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Numerical Simulation of Three-Dimensional Dendritic Growth

Alain Karma and Wouter-Jan Rappel
Department of Physics and Center for Interdisciplinary Research on Complex Systems,

Northeastern University, Boston, Massachusetts 02115
(Received 27 June 1996)

Dendritic crystal growth in a pure undercooled melt is simulated quantitatively in three dimen
using a phase-field approach. The classic parametersp that characterizes the dynamically selec
operating state of the dendrite tip as well as the full nonaxisymmetric tip morphology are determ
a function of anisotropy for a crystal with a cubic symmetry. Results are compared to experime
used to critically test solvability theory. [S0031-9007(96)01568-2]
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Dendritic growth has been a central problem in patt
formation [1] and metallurgy [2] for many years. Cons
erable theoretical progress has been achieved which
led to the development of solvability theory to determ
the steady-state operating state of the dendrite tip (i.e
velocity V and tip radiusr) [1,3–8].

Paradoxically, our understanding of pattern selectio
three dimensions (3D) has remained uncertain, espec
with regard to experiment. This is due to the fa
that it has so far remained too difficult to simula
reliably the equations of dendritic growth in 3D ev
on current supercomputers. This, in turn, has preve
the following: (i) to test whether the global attractor
the growth dynamics is indeed the steady-state ne
crystal predicted by solvability theory, and (ii) to te
the predictions of this theory which are themselv
only approximate in 3D [6–8]. Consequently, it h
remained unclear whether existing disagreements betw
solvability theory and experiment [9–11] are due to
inapplicability of this theory, to the approximate nature
its predictions in 3D, or to some missing physics in
starting equations.

Here we report the results of 3D simulations of de
dritic growth in a pure undercooled melt. These sim
lations are made possible by using a recently develo
phase-field approach which renders fully quantitative
computations accessible for the first time [12]. This
proach also makes it possible to model the experim
tally relevant low velocity limit, where the solid-liqui
interface can be assumed to relax instantaneously to
thermodynamic equilibrium (i.e., where kinetic effects
the interface are negligibly small). Our numerical resu
are applied to critically test the applicability of solvabili
theory in 3D, to make comparison with experiment, a
to characterize the full 3D dendrite tip morphology.

The equations of the 3D free-boundary problem
given by

≠tT ­ D=2T , (1)

Lyn ­ cpDs≠nT jS 2 ≠nT jLd , (2)
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where T is the temperature field,TI is the interface
temperature,TM is the melting temperature,D is the
diffusivity, L is the latent heat of melting,cp is the
specific heat,yn is the normal velocity of the interface
and

gsnd ­ g0s1 2 3e4d
∑

1 1
4e4

1 2 3e4

≥
n4

x 1 n4
y 1 n4

z

¥∏
(4)

is the surface energy for a crystal chosen to have a c
symmetry. In addition,ui are the angles between th
normal n and the two local principal directions on th
boundary, andRi are the principal radii of curvature
Growth is controlled by the undercoolingD ­ sTM 2

T`dysLycpd whereT` is the initial melt temperature.
We use three key ingredients to solve the abo

equations. Firstly, we avoid the usual difficulties
tracking a sharp boundary by using a phase-field appro
[13–17]. In this approach, the two-phase system
described by a phenomenological free energy

F ­
Z

drfW2sndj=cj2 1 fsc , udg , (5)

where u ; sT 2 TMdysLycpd is the dimensionless tem
perature field. We have used here the formfsc , ud ­
2c2y2 1 c4y4 1 lucs1 2 2c2y3 1 c4y5d with min-
ima at c ­ 21 and c ­ 11 which correspond to the
liquid and solid phases, respectively. The anisotropic s
face energy defined by Eq. (4) is recovered by cho
ing Wsnd ­ W0gsndyg0, with n ; =cyj=c j, which is
the direct 3D generalization of the way anisotropy h
been previously included in two dimensions (2D) [15
18]. The phase fieldc varies between its two minima
values across an interfacial region of widthW0, thereby
distinguishing between phases without front tracking.
obeys the first order kinetic equation

tsnd
≠c

≠t
­ 2

dF

dc
, (6)

and is coupled to the diffusion equation

≠u
≠t

c≠t (7)
© 1996 The American Physical Society
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for the temperature field with an added source te
that represents the simplest phenomenological way
including the generation of latent heat at the interf
[12–15]. These equations reduce to those of the orig
solidification equations in the sharp-interface limit, wh
W0 is small compared to the principal radii of curvatu
of the boundary.

Secondly, and most importantly, we exploit the resu
of a recent analysis [12] to relate the phase-field mo
parameters to those of the sharp-interface equat
As demonstrated in 2D [12], this analysis makes
possible (i) to perform computations with a smal
capillary length, d0 ­ g0TMcpyL2, and (ii) to choose
l and the functiontsnd in such a way that we obtai
a Gibbs-Thomson condition without interface kinet
in the sharp-interface limit [12]. That is we recov
exactly Eq. (3) without an additional velocity-depend
term in this limit. Since the computation time scales
sd0yW0d5 in 3D, this first property dramatically enhanc
the computational efficiency of the phase-field appro
and allows us to model dendritic growth quantitative
as opposed to nonquantitatively in 3D as previously [1
Furthermore, it permits us to model an undercool
range, where the dendrite tip Péclet numberP ; rVy2D
is small enough to comparesp ; 2Dd0yr2V to its
measured small undercooling values [9,10].

Lastly, we are able to resolve numerically very sm
anisotropies by incorporating quantitatively the contrib
tion of the grid anisotropy. For a given value ofe4 used in
W snd, we compute the equilibrium shape produced by
phase-field model. The grid-corrected anisotropy is t
defined as that value ofe4 in gsnd which produces a 3D
equilibrium shape that matches exactly that of the ph
field model. A procedure that will be described elsewh
was also developed to obtain a grid-correctedtsnd. Nu-
merical tests were performed in 2D to check that this p
cedure yields accurate values ofsp over the entire rang
of e4 investigated here in 3D.

Equations (6) and (7) were simulated explicitly with
grid spacing ranging between0.6 and 0.8 with W0 ­ 1,
D ranging between0.5 and4, a time step ranging betwee
0.01 and0.08, and a constant undercoolingD ­ 0.45. The
anisotropy was varied frome4 ­ 0.0066 to e4 ­ 0.047
which spans most of the range of experimental inter
Figure 1 shows a typical 3D dendrite morphology result
from the growth of a small spherical seed. Quantita
results which pertain to the steady-state operating state
morphology of the dendrite tip are presented in Table I
Figs. 2 and 3. These were obtained with long simulati
that focused on the steady-state growth of a single den
tip along thez axis. Several runs were performed to che
that the values in Table I are independent ofd0yW0 within
an accuracy of 10%.

In order to test solvability theory, we have compu
independently the values ofP and sp predicted by the
numerical solution of the steady-state growth equati
rm
of
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FIG. 1. Result of a 3D phase-field simulation on a300 3
300 3 300 cubic lattice fore4 ­ 0.047 which shows dendrite
tips growing along the principalk100l directions. The simu-
lation was performed in the first octantsx, y, z $ 0d with a
spherical nucleus centered at the origin as the initial conditi
The solid-liquid boundary shown here corresponds to thec ­
0 surface reconstructed by reflection about thex ­ y ­ z ­ 0
planes. The structure is seen from an angle where all sixk100l
directions are visible.

using the standard axisymmetric approximation, whe
the surface energy and steady-state shape are assu
to be independent of the polar anglef in the x-y plane
perpendicular to the growth axis [6]. This is the sam
calculation performed by Kessler and Levine in Ref. [6
and we have checked that our boundary integral co
reproduces their results within 1%. For completeness,
also report the predictions of the linear solvability theo
of Barbieri and Langer [7] which uses a shape lineariz
around the Ivantsov paraboloid of revolution [19] and t
same axisymmetric approximation.

TABLE I. Result of phase-field simulations on a200 3
200 3 400 cubic lattice compared to the results of the nume
cal and linear solvability theories forD ­ 0.45. A anda char-
acterize the amplitude of the fourfold symmetry compone
of the tip morphology in simulations. Typical runs took 60
140 CPU hours on a DEC-ALPHA 3000-700 work station, a
shorter times on a CRAY-YMP and a CRAY-T3D.

Phase-field simulations Solvability theory
Numerical Linear

e4 P sp a A21 P sp PIv sp

0.0066 0.426 0.015 1.78 13.0 0.418 0.0128 0.471 0.01
0.0123 0.360 0.036 1.73 11.3 0.367 0.0329 0.471 0.02
0.0171 0.312 0.063 1.68 10.1 0.324 0.0578 0.471 0.03
0.0265 0.236 0.16 1.62 7.8 0.247 0.142 0.471 0.06
0.0369 0.159 0.47 1.57 5.7 0.172 0.365 0.471 0.08
0.0470 0.093 1.72 1.54 4.0 0.109 1.037 0.471 0.12
4051



VOLUME 77, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 4 NOVEMBER 1996

p
s

r
a
f

i
c

r
o
o

t
n

r

n
u
t
h
n

t
t

s

g

s
tip

the
ion

ns
3)

of

ld
opy
he
8]
uld
all

e
e
lso
FIG. 2. Plot of sp vs e4 for D ­ 0.45 showing the results
of phase-field simulations compared to the approximate
dictions of the numerical and linear solvability theories. Al
plotted are the smallD experimental values ofsp for SCN [9]
and PVA [10], using thee4 measurements of Ref. [11].

As shown in Table I, the numerical solvability theo
yields sp values which are systematically lower th
the phase-field results, but still reasonably close
small anisotropy. The predicted values ofsp, however,
start to become significantly inaccurate for anisotrop
greater than about 3%, although predictions of the Pé
number remain relatively accurate. Most likely, th
does not indicate a breakdown of solvability theo
but of the axisymmetric approximation. This conclusi
is supported by the fact that the fourfold deviati
from a shape of revolution increases in magnitude w
anisotropy (as described below) and, hence, can affec
selection. It is also supported by the fact that we do
observe any sidebranching [1,9,20] without adding no
to the phase-field equations. Hence, our simulations
out the possibility of a dynamical attractor other than
steady-state needle crystal. The linear theory is see
break down at much smaller anisotropy. This is beca
it assumes that the steady-state shape remains close
Ivantsov paraboloid of revolution. Table I shows that t
actual Péclet number already starts deviating significa
from its Ivantsov value,PIv [19], at small anisotropy.

The steady-state morphology of the dendrite tip w
analyzed using the Fourier decomposition

r2sf, zd ­
X
n

Anszd cos4nf , (8)

where r is the radial distance from thez axis. Both
r and z are measured in units ofr with the tip at
z ­ 0. This decomposition has the advantage that i
general and does not presuppose a particular analy
form to fit the tip shape. The functionA0szd is the
axisymmetric contribution to this shape. It approache
paraboloid of revolution,A0szd ­ 22z, for small jzj and
departs from this shape with increasingjzj as shown in
Fig. 3, this departure being more pronounced at lar
4052
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FIG. 3. Steady-state tip morphology fore4 ­ 0.0123 shown
in (a) thef ­ 0± (solid line) andf ­ 45± (dash-dotted line)
planes, and (b) (100) planes equally spaced alongz by one tip
radius. The length is measured in units ofr. The Ivantsov
parabolaz ­ 2r2y2 (dashed line) and a circle of unit radiu
are superimposed in (a). The Fourier amplitudes at two
radii behind the tip in (b) areA1s22d ­ 0.29, A2s22d ­ 0.020,
and A3s22d ­ 0.0022, illustrating that the tip morphology is
dominated by the fourfold symmetry mode.

anisotropy as one would expect. More important is
nonaxisymmetric departure from this shape of revolut
which is contained in the higher modes,Anszd for n $ 1.
The amplitude of the first fourfold symmetry mode tur
out to be much larger than all the other modes (Fig.
and to be well described by the power lawA1szd ­ Ajzja ,
which appears as a straight line on a log-log plot
A1szd vs jzj for jzj varying between approximatelyry10
and 5r [21]. Furthermore, the values ofA and a in
Table I clearly show that the amplitude of the fourfo
symmetry mode is sensitively dependent on anisotr
which is a qualitatively novel aspect of our results. T
linear solvability calculation of Ben-Amar and Brener [
had previously predicted that the tip morphology sho
be independent of anisotropy for asymptotically sm
anisotropy, withA21 ­ 11 anda ­ 2 for small jzj. The
values ofA anda listed in Table I indicate that the rang
of small anisotropy, where this prediction is likely to b
valid, lies outside the range simulated here. This is a
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consistent with the fact that their calculation is only va
in the limit wheresp , e

7y4
4 , and that this7y4 power

law scaling is not yet attained at the smallest compu
anisotropy in Fig. 2.

For e4 ­ 0.0066, which lies inside the range of unce
tainty of the measured valuee4 ­ 0.0055 6 0.0015 for
SCN [11], our simulations yield a value ofsp ø 0.015
with P ­ 0.426. This value is only 20% smaller tha
the valuesp ­ 0.0192 measured by Huang and Glick
man [9] for this material. Most of this discrepancy c
be accounted for by the finite Péclet number correc
which can be estimated, using the numerical solvab
code, to decreasesp by about 15% from its zero Pécle
number limiting value. Therefore we obtain a reasona
good agreement with experiment for SCN within the e
isting uncertainty in the measured value of anisotro
Pivalic acid (PVA) [10], however, remains problema
as seen in Fig. 2, and a closer examination of kinetic
fects for this material could potentially resolve this lar
discrepancy. Finally, Maurer, Perrin, and Tabeling [2
have found that the tip morphology of NH4Br dendrites
is indeed well described by a single cos4f mode, while
LaCombeet al. have found that, for SCN dendrites, mo
modes seem necessary to fit the tip morphology [23].
origin of this difference, which is potentially due to noi
amplification, also remains to be understood.

In conclusion, we have demonstrated that quantita
modeling of 3D dendritic growth is possible using a
cently developed phase-field methodology [12]. Our
sults are important in that they leave little doubt ab
the conceptual validity of solvability theory in 3D an
the importance of crystalline anisotropy, and yield resu
which are consistent with experiment, at least for S
where kinetic effects are believed to be small. At pres
the applicability of solvability theory—in terms of mak
ing accurate predictions—remains limited mainly by t
axisymmetric approximation at large anisotropy. Our
sults have shown that the three-dimensional morphol
of the dendrite tip is dominated by a fourfold compone
whose amplitude depends sensitively on anisotropy. T
prediction should be testable experimentally. A host
other microstructural pattern formation issues, such as
determination of the steady-state shape further behind
tip and sidebranching, are now amenable to quantita
study using the present computational approach.
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