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We report on the infrared conductivity of YBE@wO, and YBaCu,Og crystals with different
oxygen content and Zn doping. We find a correlation between the structure of the scattering rate
spectral/7.(w,T) in the CuQ planes and the pseudogap that develops inctagis conductivity
of underdoped samples fdf < T* = 140-250 K. In the pseudogap state, the scattering rate is
depressed at low frequencies and followsait %3 law for o < 400 cm™!. When thec-axis pseudo-
gap is suppressed, either by an increase of temperature d3ooe by a substitution of Cu with Zn,
the spectra of /7 (w, T) revert to the nearly linea® dependence of the optimally doped compounds.
[S0031-9007(96)01596-7]

PACS numbers: 78.30.Er, 74.25.Gz, 74.72.BK,

It is now well established that the electronic propertieshe CuQ planes through the substitution of Zn for Cu.
of high-T, cuprates are very different from those of con-We find a link between lifetime effects in the CuO
ventional metals. In optimally doped samples (those wittplanes and the pseudogap in tiaxis conductivity. The
maximumT.,), a resistivityp,. along the Cu@planes that complex conductivityo;(w) + io>(w) of YBCO single
is linear in T with a zero intercept al" = 0 [1] and a crystals was obtained from Kramers-Kronig analysis of
temperature dependent Hall coefficient [2] are indicativethe reflectance measured for polarizatiéghd « andE ||
of strong correlations between charge carriers [3]. Effects betweerB0-50 cm™!' and20000 cm™!. Three regimes
due to correlations are also observed in materials with reef carrier density were studied: a mechanically detwinned
duced carrier densities, commonly designated as “undepptimally doped YBaCuwO, (123) crystal with oxygen
doped.” Thep,. of underdoped compounds [4,5] show content set ak = 6.95 (T, = 93.5 K), the same crystal
anomalies that occur around a characteristic temperatudeoxygenated down ta = 6.6 (T. = 59 K) [11], and
T = T* > T., where nuclear magnetic resonance [6], spea double-chained YB&£wOgs (124) crystal with7,. =
cific heat [7], and neutron [8] experiments point to the82 K [12]. The carrier density in naturally untwinned
opening of a pseudogap in the spectrum of low- energyl24 crystal corresponded to that of 123 samples with
excitations. This pseudogap can be observed directly by = 6.85. We also studied a series of 124 crystals where
infrared measurements of the interplaraxis conductiv- Cu ions in the Cu@planes were substituted with Zn [13].
ity of underdoped YBCO [9,10]. In Fig. 1, the real part of the in-plane conductivity

The purpose of this study is to investigate, by meansr,(w) of the YBCO crystals is plotted together with
of infrared spectroscopy, the influence that the pseudogagarlier data for the real part of theaxis conductivity
has on the peculiar charge dynamics of the €panes. o.(w) [9,10,14]. The in-plane response of all samples
As a model system we have chosen YBCO. Advantageis Drude-like, i.e., the absolute value of,(w) decreases
of YBCO include the availability of high quality samples from the dc value with increasing. The in-plane plasma
and convenient access to different hole doping regimesequencyw, = [8 [, go(w)dw]'?, scales withT, in
through the oxygenation/deoxygenation of the same crysaccordance with with previous work [15].
tal. Also, by using detwinned crystals one can probe the The frequency dependence of irg(w) spectra change
response of the Cuplanes without having to consider the with doping: particularly the width of the Drude-like
contribution to the optical conductivity from charge reser-peak atT = T. narrows with decreasing carrier density.
voir layers. In other cuprates, the reservoir layers (TI-O,To accentuate these differences we plot the spectra of
Bi-O, etc.) inevitably contribute to the planar conductivity. the renormalized in-plane scattering rate in the form
However, in YBCO the reservoir is in the one-dimensionall /7 (w, T), which we obtain from an extended Drude
Cu-O chain, so the response to thiezector perpendicular model [16]:
to the chain direction || a), as measured in untwinned | o1(.T)
crystals, is determined solely by the Cuflanes. " = w7 (1)

In this Letter we present, for the first time, a complete To(@,T) (@, T)
set of data illustrating the evolution of the in- and For cuprates]/7;(w,T) is often frequency dependent
interplane conductivity of a higiiz superconductor with [15,17]. The cause of this frequency dependence is
changes in carrier density, temperature, and disorder dfelieved to be inelastic scattering of quasiparticles by
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where the first term stands for impurity scattering, the
second and the third terms for tle and T dependence,
respectively. This behavior should be contrasted with
the standard Fermi liquid picture where the quasiparticle
damping /7 is supposed to be much lower than their
energy, and vary quadratically with andw [21].

In the underdoped samples the situation is even more
complex. In agreement with the earlier data [15], our
300 K scattering rates for the 1283 = 6.6 crystal and
the 124 sample still exhibit nearly linear frequency
dependence. However, unlike the case of the optimally
doped sample, the temperature dependend¢ of(w, T)
in the underdoped 123 and 124 is not restricted just to a
vertical offset of the spectra. Rather than being a simple
offset, one finds achangein the » dependence of the
in-plane scattering rate for temperaturgés< 7™, which
is about 140 K for the 124 crystals and about 250 K
for the 123 x = 6.6 sample. For temperatures below
T*, 1/7;(w,T) develops a threshold feature at =
600 cm~!'. As a result of this threshold, the temperature
dependence of /7 (w — 0,T) falls fasterthan linearly.
This is in accord with measurements of the dc resistivity
o s o0 pv— PR p(T) that _indicate a crossover to a steeper slopédidT

4 belowT* in the underdoped crystals [4,22].
Wave number [cm]

The c-axis response of underdoped crystals is modi-

FIG. 1. The c-axis conductivity (top panel), thea-axis fied below7™ as well. Both 123c = 6.6 and 124 reveal
conductivity (middle panel), and the-axis scattering rate g pseudogapin the FIR conductivity—a region where
Eq. (1) (bottom panel) of YBLwOgos, (T, = 93.5 K),

YBa,ClsOps (T, — 59 K), and of YBaClOs (T, — 82 K) o.(w) is reduced but remains finite [9,10]. The formation
single crystals. Dash-dotted linesE— 300 K, dashed lines Of the pseudogap ibr.(w) occurs through the transfer of

T = T., solid lines atT = 10 K. The c-axis conductivity of ~ spectral weight from FIR frequencies (< 300 cm™') to

123 crystals is taken from Ref. [10] and multiplied by a factor higher energies. Thus the suppression of the scattering

of 4; the c-axis conductity of 124 crystals is from Ref. [11]. rate within the Cu@ planes is accompanied by a redistri-
Upon opening of a pseudogap in tkeaxis conductivity (at

T < T* in underdoped 123 and 124) the in-plane transport?Utlon of thec-a_><|s Spectral W.e'ght' We. QmphaS|ze that
is altered as well and the Drude-like feature in,(w) is he spectral_welght in ths_a—aX|s conductivity shows no

narrowing. That corresponds to a depressed scattering rate tansfer to higher energy in the same temperature range.
low frequencies and leads to a threshold feature in the spectra To further explore the connection between the in-plane

of 1/7;(w,T). When the psedogap ior.(w) is not observed  scattering rate and the-axis pseudogap we studied 124
(at T < T* in the underdoped 123 and 124 or &t> T.

in the optimally doped 123) the in-plane/+*(w,T) shows crystals doped with Zn. I*n Fig. 2 we plot the spectra

nearly linear dependence consistent with the gapless scatteri o4(@), oc(w), and 1/7;(w,T) of 124 samples of

spectrum. Bax(Cu;—,Zny,),Og, wherey = 0.00425. As a result
of this substitutior?, is suppressed from 82 K in the pure

crystal down to 45 K [23]. Substitution with Zn also leads
excitations possessing a broad energy spectrfifa) to an increase of /79 by 110-130 cm™!' and a radical

[18]. These inelastic processes are mirrored in &he alteration of the frequency dependencelgf)(w) and
dependence ofl/7)(w,T), which reflects the energy o,(w). The threshold structure in the in-plane scattering
scales associated with ti&w) spectrum [19,20]. rate nearly vanishes in the crystal containing Zn. The
In an optimally doped crystal /7)(w,T) is a linear c-axis results obtained for this sample also reveal a
function of both energy and temperature. The absoluteomplete suppressiaf the pseudogap [25]. The overall
value is of the order ofw, which is consistent with result is that the in-plane andaxis properties of this
strong scattering from a flaF(w) spectrum [18]. As underdopedsystem with Zn impurities af” > T, are
the temperature decreases from 300 Krtothe spectra quite similar to theoptimally doped123 sample with
of 1/7,(w,T) shift down by an amount proportional x = 6.95.
to kT without any significant changes to the frequency The results presented in Figs. 1 and 2 establish a corre-
dependence. Thus the scattering rate can be written asation between the-axis pseudogap and the gaplike struc-
sum of three terms: ture in the in-plane scattering rate. First, the threshold
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FIG. 2. Thec-axis conductivity (top panel), the-axis con-  F|G. 3. Top panel—thec-axis conductivity of underdoped
ductivity (middle panel), and the-axis scattering rate [ob- 123 crystal from Ref. [10]. Bottom panel—the frequency
tained from Eg. (1)] (bottom panel) of a pure 124 crystal dependent term on the right-hand side of Eq. [2)7(w)]
and of YBa(Cu,—,Zn,)sOs (x = 0.0045, T, = 45 K) crys-  gbtained from 1/7(w,T) as described in the text for
tals. Dashed lined" = T., solid lines at7 = 10 K. The  YBa,CwO6. The spectrum ofl/7(w) shows a crossover
pseudo gap inr.(w) and a threshold structure iy7,(«,7)  from a strong scattering regime at > 1500 cm™!, where
are found only in “clean” 124 crystals. A substitution of Cu 1/7(w) = » and varies linearly with frequency to weak

with Zn in this underdopedcrystal suppresses the pseudogapscattering regime ai» < 400 cm™!, where1/7(w) < » and
in the c-axis conductinty and restores nearly linear behavior ofvaries quadratically with frequency. The crossover region
1/7,(w, T) originally found in theoptimally dopedl23 crystal.  matches the position of the steplike structuresif{w). Thin

solid lines showw ! and w?® dependences.

feature inl1/7;(w,T) is found only in underdoped crys-
tals atT < T* when the spectrum of.(w) exhibits a exceeding the steplike structure n.(w). All of the
pseudogap. Second, the suppression of the pseudogapahove observations hold true for the 124 sample as well.
o.(w), either by the increase of temperature ab®dvVeor Below, we summarize the principal conclusions that fol-
by the increase of the carrier density fram= 6.6 to0 6.95  low from Figs. 1-3. (i) In order to be consistent with the
in 123, or by the substitution of Cu with Zn in underdopedexperimental behavior of /7 (w, T) the spectrunm¥(w)
124, restores the nearly linear frequency dependence of excitations responsible for the scattering in the guO
thel/7)(w). planes has to be suppressed at low frequencies in the
In order to analyze the frequency dependent part ofame temperature range and in the same doping regime
the scattering ratelf7(w)—the third term in Eqg. (2)] where thec-axis conductivity reveals a pseudogap. (ii) A
in underdoped crystals, we first subtract thér(T)  crossover to stronger in-plane scattering in underdoped 123
contribution from 1/7(w,T =T, in Eqg. (2). To and in 124 starts when the frequency exceeds the magni-
estimate this contribution we assume that the value ofude of thec-axis pseudogap. This suggests that for under-
1/7:(w,T) at frequencies much higher than the gaplikedoped crystals the-axis conductivity reproduces certain
structure @ > 2000 cm™!) is dictated primarily by the features of the in-plane scattering spectruife). (iii)
1/7(T) term (as in the optimally doped samples). ThenThe development of a threshold feature in the spectra of
1/7(T) can be obtained ad/7)(2000,7.) — 1/7) X 1/7(w,T) at T < T and its suppression with addition
(2000, 10). This yields the value of /7(T = T.) whichis  of Zn impurities argues in favor of the scattering excita-
close tokT—-43 cm™! for the 123x = 6.6 sample and tions being related to thepindegree of freedom. (iv) In
56 cm™! for the 124 sample. In Fig. 3 we show the spec-the pseudogap state the in-plane transport of YBCO mim-
trum of 1/7(w) for the underdoped 123 crystal at 65 K ics certain features of a Fermi liquid by showing a nearly
on a log-log scale. The spectrum shows a crossover fromuadratico dependence of /7 (w). However, this be-
the strong scattering regime at > 1500 cm™!, where havior is found only in the regime where theaxis prop-
the slope is linear and/7(w) = w to aweakscattering erties such as semiconducting resistivity and the presence
regime atw < 400 cm™!, wherel/7(w) < w and varies of a pseudogap in the spectra®f(w) basically rule out
asw?*%3, This behavior is in accord with that of the dc a standard Fermi liquid approach to data interpretation.
resistivity which shows a nearly quadratic dependence of Finally, we discuss the response &at< T.. A brief
p(T) below 200 K [22]. Remarkably, the weak scatteringexamination of the data presented in Fig. 1 shows that the
regime is observed in a frequency range which coincideslectrodynamic properties in underdoped crystals undergo
with the pseudogap in the-axis conductivity and there qualitative changes & < T but are very similar in the
is a crossover to strong in-plane scattering at frequencigzseudogap state and in the superconducting state. This is
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