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Numerical Simulation of Three-Dimensional Dendritic Growth
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Dendritic crystal growth in a pure undercooled melt is simulated quantitatively in three dimensions
using a phase-field approach. The classic parametethat characterizes the dynamically selected
operating state of the dendrite tip as well as the full nonaxisymmetric tip morphology are determined as
a function of anisotropy for a crystal with a cubic symmetry. Results are compared to experiment and
used to critically test solvability theory. [S0031-9007(96)01568-2]

PACS numbers: 68.70.+w

Dendritic growth has been a central problem in patterrwhere T is the temperature field7; is the interface
formation [1] and metallurgy [2] for many years. Consid- temperature,T), is the melting temperature) is the
erable theoretical progress has been achieved which hagfusivity, L is the latent heat of meltings, is the
led to the development of solvability theory to determinespecific heaty, is the normal velocity of the interface,
the steady-state operating state of the dendrite tip (i.e., tipnd
velocity V and tip radiusp) [1,3-8]. 4e,

Paradoxically, our understanding of pattern selection in y(n) = yo(1 — 3e4) [1 + (nﬁ + ny + n4>:|
three dimensions (3D) has remained uncertain, especially ~ 3e
with regard to experiment. This is due to the fact 4)
that it has so far remained too difficult to simulate js the surface energy for a crystal chosen to have a cubic
reliably the equations of dendritic growth in 3D evensymmetry. In addition,d; are the angles between the
on current supercomputers. This, in turn, has preventedormal n and the two local principal directions on the
the following: (i) to test whether the global attractor of boundary, andR; are the principal radii of curvature.
the growth dynamics is indeed the steady-state needi@rowth is controlled by the undercooling = (Ty —
crystal predicted by solvability theory, and (ii) to test 7.,)/(L/c,) whereT.. is the initial melt temperature.
the predictions of this theory which are themselves We use three key ingredients to solve the above
only approximate in 3D [6-8]. Consequently, it hasequations. Firstly, we avoid the usual difficulties of
remained unclear whether existing disagreements betweeiacking a sharp boundary by using a phase-field approach
solvability theory and experiment [9—-11] are due to the[13—-17]. In this approach, the two-phase system is
inapplicability of this theory, to the approximate nature ofdescribed by a phenomenological free energy
its predictions in 3D, or to some missing physics in the
starting equations. F= ] de[W2m)|Vy|? + f(p,u)], (5)

Here we report the results of 3D simulations of den-
dritic growth in a pure undercooled melt. These simu-whereu = (T — Ty)/(L/c,) is the dimensionless tem-
lations are made possible by using a recently developegerature field. We have used here the fofify, u) =
phase-field approach which renders fully quantitative 3D—¢2/2 + */4 + Aug(1 — 2¢%/3 + */5) with min-
computations accessible for the first time [12]. This apima at¢ = —1 and ¢ = +1 which correspond to the
proach also makes it possible to model the experimenliquid and solid phases, respectively. The anisotropic sur-
tally relevant low velocity limit, where the solid-liquid face energy defined by Eg. (4) is recovered by choos-
interface can be assumed to relax instantaneously to localg W(n) = Wyy(n)/y,, with n = Vi/|Vi|, which is
thermodynamic equilibrium (i.e., where kinetic effects atthe direct 3D generalization of the way anisotropy has
the interface are negligibly small). Our numerical resultsbeen previously included in two dimensions (2D) [15—
are applied to critically test the applicability of solvability 18]. The phase fields varies between its two minima
theory in 3D, to make comparison with experiment, andvalues across an interfacial region of widd#y, thereby
to characterize the full 3D dendrite tip morphology. distinguishing between phases without front tracking. It

The equations of the 3D free-boundary problem areobeys the first order kinetic equation

given by o 5F
9,T = DV°T, (1) T)— - = - B (6)
Lvw = ¢,D(@aTls = 9aTlL). (@) and is coupled to the diffusion equation
T, — Ty = — M i )+ XL ou
A1 i 007 R’ o vt (7)
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for the temperature field with an added source term
that represents the simplest phenomenological way of
including the generation of latent heat at the interface
[12-15]. These equations reduce to those of the original
solidification equations in the sharp-interface limit, where

Wy is small compared to the principal radii of curvature

of the boundary.

Secondly, and most importantly, we exploit the results
of a recent analysis [12] to relate the phase-field model
parameters to those of the sharp-interface equations.
As demonstrated in 2D [12], this analysis makes it
possible (i) to perform computations with a smaller
capillary length,dy = yoTuc,/L? and (ii) to choose
A and the functionr(n) in such a way that we obtain
a Gibbs-Thomson condition without interface kinetics
in the sharp-interface limit [12]. That is we recover
exactly Eq. (3) without an additional velocity-dependent
term in this limit. Since the computation time scales as
(do/Wy)? in 3D, this first property dramatically enhances
the computational efficiency of the phase-field approach
and allows us to model dendritic growth quantitatively,FIG. 1. Result of a 3D phase-field simulation on3e0 X
as opposed to nonguantitatively in 3D as previously [15]300 X 300 cubic lattice fore, = 0.047 which shows dendrite
Furthermore, it permits us to model an undercoolingt'ps growing along the principall00) directions. The simu-

o p lation was performed in the first octaft,y,z = 0) with a
range, where the dendrite tip Péclet numBer pV/2D spherical nucleus centered at the origin as the initial condition.

: — 2 : Al nuct
is small enough to comparer* = 2Ddy/p*V 10 itS  The solid-liquid boundary shown here corresponds toythe
measured small undercooling values [9,10]. 0 surface reconstructed by reflection about the: y = z = 0

Lastly, we are able to resolve numerically very smallplanes. The structure is seen from an angle where aff16%)

anisotropies by incorporating quantitatively the contribu-directions are visible.

tion of the grid anisotropy. For a given valueafused in  sing the standard axisymmetric approximation, where
W(n), we compute the equilibrium shape produced by thnhe surface energy and steady-state shape are assumed
pha_lse-ﬁeld model. The grld-correct_ed anisotropy is thep, pe independent of the polar anglein the x-y plane
defined as that value af; in y(n) which produces a 3D perpendicular to the growth axis [6]. This is the same
equilibrium shape that matches exactly that of the phases|cylation performed by Kessler and Levine in Ref. [6],
field model. A procedure that will be described elsewhereyng we have checked that our boundary integral code
was also developed to obtain a grid-correctéd). NU-  reproduces their results within 1%. For completeness, we
merical tests were performed in 2D to check that this proysg report the predictions of the linear solvability theory
cedure yields accurate values @f over the entire range  of Barieri and Langer [7] which uses a shape linearized
of ¢, investigated here in 3D. _ . around the Ivantsov paraboloid of revolution [19] and the
Equations (6) and (7) were simulated explicitly with a g3 me axisymmetric approximation.
grid spacing ranging betwedn6 and 0.8 with W, = 1,
D ranging between.5 and4, a time step ranging between TABLE |. Result of phase-field simulations on 200 X

0.01 and0.08, and a constant undercooling= 0.45. The 200 x 400 cubic lattice compared to the results of the numeri-
anisotropy was varied frona; = 0.0066 t0 €, = 0.047  cal and linear solvability theories fax = 0.45. A anda char-

which spans most of the range of experimental interesicterize the amplitude of the fourfold symmetry component
Figure 1 shows a typical 3D dendrite morphology resultingOf the tip morphology in simulations. Typical runs took 60—

. ... ~140 CPU hours on a DEC-ALPHA 3000-700 work station, and
from the growth of a small spherical seed. Quantltatlve;norter times on a CRAY-YMP and a CRAY-T3D.

results which pertain to the steady-state operating state ar

morphology of the dendrite tip are presented in Table | and Phase-field simulations Solvability theory

Figs. 2 and 3. These were obtained with long simulations A Numerical Linear

that focused on the steady-state growth of a single dendrite € £ o~ a A" P o° Py o

tip along thez axis. Several runs were performed to check0.0066 0.426 0.015 1.78 13.0 0.418 0.0128 0.471 0.0116

that the values in Table | are independenﬂ@}fwo within 0.0123 0.360 0.036 1.73 11.3 0.367 0.0329 0.471 0.0250

an accuracy of 10%. 0.0171 0.312 0.063 1.68 10.1 0.324 0.0578 0.471 0.0367
In order to test solvability theory, we have computed0'0265 0.236 0.16 1.62 7.8 0.247 0.142 0.471 0.0602

independently the values @ and o* predicted by the 0.0369 0.159 0.47 1.57 5.7 0.172 0.365 0.471 0.0890

numerical solution of the steady-state growth equations(?'0470 0.093 1.72 154 40 0109 1.037 0471 01240
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FIG. 2. Plot of o* vs €4 for A = 0.45 showing the results

of phase-field simulations compared to the approximate pre-
dictions of the numerical and linear solvability theories. Also
plotted are the smalh experimental values of* for SCN [9]

and PVA [10], using the; measurements of Ref. [11].

As shown in Table I, the numerical solvability theory
yields ¢* values which are systematically lower than
the phase-field results, but still reasonably close for
small anisotropy. The predicted values ®f, however,
start to become significantly inaccurate for anisotropies
greater than about 3%, although predictions of the Péclet
number remain relatively accurate. Most likely, this
does not indicate a breakdown of solvability theory,
but of the axisymmetric approximation. This conclusionFIG. 3. Steady-state tip morphology feg = 0.0123 shown

is supported by the fact that the fourfold deviationn (&) theé = 0° (solid line) and¢ = 45° (dash-dotted line)

. ) . .. planes, and (b) (100) planes equally spaced alpbg one ti
from a shape of revolution increases in magnitude W'“fadius. The(le)n(gth i)spmeasurgd inyunpits/m.f Thgglvantsor\)/

anisotropy (as described below) and, hence, can affect th@rabola; = —r2/2 (dashed line) and a circle of unit radius

selection. It is also supported by the fact that we do noare superimposed in (a). The Fourier amplitudes at two tip

observe any sidebranching [1,9,20] without adding noiséadii behind the tip in (b) aré\;(—2) = 0.29, A»(~2) = 0.020,

to the phase-field equations. Hence, our simulations rulgnd A3(—2) = 0.0022, illustrating that the tip morphology is
. . ominated by the fourfold symmetry mode.

out the possibility of a dynamical attractor other than a

steady-state needle crystal. The linear theory is seen to

break down at much smaller anisotropy. This is becausenisotropy as one would expect. More important is the

it assumes that the steady-state shape remains close to th@naxisymmetric departure from this shape of revolution

Ivantsov paraboloid of revolution. Table | shows that thewhich is contained in the higher modes,(z) for n = 1.

actual Péclet number already starts deviating significantlyfhe amplitude of the first fourfold symmetry mode turns

from its Ilvantsov valuePy, [19], at small anisotropy. out to be much larger than all the other modes (Fig. 3)
The steady-state morphology of the dendrite tip wasand to be well described by the power lawz) = Alz|?,
analyzed using the Fourier decomposition which appears as a straight line on a log-log plot of
A1(z) vs |z| for |z]| varying between approximately/10
r(¢,z) = ZAn(Z) cosdndg , (8) and5p [21]. Furthermore, the values of and « in

Table | clearly show that the amplitude of the fourfold
where r is the radial distance from the axis. Both symmetry mode is sensitively dependent on anisotropy
r and z are measured in units op with the tip at which is a qualitatively novel aspect of our results. The
z = 0. This decomposition has the advantage that it idinear solvability calculation of Ben-Amar and Brener [8]
general and does not presuppose a particular analyticabd previously predicted that the tip morphology should
form to fit the tip shape. The functiod(z) is the be independent of anisotropy for asymptotically small
axisymmetric contribution to this shape. It approaches anisotropy, withA™! = 11 anda = 2 for small|z|. The
paraboloid of revolutionAy(z) = —2z, for small|z| and  values ofA and« listed in Table I indicate that the range
departs from this shape with increasifyy as shown in  of small anisotropy, where this prediction is likely to be
Fig. 3, this departure being more pronounced at largevalid, lies outside the range simulated here. This is also
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consistent with the fact that their calculation is only valid University of Minnesota for his help in visualizing our
in the limit whereg* ~ 61/4, and that this7/4 power results and Martine Ben-Amar for useful exchanges.

law scaling is not yet attained at the smallest computed
anisotropy in Fig. 2.
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