American Physical Society
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FIG. 1. Phase diagram showing three saturated phases
cated by the letters), and a reactive phase (the unlabeled c
region). Solid lines indicate continuous transitions. Das
lines indicate first-order transitions.

[18]. One unusual feature of the mean field phase diag
is that the bicritical points lie on the edge of the phase
gram if the correlations are correct up to single sites
even nearest-neighbor pairs. Only when the correlat
up to triplets of adjacent sites are included does the
critical point appear inside the phase diagram, indica
the importance of reproducing the correlations induced
large domains of a single saturated phase.

We have used dynamical Monte Carlo simulations
investigate the universality classes of the continuous t
sitions and bicritical points, the critical dynamics of inte
faces between the two symmetric saturated states a
bicritical points, the crossover behavior near the bic
cal point, and the first-order lines. We use two forms
“epidemic” analysis [8,14,19] following the evolution o
an initial condition chosen close to the saturated state
the first form (defect dynamics) we use an initial condit
consisting of a single vacancy in a saturated phase.
second (interface dynamics) starts from two different s
rated phases separated by a single vacancy.

From the simulations we find the probabilityPstd that
the system does not fall into the saturated state int time
steps, the average number of vacancies per runknV stdl, and
the typical size of the defect or interface per surviving
kR2stdl. At a continuous phase transition ast ! ` it is
expected that they obey power law behavior

Pstd , t2d, knV stdl , th , kR2stdl , tz . (1)

Precise estimates of the location of the critical point an
the exponents can be made by examining the local sl
of the curves on a log-log plot and extrapolating to infin
times. Then, the effective exponentdstd is

2dstd ­ hlnfPstdyPstybdgy ln bj , (2)

hstd andzstd being defined analogously. Plotting the loc
slopes versust21 allows us to determine both the expone
and the critical point accurately. At the critical point t
local slope will extrapolate to a constant ast21 ! 0 with
ndi-
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a scaling correction linear int21 [20]. Data taken away
from the critical point will have local slopes that curv
away from the critical point value ast21 ! 0.

Figure 2 shows the effective exponents of the three
namic quantities near the phase transition to theC satu-
rated phase atpAB ­ 0.5. Using105 independent runs o
up to 104 time steps at each parameter value, we foun
critical C monomer adsorption rate ofp̃C ­ 0.395 75s10d,
and the critical exponents ared ­ 0.16s1d, h ­ 0.31s1d,
andz ­ 1.255s15d. These values are consistent with o
expectation that this transition should be in the DP univ
sality class, for which the exponents ared ­ 0.1596s4d,
h ­ 0.3137s10d, and z ­ 1.2660s14d [21]. We found
similar exponents for the adsorbing transition at a nu
ber of other points along the lines separating the reac
phase and the saturated states, indicating the transitio
tween the reactive phase and any single saturated pha
always in the DP universality class.

The same kind of analysis at the bicritical point
pAB ­ 0.5, using an initial condition of a vacancy i
an A-saturated phase, yields a bicritical point atpC ­
pp

C ­ 0.122s1d, and very different exponents, given th
presence of two-symmetry equivalent saturated pha
From 5 3 105 runs of up to105 time steps we found th
local slope data shown in Fig. 3, yielding values ofd ­
0.29s1d, h ­ 0.00s1d, andz ­ 1.150s15d. These values
indicate that the bicritical behavior falls in the BAW
universality class, for whichd ­ 0.285s2d, h ­ 0.000s1d,
andz ­ 1.141s2d [14].

For pC , pp
C along theA-B coexistence line, a simila

analysis yields the subcritical dynamic exponentsd ø 0.5,
h ø 20.5, andz ø 1. These exponents also describe

FIG. 2. Effective exponents using Eq. (2) withb ­ 5 for the
defect dynamics near the critical point atpAB ­ 0.5 on the
line where theC poisoned phase meets the reactive pha
From top to bottom, the three curves in each panel corresp
to pC ­ 0.3955, 0.395 75, and 0.3960, with the middle curve
corresponding to the critical point.
4095
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FIG. 3. Effective exponents for the defect dynamics near
bicritical point where theA and B poisoned phases meet th
reactive phase as defined in (2) withb ­ 5. From bottom to
top, the three curves in each panel correspond topC ­ 0.121,
0.122, and 0.123, with the middle line corresponding to th
bicritical point.

two species version of the model which can be map
onto the well known problem of theT ­ 0 one-
dimensional kinetic Ising model for which these valu
are known exactly [22].

To further analyze the importance of competition in t
growth of two equivalent saturated phases at the bicrit
point we also studied the dynamics of an interface betw
those two phases. Starting with a single vacancy betw
the two domains, we used two different methods to ana
the behavior of the interface. Since there must always b
least one vacancy between two different saturated pha
in the first method we ignore the survival probabil
Pstd and taked ; 0. We then measure the number
vacancies in the interfaceknstdl ~ th and average siz
of the interfacekR2stdl ~ tz . From5 3 104 independent
runs at the bicritical point, each lasting105 time steps,
we found the other exponents to beh ­ 0.285s10d and
z ­ 1.14s2d. This type of interface dynamics has be
used to study the properties of critical interfaces in ot
models in the BAWe class, where similar results forh and
z were obtained [13,14].

In the second type of interface dynamics simulatio
which has not been studied before, the simulation
stopped if the interface between the domains has “
lapsed” back to one vacant site. We introduce a proba
ity of avoiding a collapsePstd ~ t2d0

and corresponding
vacancy concentrationsknstdl ~ th0

and kR2stdl ~ tz0

.
Figure 4 shows results from107 independent runs eac
lasting up to105 time steps. We find values ofd0 ­
0.73s2d, h0 ­ 20.43s2d, andz0 ­ 1.15s2d.

Note the value of the dynamic exponentz or z0, which
measures the size of the active region during surviv
4096
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FIG. 4. Effective exponents, as in Fig. 3, for the second ty
of interface dynamics near the bicritical point where theA and
B poisoned phases meet the reactive phase.

runs, is the same in both types of interface dynam
simulations as that measured for the defect dynam
Furthermore, although the exponentsd andh are different
in the three cases, their sumd 1 h (or d0 1 h0), which
governs the time evolution of the number of vacanc
in just the surviving runs, seems to be the same. T
indicates a universal nature of the critical spreading of
active region for models with two symmetric adsorbi
states which is independent of whether defect or interf
dynamics is being considered. A similar result ho
for some one-dimensional systems with infinitely ma
adsorbing states [23].

Assuming this conjecture is true, it should be not
that simulations using the first type of interface dynami
whered ; 0, yield no information beyond that obtainab
from simulations employing defect dynamics. Howev
simulations using the second type of interface dynam
measure an independent dynamic exponentd0 which we
expect to be a universal number. It would be interest
to measure this exponent for other models in the BAW
class.

Finally, we measured the crossover from bicritical
critical behavior. Near the bicritical point where theA
andB poisoned phases meet, the boundary of the reac
region is expected to behave asspAB 2 0.5d ~ spC 2

pp
Cdf, wheref is the crossover exponent [16]. We us

the dynamical simulation method to accurately determ
the location of the DP phase boundary between the reac
phase and theA saturated phase near the bicritical poi
From the log-log plot ofpAB 2 0.5 versus pC 2 pp

C
shown in Fig. 5 we findf ­ 2.1 6 0.1.

We have introduced a convenient model to study
role of symmetry in the critical dynamics of adsorbin
phase transitions. We have shown that the universa
class of the transition changes from DP to BAWe wh
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FIG. 5. Location of the critical line as a function of distanc
from the bicritical point. The data fall on a line with a slop
corresponding to the crossover exponentf ­ 2.1 6 0.1.

the symmetry of the adsorbing state is increased fr
one to two equivalent noiseless states. Furthermore,
have shown that having a symmetry in the adsorbing sta
introduces a richness into the dynamics that is not poss
if there is a unique adsorbing state. In particular, t
critical dynamics of the interfaces between two differe
adsorbing states shows a sensitivity to how the dynamic
defined, and the survival probability of fluctuations in th
size of the interface from its smallest value is describ
by a new universal exponentd0. However, the critical
spreading of the reactive region, be it a defect in a sin
phase or a domain wall between phases, appears t
insensitive to the choice of initial conditions. This appea
to result from the fact that large reactive regions a
insensitive to whether the reactive regions are bounded
the same or different saturated phases.

This work was supported by the National Scien
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